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Interaction of surface and internal cracks in railhead
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This paper presents a two-dimensional model for the analysis of interaction between surface and internal
cracks in the railheads subjected to wheel loading. The shape of the railhead, the surface crack and
the internal crack are modelled as curved cracks defined by the theory of continuous distribution of
dislocation in an infinite body. From the boundary conditions along these cracks, a system of singular
integral equations is deduced. Influence functions in these singular integral equations are first expanded
into the Cauchy kernel multiplying normal functions and later are reduced to a system of linear equations
and solved numerically. Stress intensity factors (SIFs) of the surface crack tip are calculated from the
numerical solution of distribution function along these cracks directly, eliminating need for any indirect
integral method. The method does not require meshing and hence idealisation of the shapes of the cracks,
thereby improving accuracy and reducing pre- and post processing efforts. Interaction between the internal
crack and the surface crack is examined in detail through several examples.
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1. INTRODUCTION

Railheads are subjected to wheel/rail rolling contact fatigue loading that generates surface defects
such as squats, shelling, and head checks, as well as internal material defects such as tache ovales,
vertical split heads, surface cracks, etc. These defects significantly reduce safety and reliability of
the rail transport operation because fully developed surface and/ or internal cracks can ultimately
lead to complete failure of the rail. Furthermore, these defects adversely affect the riding comfort
and the rolling noise. Currently the rail industry removes the surface cracks through rail grinding
and “manages” the internal crack growth by minimising the wheel/rail contact loading, both at very
high cost. Where surface cracks are accompanied by internal cracks, their interaction is not well
understood. The objective of the paper is, therefore, to examine the interaction between these two
categories of cracks under various wheel/rail contact loading regimes.

Crack interaction is firstly investigated for solving microcrack shielding problems. Interaction
between two cracks in homogeneous bodies using a “pseudo-traction” method was examined in [6, 9,
10]. The authors of these papers have modelled the interaction problem by superposition of several
sub problems in which one single crack in an infinite plane has been loaded by pseudo-traction along
its crack faces. Employing the Green’s functions of a single crack subjected to concentrated forces
on the crack faces, the interaction problem is reduced into integral equations from the traction-free
conditions along all the crack faces. From the numerical solutions to the integral equations, pseudo-
traction along all the crack faces is evaluated. Using this method, the interaction problems for
piezoelectric materials in particular the interaction between the interface and sub-interface cracks
have been investigated in [3, 4, 12].
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Following the pioneering work by Bilby et al. [1, 2] on the modelling of a single crack using con-
tinuously distributed dislocations, the dislocation method has been extended to treat the interaction
between cracks and circular inclusions in [5]. For representing arbitrarily shaped internal cracks in
finite size solids, the first two authors of this paper [8] developed a 2D dislocation modelling method.
Long cracks embedded in finite solids were modelled with this method; practical issues such as the
crack closure, or crack surface pressure have not been explored; surface crack modelling was also
not addressed. This paper extends the method for examining the interaction between surface and
internal cracks in finite solids; for this purpose the method was first modified to account for surface
cracks. The method considers the problem as the superposition of two “curved cracks” residing in
an infinite two dimensional continuum. All cracks have been modelled as continuous distribution of
dislocation. From the boundary condition along these cracks, a system of singular integral equations
has been deduced. To solve the singular integral equations for arbitrarily shaped cracks, influence
functions in the integrals have been expanded into products of the Cauchy kernel with normal
functions. Then the singular integral equations are further reduced to a system of linear equations
and are solved numerically. Stress intensity factors of the surface crack tip are calculated from the
numerical solution of the distribution function along these cracks. Interaction between the surface
and internal cracks are finally discussed through several problems of railheads containing cracks.

The model presented in this paper could best be described as an alternate method to the finite
element method widely used for solving crack problems. The advantage is that the method does not
require meshing, thereby avoiding idealisation of the shape of the cracks, which may adversely affect
the results. In spite of this, the method still uses numerical solution technique; therefore, could not
be regarded as an analytical method.

