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In recent years, there has been interest in research related to hyperthermia combined with radiation and
cytotoxic drugs to enhance the killing of tumors. The objective is to control laser heating of the tumor
so that the temperature of the normal tissue surrounding the tumor remains low enough so as.not to
cause damage to the tissue. To achieve this objective, it is important to obtain an optimal temperature
field of the entire treatment region. In this paper, we develop a numerical algorithm for obtaining an
optimal temperature distribution in a 3D triple layered cylindrical skin structure by pre-specifying the
temperatures to be obtained at the center and perimeter of the treated region on the skin surface. The
method is comprised of designing a laser irradiation pattern, solving a 3D Pennes’ bioheat equation by
a numerical scheme, and optimizing the laser power.

NOMENCLATURE

C specific heat of layer [

C’f, specific heat of blood in layer [

/ iterative index

I identity matrix

gk grid point

k; heat conductivity of layer [

L depth of layer [

N;, Ny, N numbers of grid points in the r, ¢, z directions, respectively
n time level

Py laser intensity

P? second order finite difference operator in the r direction
QL heat source in layer [

R radius of the skin structure

Reff, laser reflectivity in layer [

7.0, 7 cylindrical coordinates

S least squares sum

T i7: tissue and blood temperatures, respectively

t time

ul numerical solution
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W,f blood perfusion rate of layer [

Q laser absorptivity of layer 1

a3 (53 second-order finite difference operators in the z, ¢ directions, respectively
ol density of layer [

o standard deviation of laser beam width

0, tissue temperature elevation due to heating

Ar,Ap,Az mesh sizes in the 7, ¢, z directions, respectively

At time increment

1. INTRODUCTION

In recent years, there has been interest in research related to the hyperthermia combined with
radiation and cytotoxic drugs to enhance the killing of tumors [15, 16, 24, 25, 30]. Conventional
hyperthermia (target temperatures of 42-46°C) in conjunction with radiation has demonstrated
increased effectiveness in the treatment of certain types of cancer, such as those of liver metastases [6,
16, 23|. The objective is to control laser heating of the tumor so that the temperature of the normal
tissue surrounding the tumor remains low enough so as not to cause damage to the tissue. Thus,
it is important to obtain a temperature field of the entire treatment region. With knowledge of
the entire temperature field in the treatment region, clinical personnel can potentially control the
heating source to deliver energy to the treatment target volume to raise its minimum temperature
above 42°C, while limiting the temperatures in the normal tissue to prevent damage. However, it
is not easy to obtain an accurate determination of the temperature field over the entire treatment
region during clinical hyperthermia treatments, because the number of invasive temperature probes
that can be used is limited due to the pain tolerance of patients. Hence, it is important to determine
the laser intensity and pattern of laser exposure in order to optimize the temperature distribution
in the treated region. The determinants of temperature distributions during thermal therapy are:
the power deposition pattern of the heating source, heat removal by conduction, and heat removal
by blood flow forced convection. In order to determine the temperature distribution in the treated
region, numerical methods must be developed to solve the bioheat transfer equation for the human
body [1].

