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This state-of-the-art paper reports the last ten year results, obtained by an informal research group
completed of participants of some Polish universities at the Institute of Computer Methods in Civil
Engineering (now Institute of Computational Civil Engineering) of the Cracow University of Technology,
and supervised by the author of the paper. After a short introduction and brief discussion of ANNs
basic ideas, the activities in five areas are described: i) ANNs as a new independent computational tool
for the analysis of C&SE problems, ii) neural networks in FEM/ANN hybrid systems developed for the
C&SE problems analysis, iii) various problems analyzed by ANNs, iv) modifications of BPNNs (Back-
Propagation Neural Networks) and new learning methods, as well as other ANNs than those applied
in problems mentioned above, v) promotion of ANNs. The representative six selected study cases are
discussed: 1) concrete fatigue failure, 2) buckling of cylindrical shells with geometrical imperfections,
3) acceleration response spectra, 4) reliability of a plane frame, 5) hybrid updating of a thin-walled beam
FE model, 6) hybrid identification of equivalent material in a perforated strip. Some general conclusions
on prospects of ANNs applications in C&SE are given at the end of the paper.

Keywords, acronyms and abbreviations: artificial neural networks (ANNs), back-propagation neural
network (BPNN), finite element method (FEM), hybrid FEM/ANN system, civil and structural engi-
neering (C&SE), Cracow University of Technology (CUT), standing Seminar on Applications of ANNs in
C&SE (the Seminar)

1. IN LIEU OF INTRODUCTION

Biologically inspired methods of information processing have drawn attention of many scientists, re-
searchers and engineers for over 60 years. Artificial neural networks (ANNs), fuzzy inference systems
and genetic algorithms belong to so-called intelligent systems of soft computational methods [1, 2].
ANNSs seem to play a special role as a new computational tool, clearly related to artificial intelligence
with machine learning context [3].

The development of ANNSs, initiated by the pioneering paper by McCulloch and Pitts in 1943,
proceeded meandered up to publishing of the 1986 two-volume book by Rumelhart and McLelland,
cf. references to historical notes in [2]. Since then a modern renaissance began with exploring of
ANNSs benefits. A tremendous growth in interest in the application of neurocomputing, i.e. com-
puter simulations of NNs in civil and structural engineering (C&SE), started in 1989 when the
corresponding first papers were presented at the ASCE’89 Congress and the first paper [4] was pub-
lished in an archival journal. In Europe the first papers on ANNs in C&SE were presented at the
Civil-Comp conference in 1991 [5]. Soon ANNs were introduced in nearly each C&SE discipline [6].
Besides many general books on ANNs, cf. e.g. [1, 2, 7], also books on ANNs applications in C&SE
were published in 1990s, cf. [8-11].

The lecture [12], delivered at the 41st Polish Engineering Conference, Krynica, 1995, initiated
Polish research on ANNSs applications in C&SE. The extended activity in this area has been devel-



490 Z. Waszczyszyn

oped at Institute of Computer Methods in Civil Engineering of the Cracow University of Technology
(CUT). The standing Seminar on ANNs in C&SE, called in short the Seminar, attracted many young
researchers and students not only from the CUT Faculty of Civil Engineering but also from other
Polish universities (Rzeszow and Zielona Géra UTs, Pedagogical University Cracow, then Silesian
and Wroctaw UTs, recently Biatystok and £6dz UTs). This made it possible to arrange inter-institute
and inter-university, multidisciplinary small research teams to start with the Seminar participants
learning and investigating various C&SE topics. The Seminar participants started to attend many
Polish and international conferences. The results of their research were reported in many papers
and were quoted in many published general lectures and invited papers, cf. e.g. [13-22], then in
books and monographs [11, 23-29].

The organization of the CISM Advanced School on ANNs in structural and material mechanics
in Udine, Italy in 1998 is worth mentioning, cf. book [11]. The research has been supported by
several grants of the Polish Committee for Scientific Research. In 2001, the author was awarded the
Professors’ Subsidy of the Polish Foundation for Science, which made it possible to offer financial
support to young researchers in the frame of [30].

The main research has been focused on the regression type problems which fit well many prob-
lems of C&SE. That is why the main attention was drawn to the Back-Propagation Neural Networks
(BPNNs) which are especially suitable for the regression analysis both of direct and inverse prob-
lems. Complementary features of ANNSs to the standard computational methods (especially FEM)
prompted us to develop very prospective hybrid FEM/ANN programs. Some main issues are dis-
cussed below on the basis of problems selected from many subjects we have investigated in the last
ten years.