2. FORMULATION

The stress (03, Oyy , Tzy) and displacement (u, , uy) in two dimensional elastic bodies are defined
in terms of Muskhelishvili complex stress functions ¢(z) and %(z) [1] as shown in Egs. (1) and (2),
respectively,

Oz + Oyy =2 [<I>(z) +W] ) %
1
Oyy — Ozz + 2Ty = 2 [28'(2) + ¥(2)],

2G(ug + iuy) = kp(2) — 2®(2) — Y(2), (2)

where the over bar represents the conjugate of the complex function; and ®(2) = ¢'(2), ¥(z) = ¢'(2),
and k = (3 —v)/(1+v) for plane stress, kK = 3 — 4v for plane strain, in which v and G are Poisson’s
ratio and the shear modulus of the material respectively.

A solution to an edge dislocation at pointz, in an infinite plane was presented in [2],

#:) = 0
= (3)
A Az
‘I’(z) = (Z = za,) (Z ”: Za)2 )
where

— lir(1 + &)

in which 3; and j, are the Burgers vectors that represent the displacement due to the movement
of dislocation.
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The normal and the tangential stress components at a point z induced from the dislocation at z,
are derived by substituting Eq. (3) into Eq. (1) and employing (¢,n) coordinates with incline angle 6,

Onn + iTnt = B fe (Z, za) & ,Byfy(za Za) (5)

where

e e G S = )|

z2—2zq (z2—24)2

fy(2,24) = G )< L +_1_+62io[ 1 _(2—%)]). (6)

z2—2zq (z2—2)2

2.1. Modeling of railheads containing surface and internal cracks

Figure 1 shows a railhead containing a surface crack and an internal crack. The railhead is loaded
by the wheel on the top of the railhead. The problem is modelled by four cracks in an infinite
plane. The first two cracks, C; and C», are curved cracks with the same shape as the profile of the
railhead. The other two cracks, C3 and Cjy, are straight cracks modelling the surface and internal
cracks. The loading is applied to the curved crack faces.

7

Fig. 1. Modeling of railhead under contact loading

For simplicity, the contact loading on the top of the railhead is simplified as a uniform pressure
loading as shown in Fig. 1, although any distribution could easily be accommodated. The railhead
stresses are of primary interest in this paper; the boundary condition along the rail base does
not influence significantly the railhead stress field and hence has not been modelled exactly. To
simplify the analysis, the boundary condition of the lower part of the rail-body was assumed as
being connected to the infinite plane.

Furthermore, the four cracks are modelled by continuously distributed dislocation along the line
at the location of the cracks. The distribution functions of Burgers vector 8, and By are denoted
by gkz(2a) and giy(2a) along Cy (k = 1,2,3,4). The normal and tangential stress components at a
point z on C; (j = 1,2,3,4) induced by the distributed dislocation are obtained from an integral of
the stress induced by the dislocation at pointz, as shown in Eq. (7),

Onn(ik) (2) + iTny(ji) (2) = /C (k2 (2a) fra(2, 2a) + Gky(2a) Fry (2, 2a)] dza . (7)

fre(2,24) and fry(2, 2,) are derived directly from Eq. (6).
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Superposition of the stress at the j-th crack induced from distributed dislocation along the four
cracks should meet the boundary conditions along the crack faces. This leads to integral equations
as defined in Eq. (8),

4
Z /C [9k2(2a) frz(2, Za) + gky(za) fky(za za)] dzq = Pnn(j) (2) + ip’nt(j) (2) (8)
k=17 Ck
zonC;, j=1,2,3,4

where ppn(;)(2) + ipny(j)(2) are external boundary tractions prescribed to faces of the j-th crack
whose value are equal to the external normal and tangential tractions if z is on the loaded crack
face segment, or equal to zero if z is on the traction free segments,

(2) +i ) {p,m(z) +ippt(z) z on loading segment, ©)
2 (2) + ippiiy (2) =
Prn(j) sl 0 z on traction free segment.