Most utilized models for the hyperthermia treatment involve the Pennes’ bioheat transfer equa-
tion (BHTE). In the BHTE model, heat transfer between the blood vessels and tissue is assumed to
occur mainly across the capillaries where the blood velocity is low [19]. The blood in the capillary
bed instantly thermally equilibrates with the temperature of the surrounding tissue and enters the
venous circulation at the local tissue temperature. Therefore, the contribution of blood flow could
be modeled as a heat sink whose magnitude is proportional to the difference between the arterial
supply temperature and the local tissue temperature. There are many numerical and experimen-
tal methods developed based on this model. Clegg and Roemer [2, 20] performed hyperthermia
sessions on a normal canine thigh to test the ability of a state and parameter estimation method
to accurately predict the complete 3D temperature distribution in experimental situations. They
employed the Pennes’ equation as the system model and an optimization algorithm, which is based
on a least squares error objective function, used for predicting certain unknown model parameters,
such as the blood perfusion and the power deposition. Martin and Bowman [14] presented the exact
steady state and transient solutions for the temperature distribution in laser irradiated and perfused
tissue using the Pennes’ equation under cylindrical coordinates. Liauh and Roemer [11] presented
a semi-linear state and parameter estimation algorithm that decreases the total computational time
required to accurately reconstruct complete hyperthermia temperature fields, since the relationship
between the temperature and the blood perfusion based on the Pennes’ bioheat transfer equation is
generally nonlinear in the hyperthermia temperature estimation problem. Chatterjee and Adams [1]
generated a 2D finite element thermal model of the prostate region of the human body based on the
Pennes’ equation using the automatic mesh generation capabilities of the software package ANSYS.
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Huang [8] considered the heat transfer within a perfused tissue in the presence of a vessel. The
Pennes’ bioheat transfer equation was used for the perfused tissue, and a lumped capacitance anal-
ysis was used for the convection in the vessel with a constant Nusselt number. Analytical solutions of
the Pennes’ bioheat transfer equation with a blood vessel were obtained. Payne [18] derived a design
of the phantom from a combination of the convective fin equation and the Pennes’ BHTE, and de-
veloped a phantom model using an inverse technique applied to experimental data from a thin layer
phantom to determine model parameters. Majchrzak and Mochnacki [13] considered thermal pro-
cesses proceeding within a perfused tissue in the presence of a vessel. The Pennes’ bioheat transfer
equation determines the steady state temperature field in the tissue sub-domain, while the ordinary
differential equation resulting from the energy balance describes the change of blood temperature
along the vessel. Dai [3-5] developed a domain decomposition method for solving the 3D Pennes’
bioheat transfer equation in a triple-layered skin structure. Recently, we [31] have developed a nu-
merical method for optimizing laser power in the irradiation of a 3D triple layered cylindrical skin
structure. The method was obtained by solving numerically the 3D Pennes’ bioheat equation where
the surface of the skin is irradiated by the laser according to a designed pattern. From this temper-
ature distribution, we used the least squares method in order to determine the laser intensity that
gives temperatures close in value to the pre-specified temperatures to be attained at the center and
perimeter of the skin surface. However, the laser exposure pattern was pre-specified in the numerical
method, which makes difficulty in general to determine the laser power by minimizing the sum of
squares derivations between calculated and pre-specified temperatures at center and perimeter in
one step. In this article, we develop a numerical algorithm based on our previous results and taking
into account both the laser intensity and laser exposure pattern, so that the numerical method can
be applied to more general cases.

2. MATHEMATICAL MODEL

In this study, we employ the Pennes’ equation for obtaining the temperature distribution since it has
been widely applied. It should be pointed out that our method is not limited to the Pennes’ equation
and could be replaced by other models. Consider a cylindrical 3D skin structure that is composed
of epidermis, dermis and subcutaneous, where the surface of the skin is irradiated by a laser, as
shown in Fig. 1. The Pennes’ equation that describes the thermal behavior of the triple-layered skin
structure when irradiated by a laser can be expressed in cylindrical coordinates as follows [19],

T 19,00 .. 1 AT A
PO, =k [;E(rg;’)ﬂ,—z%#ﬁ’]+WéCz’,(Tb—T1)+Q£n+Q£, 1=1,2,3, (1)

where T; is the tissue temperature; Ty is the artery temperature; p;, C; and k; denote density,
specific heat, and thermal conductivity of tissue, respectively; Cg is the specific heat of blood; W,f
is the blood perfusion rate; and an and er are volumetric heats due to metabolism and spatial
heating, respectively. To analyze the temperature elevation by heating, we assume ;™ to be the
steady-state temperature obtained based on the following equation,

m 2mm 2m
O=kl|:-1——(?—(raTl) 10°T™  8°T;
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Let 6, = T; — T/, which is the temperature elevation above the steady-state temperature due to
heating. Assume that T} is unchanged for simplicity. Then, 6; satisfies

pC e + W, Ci0, — ki [T ar Ta’l‘ = 2 B2 + Y § [ RN - 1 By 4 (3)
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Fig. 1. Configuration of a 3D skin structure

Furthermore, we assume that the laser power is continuous and spatial with a normal distribution.
As such, the heat source Q. can be written as follows [9],

1 _ (rcos p—z(t)) 2+ (rsin p—yg(t))*
Q1 =me™ ™ ——e 207 Py(1 — Reffy), (4a)
V2mro?
1 __(rcos (p—zo(t))2+(rsin t;:-—uo(t))2
Q2 = ope~f1m* Vora? e 207 Po(1 — Reff), (4b)
To
1 _ (rcos o=z (1)) 2+(rsin p—yq(t))?
Ql = ase—a1L1—a2Lz—asz \/2__2_ e 203 PO(]- o Reﬁ3), (4C)
To

where a;, ag, a3 are laser absorptivities of the three layers, respectively; Reff,, Reff,, Reff; are
laser reflectivities of three layers of the skin, respectively; o is the standard deviation of the width
of a normally distributed laser beam; and L;, Ly, L3 are depths of the three layers, respectively.
Here, (zo(t),yo(t)) is the location where the laser is focused, and can vary with time ¢.