Below, the reader can also find some basic ideas on ANNs discussed using the example of BPNNs.
In order to illustrate the research activity six representative case studies are discussed at the end of
the paper. Some prospects of future applications of ANNs in C&SE are given in the final remarks.

Because of the scope of the paper only selected references are cited. In case of more detailed
topics the references to quoted books or state-of-the art papers are given.

2. SOME BASIC IDEAS ON ANNS

ANNs have been applied especially successfully in the analysis of regression and classification prob-
lems. In the recent ten years our research has mainly concerned regression problems, i.e. mapping of
real values of input data into real outputs. Depending on the formulation of input /output variables
the mapping corresponds to direct or inverse analysis. More precisely, this is related to the analysis
of prediction problems classified as simulation, identification and assessment problems, cf. [31]. This
classification well fits problems analyzed in C&SE.

In our research we have chiefly based on the application of the feed-forward, multi-layered, error
back propagation network. This network is called in literature Multi-Layer Perceptron [2], Feed-
Forward NN [32], or Back Propagation Neural Network (BPNN) [11]. The acronym BPNN is used
in the present paper since this network well fits the regression analysis problems and the paradigm
of the NN error minimization.

A standard BPNN is shown in Fig. 1a on an example of a three layer network, composed of two
hidden layers and an output layer. In Fig. 1b an individual hidden neuron is depicted, and in Fig. 1c
commonly used activation functions are shown.

BPNN parameters correspond to the weights of connections wﬁw and neuron biases b}, = w} .
The values of these parameters are components of the generalized weight vector

w = fudilo= {wﬁlj| g =017, Bl I=.1,... output}' & RW (1)

where: W — parameter space dimension.
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a)

Fig. 1. a) Three-layer BPNN, b) Single neuron h in layer [, ¢) Binary sigmoid, bipolar sigmoid and identity
activation functions, respectively

BPNN parameters are computed by means of the training (learning) process. This process ex-
plores a known set of input/output pair vector

L= {(x7t)p}zl;=1 ’ (2)

where x € RY, t € RM,

Computed values of outputs y; are compared with known (target) values of outputs ¢; , cf. Fig 1a,
and they serve for the network error estimation. This error is used for tuning the network parameters
by means of so-called learning methods. They are related to execution of a number of epochs, where
the epoch s corresponds to the presentation of all the patterns p = 1,..., L (forward pass) and
computation of all the network parameters is performed (error back-propagation pass). The number
of epochs is controlled by a stopping criterion.

After the network is trained, its prediction (generalization ) properties can be evaluated by the
testing set of known patterns

T= {(X, t)p}§=1 ) (3)

where the testing input/output vectors xP/t? are different from those used in the training process.
The training and testing processes can be estimated by different error measures:

a) Mean-Squared-Error (MSE) and Root MES (RMSE),

Vv M
MSE(V) = _1]\7 S>3 @ -9P?,  RMSE(V)=+/MSE(V), (4)

=

where V = L, T — numbers of the training and testing patterns, respectively;

b) relative average error

1%
1 p
avrep(V); = v E ep;  where ep; = \1 - ?Z—,’, x 100%; (5)
p=1

i
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c) statistical parameters: standard deviation Ste(V'); = RMSE(V); and linear regression (correla-

tion) parameter ) .

The testing errors, i.e. MSE(T) and abs ep(T'); , are of primary importance since they reflect the
network prediction properties and control the stopping criteria for designing of BPNN architecture.
It is worth emphasizing that the optimal BPNNs are those which have a small size (low number of
network parameters) and give minimal testing errors. Following recommendations in the existing
literature and our own experience the approach “from simple to complex” is preferred and usually
we start designing the network from a two layer network of architecture N-H-M to a three layer
network N-Hi-Hs-M, where N — number of inputs, H, H;, Hy — number of hidden neurons, M —
number of outputs.

There are many problems which affect the design of optimal BPNNs. The most important prob-
lems concern: 1) input data pre-processing, 2) selecting of training and testing sets, 3) selection
of learning methods, training of network, selection of stopping criteria, 4) cross-validation strat-
egy to overcome the neural approximation over-fitting, 5) examination of generalization (predic-
tion) properties. The mentioned problems are extensively discussed in a very rich literature, cf.
e.g. [1,2, 7,11, 32, 33] and in the manuals of NN computer simulators, e.g. [34, 35].