The single-valued displacement conditions around the railhead surface and the internal crack
also lead to a set of integral equations as

3
Z/ gkz(za) dz, = 0, / g4a:(za) dz, = 0,
k=1"Ck Ca
(10)

3
Z/ gk'y(za) dz, =0, / g4y(za) dzg = 0.
k=1"Ch Ca

It is worth to note that there exists two joints amongst the three cracks C, Cy and C3, namely
a joint between Cj and C3 and another joint between C2 and C3. As these joints always define
an angle less than 180° between the adjacent cracks, the state of stress at these joints will remain
zero, which leads to vanishing of the dislocation. Thus the joint problem of crack is simulated using
distributed dislocation without using concentrated dislocation at the joint as modelled in [11]. This
simplification in the formulation restricts the crack to exhibit opening mode only; in other words
crack face traction due to closure is not permitted.

2.2. Singular integral equations

The set of integral equations shown in Egs. (8) and (10) provide the basis for solving the original
problem. The right side of these equations and the kernel functions (fis(2,2s) and fiy(2,2,)) in
the left side of these equations are known functions, while the dislocation distribution functions,
gkz(2a) and gry(2z,) are unknown functions to be determined.

From Eq. (6), it can be seen that Eq. (8) is a set of singular integral equations, because the
kernel functions, fxz(2,24) and fiy(2,2a), are singular when 2z tends to z,. It has been reported
that the kernel in Eq. (8) is the Cauchy type when the integral contour is a straight line [12], and
Hilbert type when the contour is a circle [7]. For arbitrarily shaped integral contours, the kernel
functions vary directly depending on the shapes of the cracks [8]. However, as the order of these
kernel functions does not change, we can reduce them to products of the Cauchy kernel with normal
functions.

The coordinates zj, of a point on the crack Cy are expressed by a function z; = zk((x) in term
of a variable ( which is the length from midpoint of Cy to the point z. When z moves to z,, the
magnitude of variable (j will be equal to s . Using the introduced function and variable, the kernel
functions are expanded into products of the Cauchy kernel with normal functions, Fy((k,sx) and
Fiy(Ck, sk)- The normal functions are further expanded into two-dimensional first kind Chebyshev
series. The parameters for the series are calculated from Eq. (6). The solutions of the dislocation
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distribution functions, gis(s) and gry(s), at crack tips are dominated by the square root singularity,
thus the functions are given in the form of

Grz(s
Gkz(Sk) = % A
e — %
Gry(s 11
Gry(Sk) = k—:(k)—z, (1L
Li — s

_LkSSkSLk) k:172a3747
where Gz (si) and Gyy(sk) are two unknown normal functions to be solved, which are expanded
into the first kind of the Chebyshev series as shown in Eq. (12)

S
Gra(sk) ZBkmlTl ( k)

S
ka Sk ZBklel ( k)

k =123 4
where Tl(%f:) is the I-th order Chebyshev polynomial and Byg and By, are constants to be deter-
mined.

Complete formulation for obtaining a system of linear equations and solving the equations using
standard numerical methods are detailed in [8]. From the solution to the system of equations, the
numerical results of the constants By and Bgy can be determined. The stress intensity factors at
the surface crack tip are then calculated using the Chebyshev quadrature as [2]

Gir {5 M3
T )\/7? {G3z(L3) + 1G3y L3)} = 1+ n)\/7_r—L— Z B3g + 1A3yl) (13)

The stress intensity factors at the internal crack tip are then calculated as

% . My
(1+G) W19 {Gaz(L4) +iGyay(Ls)} = (1+i) \/WTZ (Bagl +1Agy). (14)

(12)

K =Kr—iK =

K =K;—-iK =

3. NUMERICAL RESULTS

A standard AS60kg/m railhead subjected to wheel loading at the gauge corner as shown in Fig. 2
was considered for the numerical examples presented in this section. The loading is simplified as the
uniformly distributed pressure along the normal and tangential directions of the railhead profile.
The ratio between normal and tangential pressure is assumed to remain constant (0.3) in all cases
analysed. The Poisson’s ratio is 0.3 and the strain state is assumed plane strain.