For simplicity, we assume that the heat flux approaches zero in the depth of the tissue, which is
realistic for a biological body [12]. Further, without loss generality, we assume that the heat flux is
zero at z = 0 in order to simplify the stability analysis. However, one may choose other boundary
conditions such as heat convection on the surface. Thus, the interfacial and boundary conditions
can be written as follows,

00, ¥
=" 0, Zo=0; (5)
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The initial condition is

Sl Ao sl =108 (11)

It should be pointed put that because the location (z(t),yo(t)) varies with time ¢, the unsteady-
state three dimensional heat conduction equation, Eq. (3), is necessary in general.

3. NUMERICAL METHOD

To obtain a temperature distribution numerically, we first let (u;)% « be the numerical approximation
of (6;)(iAr, jAp, kAz, nAt), where Ar, Ay, Az, and At are the spatial and temporal mesh sizes,
respectively. Here, i, j, k are chosen to be integers with 0 <4 < N,,0<j < N,,0<k < N}, so
that N,Ar = R, N,Ap = 27, and NfAz = L;, | = 1,2,3. As such, a finite difference method for
solving the initial and boundary triple-layered skin structure problem, Egs. (3)-(11), can be written
as follows,

()it — (W) N %) il () T e U fiats
p1C— o sk 2 =~ BB+ 500 — 5 = (Qr)iji*>
=123 (12)
where
P2y — "i+§(“?+1jk — tig) — Ti—%(“%k = U 1k)
3 uijk = 'I','Af'z )
s s gk o 2Uijk + Uij—1k
1, 29 )
p: 280, T?Atpz
2. _ Uijk+1 — 2Uijk + Uijk—1
Jzu'ijk . A2 )
and r; . e (t+ %)Ar. The discrete interfacial equations are assumed to be, for any time level,

(w1)fnz — (W) Nz 1 (u2)fj1 — (u2)¥
i i Ny e =L ulAz 0 (w1)fnz = (u2)fo, (13)

and

(u2)jnz — (u2)jnz 1 (u3)ij1 — (u3)Fo
- iy N3 e b e S ij - = (W)Z‘N; = (u3)o - (14)
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This initial and boundary conditions are discretized as follows,

(w)fx =0, (15)
(w1)ijo = (w1)f1 5 (us)ijng = (ua)ijnz—1, (16)
(W), ik = ()N, —1jk » ()G = (W)ij4mN,Apk (17)

for any time level n.

It should be pointed out that the laser intensity P, is unknown and will be determined by pre-
specifying the temperatures to be obtained at the center and some perimeter locations on the skin
surface based on the least squares method. Therefore, one needs to show that the numerical scheme,
Eqgs. (12)—(17), is stable with respect to Py. We give a proof in the appendix which shows the scheme
to be unconditionally stable with respect to the heat source Q. (that is, Pp).

To optimize the laser intensity Py, we pre-specify the elevated temperatures to be obtained
at the center and some perimeter locations on the skin surface. The reason that the center and
perimeter on the skin surface are chosen is because the temperature at these locations could be
easily measured. Besides, the temperature at the perimeter of the region needs to be controlled in
order to prevent damage to the tissue. By guessing an initial laser P, , one may obtain from Egs. (12)-
(17) a temperature field in the entire 3D skin structure after the pre-specified laser exposure. Once
the calculated temperatures, uca,, at the given locations (¢ = 0,1,..., M) are obtained, a least
squares approach can be employed to minimize the difference between the pre-specified elevated
temperature 6,.e and the calculated temperature uc, as follows,

M

S(RYE Y [0 “wia))Y, iE0,.. 5, (18)
1=0

Minimizing S(Pp) in Eq. (18), one can obtain

S(Po 2Z(d(“°a’)> e —Ui) =0, i=0,1,...,M. (19)

Hence, a new Py can be calculated iteratively as follows [17],
P = P 4 (XX + 0 1)L X (Bre — Gcal) (20)

where a* is a relaxation parameter for convergence, X is the sensitivity coefficient matrix, which is
alx (M +1) vector

X — O(udy) O(ugy) 6(u§§1)]t (21)
0Py ' O0Ry ' 0Ry |’
and
Gg,re “(cl)al
fmal ef,e P e u<::al . (22)
o ult

Hence, the required laser intensity Py can be obtained by guessing an initial laser intensity and its
small increment, Py and Py + AP, to obtain the temperature distributions, @, (Pp) and Ucal(Po +
AP) by solving Eqgs. (12)—(17); determining a new Py by Egs. (20)—(22), where ﬂg’;ﬁ—*“) is evaluated

m-+1 m
M‘H’AP) ueal(Po) s 4nd repeating the computation until ﬁOSTz,,ﬁg(—PD— < e is satisfied.

The algorlthm for obtaining an optimal temperature dlstrlbutlon ina 3D triple layered cylindrical
skin structure can be described as follows, as shown in Fig. 2.
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Fig. 2. Computational flow diagram of the numerical method

Step 1. Determine an initial Py based on the center point only so that the pre-specified temperature
B5eat" is satisfied. This is necessary since it is difficult to determine the laser power by minimizing
the sum of squares derivations between calculated (from the bioheat equation) and pre-specified

temperatures at all M + 1 points (center and perimeter) in one step.

Step 2. Turn off the laser in order to allow heat to diffuse from the center towards the perimeter of
the region. This allows the perimeter temperature to increase and leads to a decrease in the tem-
perature at the center. Based on certain criteria involving comparisons between calculated tem-
peratures at the center (u¢®M*T) and perimeter (uP*™***") and pre-specified temperature e

cal cal
BBre “°*°"), the laser may need to be turned on and off until Sp(Po) = Z?; [(9;',re - 'u,zal)]2 is
less than a pre-specified value, Sf,pwﬁed.

Step 3. Optimize Py based on the least squares method, Eqgs. (18)—(22), and the calculated tem-
perature distribution, Eqgs. (12)-(17), involving the M + 1 points in Eq. (18).

4. NUMERICAL EXAMPLE

We tested our algorithm in a 3D skin structure as shown in Fig. 1, where the materials were chosen
from Table 1. The dimension of the skin structure was chosen to be R = 0.5cm, L; = 0.008 cm,
Ly = 0.02cm, and L3 = 1.0 cm. A mesh of 31x20x 1209 in (r, ¢, z) was employed in the computation.
The time increment At is 0.1 s and the standard deviation of the laser beam width o is 0.1. In our
calculation, we pre-specified the temperature elevations at the center of the skin surface and at four
locations, 90 degrees apart (that is, ¢ =0, %, 7, and 37”), at the perimeter.
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Table 1. Parameters for a 3D skin structure [28, 31]

Parameters Values
Ch (J/g°C) 3.6
Cs (J/g°C) 3.4
Ch (J/g°C) 3.06
C} (J/g°C) 0.0
C? (J/g°C) 4.2
cs (J/g°C) 4.2
k1 (W/cm°C) | 0.0026
ko (W/cm°C) | 0.0052
k3 (W/cm°C) | 0.0021

Reff, 0.1
Reff, 0.1
Reff 5 0.1

Wi (g/cm?) 0
W2 (g/cm®) | 0.0005
wg (g/cm?) 0.0005

a1 (cm™1) 1.8
Qs (cm™1) 1.8
as (cm™1) 1.8

p1 (g/cm?) 1:2
P2 (g/cm?) 1.2
p3 (g/cm?3) 1.0

A laser exposure pattern was designed as follows: 21 pixels on the skin surface were chosen
for laser irradiation. These included the center pixel and those grid points (20 points) with a Ar
distance from the center. In step 1 of our algorithm, the laser was set to irradiate at the center pixel
for 10 seconds, after which it was moved to the grid point at ¢ = 0 and circulated twice counter-
clockwise over the 20 pixels with the laser focused for 10 seconds on each pixel. To implement
this laser exposure pattern, at each pixel where the laser was focused, Egs. (4a)—(4c) were used to
determine the heat source (or heat input) for each time step, At, in the numerical scheme. The
number of time steps of exposure at each pixel was equal to i%. Starting at step 2, the laser was
moved to the center pixel and was turned on and off as required.

In the three cases below, the temperature distribution is considered to be symmetric. Therefore,
the purpose of the laser pattern in step 1 is to heat up the tissue quickly and to keep the temperature
distribution as axisymmetric as possible. However, the model is general in three dimensions and can
be applied to any pre-heating protocols one may choose. The three cases were tested as follows.

Case 1

The temperature elevations at the center and perimeter were pre-specified to be 8°C and 2°C,
respectively. In this case, the initial Py was obtained to be 0.595951 (W).