Six examples, each considering a specific case of crack is presented. The first example identifies
the worst possible orientation of the surface crack located just under the loading in the gauge corner.
The second example examines the worst possible orientation of the internal crack when the surface
crack orientation remains fixed at the value determined in example one. For this purpose, the lengths
of the surface and internal cracks and the distance between the centers of the two cracks were kept
constant. The third example examines the effect of the distance between the tips of the surface and
the internal cracks when the two respective cracks remain at a constant orientation identified in
example two.

The last three examples consider the cracks along the symmetric vertical axis whilst the loading
remains at the gauge corner. Example four examines the sensitivity of the angle of inclination of
the internal crack with respect to the surface crack. Example five considers sensitivity of distance
between the two cracks and example six investigates the sensitivity of the internal crack length.
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Fig. 2. AS60kg/m railhead and loading at gauge corner

3.1. Example #1

The first example deals with a surface crack at the gauge corner. No internal crack was considered
in this example. To determine the angle at which the SIF of the surface crack had a maximum value,
the angle of inclination of the surface crack, § (measured from the tangential axis as shown in Fig. 3)
was varied from the minimum possible angle (50°) to the maximum possible angle (138°) permitted
by the profile of the rail gauge corner. The calculated stress intensity factors were normalised by

K° = P\/27a;.
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Fig. 3. Model I SIF of surface crack tip varies against the incline angle

Figure 3 shows that the normalised Mode I SIF varies against the angle §. With the increase in
the angle the Mode I SIF has increased, and reached a maximum value when § = 90°. This shows
that the normal direction to the gauge corner (or parallel to the direction of the loading) is the
easiest direction for the propagation of surface crack. For the range of angles from 59° to 124°, the
SIF shown by thick solid line in Fig. 3 remains positive. However, for all other angles, the SIF was
negative, as shown by the dashed lines in Fig. 3 (which shows inappropriate solutions for the theory
presented in this paper due to the fact that the crack faces near the tips for these cases are no longer
traction-free).
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Fig. 4. Model II SIF of the surface crack tip varies against the incline angle 4

Figure 4 shows the variation of Mode II SIF against the angle of inclination of the surface crack.
The Mode II SIF has decreased over the full range of the angle as shown in Fig. 4. When 6 = 90°,
the Mode II SIF is zero has vanished, confirming Mode I crack growth as shown in Fig. 3.

3.2. Example #2

The second numerical example considers an internal crack with half-length 1 mm interacting with
a surface crack whose angle of inclination 6 was fixed at 90°. The internal crack was located under
the surface crack at a distance of 2mm between the surface crack tip and the center of the internal
crack. The internal crack was allowed to rotate from —90° to +90°. The calculated SIF is normalised
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Fig. 5. SIFs of surface crack tip varies against incline angle of internal crack
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by K ?, which is the Mode I SIF of the surface crack tip when no internal crack was considered in
the railhead (Example #1).

Figure 5 shows the variation of SIFs (Mode I and Mode II) of the surface crack against the angle
of inclination of the internal crack . The normalised Mode I SIF has increased when ¢ increased
from —90° to 5° and then decreased throughout the full range from —90° to +90°, the Mode I SIF
remained positive. It could be seen that when the internal crack had the angle of inclination ranging
from —32° to 39°, the Mode I SIF had amplifying effect (K7/K? > 1) to the surface crack. For all
other case, in the other angle ranges (shown by dashed lines), on the contrary, the internal crack
had a tendency to dampen the surface crack (K7/K? < 1).