Figure 3 shows the temperature elevation profiles (at ¢ = 410 seconds) along the diameter of the
skin surface for ¢ = 0 and ¢ = 7, the temperature elevation contours in the cross section for ¢ = 0
and ¢ = 7, and the temperature elevation profile along the depth (the z-direction) at the center of
the skin surface. It can be seen from the figure that the temperature at the center is close to 8°C.
However, the temperature at the perimeter is below the required temperature. The relative error,

TR, ot )
Z?:o EB"E;—{,—“]“‘)L, is 0.499572. The results from Fig. 3 relate to computations in step 1 of Fig. 2.

pre

In the following computations, the laser was turned off between ¢ = 410 seconds and ¢t = 514
seconds, and then turned on with a modified Py of 0.591449 (W) until ¢ = 640 seconds.
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Fig. 3. (a) Temperature elevation profiles (at ¢ = 410 seconds) along the diameter of the skin surface for ¢ = 0
and ¢ = 7; (b) Temperature elevation contours in the cross section for ¢ = 0 and ¢ = ; (c) Temperature
elevation profile along the depth (the z-direction) at the center of the skin surface
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Figure 4 shows the temperature elevation profiles (at ¢t = 640 seconds) along the diameter of the
skin surface for ¢ = 0 and ¢ = , the temperature elevation contours in the cross section for ¢ =0
and ¢ = 7, and the temperature elevation profile along the depth (the z-direction) at the center of
the skin surface. It can be seen from the figure that both temperatures at the center and perimeter
are close to the pre-specified temperatures. The relative error is reduced to 0.0514089. Results in
Fig. 4 relate to steps 2 and 3 of Fig. 2.

Case 2

The temperature elevations at the center and perimeter were pre-specified to be 8°C and 3°C,
respectively. The initial Py was also 0.595951 (W). At ¢ = 410 seconds, the temperature distribution
is the same as that shown in Fig. 3 and the relative error is 1.29469. Based on the computation
scheme in Fig. 2, the laser was turned off between ¢ = 410 seconds and t = 718 seconds, and
on between ¢t = 719 seconds and ¢t = 887 seconds, and off again between ¢ = 888 seconds and
t = 958 seconds, and finally on with a modified Py = 0.590318 (W) between ¢ = 959 seconds and
t = 1033 seconds.

Figure 5 shows the temperature elevation profiles (at ¢ = 1033 seconds) along the diameter on
the skin surface for ¢ = 0 and ¢ = 7, the temperature elevation contours in the cross section for
¢ =0 and ¢ = , and the temperature elevation profile along the depth (the z-direction) at the
center of the skin surface. It can be seen from the figure that both temperatures at the center and
perimeter are close to the pre-specified temperatures. The relative error is now reduced from 1.29469
to 0.0027744.

Case 8

The temperature elevations at the center and perimeter were pre-specified to be 8°C and 4°C, re-
spectively. Again, the initial Py was 0.595951 (W). At t = 410 seconds, the temperature distribution
is the same as that shown in Fig. 3 and the relative error is 1.83164. In this case, the laser was off
in those periods between 410 seconds and 558 seconds, 700 seconds and 917 seconds, 1034 seconds
and 1377 seconds, and 1482 seconds and 1510 seconds. It was on in the periods from 559 seconds
to 699 seconds, 918 seconds to 1033 seconds, and 1378 seconds to 1481 seconds. Finally, the laser
was on with a modified Py = 0.581614 (W) between ¢ = 1511 seconds and ¢ = 1544 seconds.

Figure 6 shows the temperature elevation profiles (at ¢ = 1544 seconds) along the diameter of the
skin surface for ¢ = 0 and ¢ = 7, the temperature elevation contours in the cross section for ¢ = 0
and ¢ =, and the temperature elevation profile along the depth (the z-direction) at the center of
the skin surface. In this case, the agreement between calculated and pre-specified temperatures is
improved and the relative error is reduced from 1.83164 to 0.0277092.

From the above three cases, one can see that with an increase in the pre-specified temperature
elevation at the edge, there is an increase in heating time and in the number of times the laser is
turned on or off.

Finally, in order to prove that our algorithm is independent of the grid size, additional meshes
(r,,2) were employed in the computation, namely 20 x 20 x 1208 in (r,¢,z), 40 x 20 x 1208
in (r,¢,2) and 30 x 20 x 2416 in (7, ¢, 2). Figure 7 shows, for the conditions in case 1, the four
temperature elevation profiles (at ¢ = 410 seconds) along the diameter of the skin surface obtained
from the various meshes (20 x 20 x 1208, 30 x 20 x 1208, 40 x 20 x 1208, 30 x 20 x 2416) for ¢ = 0 and
¢ = m and in the z-direction. It can be seen from this figure that there are no significant differences
among these solutions, implying that our scheme is grid independent.

It should be pointed out that the temperature elevation profiles and contours along the diameter
of the skin surface and the cross section for ¢ = 7 and ¢ = ?‘21 were not plotted because they are
virtually identical to those for ¢ =0 and ¢ = 7.
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Fig. 4. (a) Temperature elevation profiles (at ¢ = 640 seconds) along the diameter of the skin surface for ¢ = 0
and ¢ = m; (b) Temperature elevation contours in the cross section for ¢ = 0 and ¢ = 7; (c) Temperature
elevation profile along the depth (the z-direction) at the center of the skin surface
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Fig. 7. (a) Four temperature elevation profiles (at ¢t = 410 seconds) along the diameter of the skin surface for
¢ =0and ¢ = 7, and (b) Four temperature elevation profile along the depth (the z-direction) at the center
of the skin surface

5. CONCLUSION

In this study, we have developed a numerical algorithm for obtaining an optimal temperature dis-
tribution in a 3D triple layered cylindrical skin structure by pre-specifying the temperatures to be
obtained at the central and perimeter locations on the skin surface. The method is comprised of
optimizing the laser power for a laser irradiation pattern by using the least squares method in con-
junction with a numerical solution of the 3D Pennes’ bioheat equation. Numerical examples show
that the method is applicable and efficient. Results could be useful for certain types of hyperther-
mia cancer treatment, such as skin cancer. Further studies will focus on including blood vessels in
the model since the presence of thermally significant vessels can have a dramatic impact on the
temperature distribution in hyperthermia application [10].

Furthermore, the optimality criterion in this study is based on temperature. Some models of
temperature-related damage to tissues have been developed based on time [7, 22, 29]. A more
efficient approach may be based on thermal dose (time and temperature-dependent).

APPENDIX

Here, we will show the scheme, Eqgs. (12)—(17), to be unconditionally stable. For simplicity, we assume
that (u1)g;x = (w)7jx and introduce the definitions of the inner products and norms between the
mesh functions U‘Z , and v{‘j i as follows,

Ny—1 Np Ni—1
(W o), = ArdpAz Y >N ulpely, )] = @t ut),,
=1 )=l %=1
N,—1 N, Nf-1
IVar ] = (Vou™, Veu"), = ArdpAz Y Y S (Vauly)?,

i=1 j=1 k=1
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N, Ny, le—]'

IVeu™ |7y = (Veu™, Veu™),; = ArApAzY Y~ S (V

n \2
fuijk)l,l )
i=1 j=1 k=1

where [ = 1,2,3, and V5 is the first-order backward finite difference operator such that Vsu?

Uijk

ijk
—K—LJ “=1k " and so on for the ¢ and z directions.

Lemma 1. If (w)},, 1 = 1,2,3, is the solution of Egs. (12)~(17), then

Ni-1
kY 82 [(un)h! + )] - [Cwn)et + ()
k=1
Ni-1

tha Y 07 ()t + (ua)] - [(ua)t + (wa)e]
k=1

Nj-1

+he 3 8% [(w)ft! + ()] - [(un)i + (us)e]

N{
— —k]_ Z VE [(ul):;'};]- + (Ul)z]k] :
k=1

ijk (Al)

N3 Ny
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inag ) + ()] - [ + )] = Z =V [ + )] (A3)
j=1

__1“

Proof. Let U,El) = (1 )Zzl + (W), U = 1,2,3. As such, the left-hand-side (LHS) of Eq. (A1) can
be simplified as follows,

NE—1 N3-1 N§i-1
LHS = k Z 82N .U + ky Z 22U .U 4k, Z s2u® . y®
k=1 k=1 k=1
s e Y v T g
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N Ni-1
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Based on Eq. (16), the LHS can be further written as follows,

Nf-1 Ni-1

i) 1 1 1 1 . 1 1 1
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id A_zzk3 Z (U,g ) - Ulg—)l) 'UIS—)I = Z (U,E ) - Ulg—)l) 'UIE )
k=1 k=1
1 1 1 1 1 2 2 2
+ xpah (VR - UNL) - UNY - m’” (v -u?) v
1 @) _ @ (2) @ _y®Y).y®
+ gazhe (U - V) - UfRs = ke (V0 - 090) - 0.
Using Egs. (11)—(12) and then Eq. (14), we simplify the above LHS as follows,
Ni-1 Nz-1 Ni-1
LHS =~k ) VUL ViU — b Y viUP v ks Y- ViU vU®)
k=1 k=1 k=1
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+ Fk 2 (U -0 ) Uf), - Z—-—kz (v - U}v,)_l) U
Nz
A4 _kIZv v . v, - kZZv U3 v uP kg Zv U3 . v u®, (A5)
k=1 k=1 k=1

which is the right-hand-side of Eq. (Al). Using a similar argument, one may obtain Eqgs. (A2)
and (A3).