The Mode II SIF of the surface crack tip is also plotted in Fig. 5. It can be seen that angle
of inclination of the internal crack also affected the Mode II SIF, and made the SIF reaching its
maximum value at ¢ = 5°, although the effect is much less pronounced compared to the effect of
the Mode I SIF.

3.3. Example #3

Figure 6 shows the sensitivity of the distance between tips of the surface and internal cracks on the
Mode I SIF of the surface crack tip when the surface crack angle § was 90° and the internal crack
angle ¢ was zero degree. The half lengths of the two cracks were kept as 1 mm. As shown in Fig. 6,
the normalised Mode I SIF has decreased sharply when the distance increased from zero. When the
distance is larger than 2a4, the interaction was less than 5 percent (insignificant). The proximity
of the internal crack is hence clearly shown to be important for any acceleration of the growth of
the surface crack.
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Fig. 6. Model I SIF of surface crack tip varies against distance d

3.4. Example #4

The fourth numerical example considers an internal crack and a surface crack on the vertical centre
line of the railhead whilst the loading remained at the gauge corner as in the previous examples.
Length and the angle of inclination of the surface crack was kept as 2mm and 90° respectively. The
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internal crack with half-length 1 mm was located under the surface crack. The distance between the
surface crack tip and the centre of the internal crack was kept as 2 mm.

The calculated SIF was normalised using K?, the Mode I SIF of the surface crack without the
interaction effect of the internal crack. Figure 7 shows the variation of the normalised SIF for the
surface crack tip against the variation of the angle of the internal crack (). Over the entire range of
the angle, the internal crack exhibited amplifying effect on the SIF of the surface crack (Kj/K P 1
As the angle increased from —80° to 25°, the amplifying effect increased from its minimum value
to its maximum value of approximately 1.12.
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Fig. 7. SIFs of surface crack tip varies against incline angle of internal crack

3.5. Example #°5

Setting the angle of inclination and length of the internal crack as constants (¢ = 0° and 2mm
respectively), the distance between the two crack tips was varied in this example. The variation
of the normalised Mode I SIF of the surface crack tip is shown in Fig. 8. When the two cracks
move closer, the SIF increases indicating stronger interaction ( > 40%). On the contrary, the SIF
decreases and tends to unity when the two cracks move away. It can be also seen that the interaction
effect is less than 5 percent when the distance is larger than 2a4 .

3.6. Example #86

To consider the sensitivity of internal crack length the distance between the tips of the two cracks
are fixed as 1 mm whilst the length of the internal crack was varied from zero to 20 mm (such long
cracks centrally placed in the heads of some old rails are found in many heavy haul tracks around
the world). The variation of the Mode I and Mode II SIFs of the surface crack is calculated and
plotted in Fig. 9. As the length increases, both Mode I and Mode II SIFs increase. Thus the larger
the internal crack, the stronger the interaction with the surface crack.
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4. CONCLUSIONS

A continuous distributed dislocation method formulated for arbitrary shaped 2D crack problems
by the authors recently has been extended with particular reference to modeling the interaction
problem between surface and internal cracks in railhead. This method can also treat interaction
among curved cracks with arbitrary shape in a finite body.

From the numerical results, we found that the internal subsurface cracks interact with surface
cracks in a way that is of practical relevance. The interaction depends on the location and geometry
of the internal cracks. Angle of inclination of the internal crack has the potential to amplify the SIF of
the surface crack tip. Smaller difference in angle between the two cracks is particularly detrimental.
Distance between surface and internal cracks also affects the interaction. The closer the cracks,
the higher the interaction; closer cracks increase SIF by more than 40% whilst the far-away cracks
increase the SIF only by 5%.

The length of the internal crack also adversely affects the interaction between surface and internal
cracks. Longer cracks have stronger interaction effects, while the shorter cracks have weaker effects.
The above conclusions hold good whether the cracks are in gauge corner or in symmetric vertical
axis of the railhead.
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