To show the scheme to be unconditionally stable with respect to the heat source, we assume
that solutions (ul)n,c and (”l)qlw l =1,2,3, are obtained by the scheme, Eq. (12), with the same

initial, boundary and interfacial conditions, Eqs. (13)—(17), except different source terms, (Q1). and
(Q2)L. We let ()i = (W) — ()i and o = (@Q1)%. — (Q2)%.. One may see that (e1)7jy, satisfies
Egs. (13)—(17) and the following equation,

()it = (en)} ek + (e
At 2

(E)ZE + (&) et
kl(Pr2+6g+53) g 2 = o= (Ul)ijkz,

1=1,2,3 (A6)
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Multiplying Eq. (A6) with [ = 1 by 2r,~ArAg0AzAt[(61):;“,:1 + (e1)%], Eq. (A6) with I = 2 by

2r;ArApAzAt[(e2 Z’,:l + (Ez)mk] and Eq. (A6) with [ = 3 by 2r,ArA<pAzAt[(63)"+l + (€3)5kls
summing over 7,7,k from 1 <: <N, =1, 1< j< N, 1<k Nf -1, respectlvely, adding them

together and then using Lemma 1, one obtams

3 3
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where E~7 is a shift operator such that E_%ri =ik By the generalized Cauchy—Schwarz’s

inequality, we have

2
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where € is a positive constant. Substituting Eq. (A8) into Eq. (A7), we obtain
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We denote F(n) = Y5_, 20$,C; ||v/7(€1)"||*. Choosing € = p,C; , taking out the second, third, fourth,
and fifth terms on the left hand side of Eq. (A9), we simplify Eq. (A9) as follows,

(A10)

(1-At)F(n+1) < (1 + At)F(n +Atz ”\/*(a,)nn
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Thus, we obtain
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Using the inequalities (1 4 €)™ < e for € > 0, and (1 — €)™ < % when 0< € < 1, we obtain
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when At < 7. From Eq. (A12), we obtain that F(0) = 0 and hence

3

1
F(n+1) < ¥ Z _PlCl 0<m<n

V(o)™ (A13)

for 0 < (n+ 1)At < top. The following theorem has then been obtained:

Theorem 1. Assume that solutions ()7, and (w)7, ! = 1,2,3, are obtained by the scheme,
Eq. (12), with the same initial, boundary and interfacial conditions, Egs. ( 13) (17), except different

source terms, (Q1). and (Q2).. Let ()i = (W) — ()i and o = (Q1)L — (Q2)%. Then (e &)k
satisfies, for 0 < nAt < tg,

2
, (A14)

pC O<m<n 1

: 3
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=1 =

which implies that the scheme is unconditionally stable with respect to the heat source.

REFERENCES

[1] I. Chatterjee, R.A. Adams. Finite element thermal modelling of the human body under hyperthermia treatment
for cancer. Int. J. of Computer Applications in Technology, T: 151-159, 1994.



Numerical algorithm for optimal temperature distribution in skin 125

[2] S.T. Clegg, R.B. Roemer. Predictions of three-dimensional temperature distributions during hyperthermia ex-
periments. ASME Heat Transfer Division, 126: 29-35, 1989.

[3] W. Dai, G. Li, R. Nassar, T. Zhu. A domain decomposition method for solving the Pennes’ bioheat transfer in a
3D triple-layered skin structure. Proceedings of the Second M.I.T. Conference on Computational Fluid and Solid
Mechanics, MIT, Boston, 2: 1650-1659, June 17-20, 2003.

[4] W. Dai, H. Yu, R. Nassar, T. Zhu. A fourth-order compact finite difference scheme for solving a 1-D Pennes’
bioheat transfer equation in a uniform tissue. Proceedings of the 2003 International Conference on Mathematics
and Engineering Techniques in Medicine and Biological Sciences, Las Vegas, Nevada, 336-339, June 23-26, 2003.

[5] W. Dai, H. Yu, R. Nassar. A fourth-order compact finite difference scheme for solving a 1-D Pennes’ bioheat
transfer equation in a triple-layered skin structure. Numerical Heat Transfer, 46: 447-461, 2004.

[6] E.J. Hall, L. Roizin-Towle. Biological effects of heat. Cancer Res., 44: 4708s-4713s, 1984.

[7] F.C. Henriquez Jr. Studies of thermal injury: V. The predictability and the significance of thermally induced
rate processes leading to irreversible epidermal injury. Arch. Pathology, 43: 489-502, 1947.

[8] H.W. Huang, C.L. Chan, R.B. Roemer. Analytical solutions of Pennes bioheat transfer equation with a blood
vessel. Journal of Biomechanical Engineering, 116: 208-212, 1994.

[9] H. Jaesung, F.J. Klavs. Combined experimental and modeling studies of laser-assisted chemical vapor deposition
of copper from copper (I)-hexafluoroacetylacetonate trimethylvinylsilane. J. Appl. Phys., T5: 2240-2250, 1994.

[10] S.G. Klemick, M.A. Jog, P.S. Ayyaswamy. Numerical evaluation of heat clearance properties of a radiatively
heated biological tissue by adaptive grid scheme. Numerical Heat Transfer, Part A, 31: 451-467, 1997.

[11] C.T. Liauh, R.B. Roemer. A semilinear state and parameter estimation algorithm for inverse hyperthermia
problems. Journal of Biomechanical Engineering, 115: 257-261, 1993.

[12] J. Liu, X. Chen, L.X. Xu. New thermal wave aspects on burn evaluation of skin subjected to instantaneous
heating. IEEE Transaction on Biomedical Engineering, 46: 420-428, 1999.

[13] E. Majchrzak, B. Mochnacki. Numerical model of heat transfer between blood vessel and biological tissue.
Computer Assisted Mechanics and Engineering Sciences, 6: 439-447, 1999.

[14] G.T. Martin, H.F. Bowman. The temperature distribution in laser irradiated tissue with blood perfusion. ASME
Heat Transfer Division, 126: 97-102, 1989.

[15] P. Moroz, S.K. Jones, B.N. Gary. Magnetically mediated hyperthermia: Current status and future directions.
Int. J. Hyperthermia, 18: 267-284, 2002.

[16] V. Muralidharan, C. Malcontenti-Wilson, C. Cristophi. Interstitial laser hyperthermia for colorectal liver metas-
tases: The effect of thermal sensitization and the use of a cylindrical diffuser tip on tumor necrosis. J. Clin.
Laser Med. Surg., 20: 189-196, 2002.

[17] M.N. Ozisik. Heat Conduction. Wiley, New York, 2nd ed., Chapter 14, 1993.

[18] A. Payne, M. Mattingly, R.B. Roemer, E.P. Scott. A model for a thin layer phantom with application to
hyperthermia cancer therapy. Bioengineering Conference, ASME, 42: 197-198, 1999.

[19] H.H. Pennes. Analysis of tissue and arterial temperature in the resting human forearm. J. Appl. Physiol., 1:
93-122, 1948

[20] R.B. Roemer, E.G. Moros, K. Hynynen. A comparison of bioheat transfer and effective conductivity equation
predictions to experimental hyperthermia data. ASME Heat Transfer Division, 126: 11-15, 1989.

[21] R.B. Roemer. Optimal power deposition in hyperthermia I. The treatment goal: the ideal temperature distribu-
tion: the role of large blood vessels. Int. J. Hyperthermia, 7: 317-341, 1991.

[22] S. Sapareto, W.C. Dewey. Thermal does determination in cancer therapy. Int. J. Radiation Oncology Bio.
Physiol., 10: 787-800.

[23] C. Streffer. Biological basis for the use of hyperthermia in tumor therapy. Strahlentherapie und Onkologie, 163:
416-419, 1987.

[24] N. Tsuda, K. Kuroda. An inverse method to optimize heating conditions in RF-capacitive hyperthermia. IEEE
Transaction on Biomedical Engineering, 43: 1029-1037, 1996.

[25] V. Usatoff, N.A. Habib. Update of laser-induced thermotherapy for liver tumors. Hapatogastroenterology, 48:
330-332, 2001.

[26] S. Waldow, P. Morrison, L. Grossweiner. Nd:YAG laser-induced hyperthermia in a mouse tumor model. Lasers
Surg. Med., 8: 510-514, 1988.

[27] M.J. Wang, J.O. Naim, D.W. Rogers, R.J. Lanzafame. The effect of Nd:YAG laser-induced hyperthermia on local
tumor recurrence in experimental rat mammary tumors. Journal of Clinical Medical and Surgery, 10: 265-272,
1992.

[28] A.J. Welch, M.J.C. Van Gemert. Optical Thermal Responses of Laser-Irradiated Tissue. Plenum Press, New
York, 1995.

[29] N.T. Wright. On a relationship between the arrhenius parameters from thermal damage studies. J. Biomech.
Eng., 125: 300-304.

[30] P. Wust, B. Hildebrandt, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol., 3: 487497, 2002.

[31] L. Zhang, W. Dai, R. Nassar. A numerical modeling for optimizing laser power irradiating on a 3D triple layered
cylindrical skin structure. Numerical Heat Transfer, Part A, 48: 21-41, 2005.