3. RESEARCH SUBJECTS

The developed research subjects have in general been related to the following four groups of prob-
lems:

1. Applications of ANNs as independent tools for the analysis of regression type problems of C&SE.
The majority of analyzed problems were based on experimental evidence related to tests on
laboratory models or measurements on structures in natural scale;

2. Hybrid systems FEM/ANN in which ANNs have been applied as efficient procedures or computer
programs;.

3. Other simulation, identification and assessment problems, different from those discussed in
groups I and II;

4. Modifications of ANNs, especially concerning their architecture and learning methods.

3.1. Applications of ANNs as independent tools

Feed-forward ANNs, discussed in Section 2, are general approximators, especially suitable in the
analysis of regression problems, related to prediction of different output variables as functions of
known inputs. ANNs, and especially BPNNs, have been explored to implicit modelling of various
physical relationships. This means that in the mapping f : x — y any form of the regression
function f is assumed and the trained networks are able to explore the knowledge hidden in data.
That is why ANNs are called in literature “model free, data dependent” tools.

Starting with the activity on applications of ANNs in C&SE we focused on implicit neural mod-
elling of materials relationships, cf. [36]. The first paper was devoted to the application of BPNNs to
prediction of fracture toughness of dense concretes, cf. reference in [13], basing on laboratory tests
carried out by Z. Rawicki in the CUT Institute of Building Materials and Structures. The nature
of investigated phenomena was then better analyzed by means of neuro-fuzzy networks in [37, 38].

Great attention was paid to the analysis of fatigue failure of ordinary concretes. An extended
experimental evidence of laboratory tests performed in many laboratories was collected by K. Fur-
tak in [39]. A BPNN was successfully applied to the prediction of the number of fatigue cycles N
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corresponding to damage of laboratory specimens as a function of concrete parameters and charac-
teristic of the fatigue cycle, cf. a case study discussed in Section 4.1. The developed research was
reported in several papers, cf. e.g. [40, 41].

In the paper [42], two different feed-forward neural networks, i.e. BPNN and Radial Basis NNs,
and the neuro-fuzzy system ANFIS, cf. [27], were applied to the analysis of shrinkage strains in
thick plates made of ordinary concretes.

Laboratory tests carried out in Wroctaw UT Institute of Building Structures were a base to design
BPNNs for identification of compression strength of ordinary and high-performance concretes [43].

A multi-stage structure of BPNNs was applied to the identification of pre-stressing parameters
in external segmental tendons, cf. reference in [13].

ANNSs were also applied to the analysis of problems related to steel structures. The identification
of parameters of characteristics of semi-rigid beam-to-column connections of plane steel frames
were performed on the base of Sericon data bank completed at RWTH Aachen, Germany and
Bialystok UT, Poland, cf. references in [44, 45]. Identification of bi- and trilinear characteristics,
recommended by EC3 Eurocode, were analyzed in [44] for I beam and column cross-sections and
for tube connections in [45]. In [46] a neuro-fuzzy network was applied to the analysis of semi-rigid
connections presented in [44].

BPNNs were also applied to the prediction of buckling loads of axially compressed cylindrical
shells with manufacturing imperfections, corresponding to the inclination of shell midsurfaces from
the perfect cylindrical surfaces. The analysis was based on tests performed at the Aircraft Faculty
of TU Delft, The Netherlands, and described in the report [47]. The application of ANNs to the
identification of shell buckling loads was difficult because of a great number of imperfection param-
eters. The successful results were obtained in [48] due to the input data compression, carried out
by the replicators formulated as the autoassociated BPNNs. This problem is shortly discussed in
Section 4.2.

A great effort was devoted to applications of ANNs in the analysis of structural dynamics prob-
lems. Extensive research has been developed in Rzeszéw University of Technology (RUT), Poland,
under supervision of Professor L. Ziemianski. The research has been developed on the base of labo-
ratory experiments carried out in Laboratory of RUT Chair of Structural Mechanics. The measured
dynamic responses in time domain or responses transformed to spectral spaces were efficiently used
to many identification problems discussed in the monograph [24] and in Chapter 9 of the book [28].
Identification of damage in beams was analyzed in W. Lakota’s monograph [23]. An interesting
application of the proposed method of identification of loads applied to elastoplastic beams was
performed due to the use of measured dynamic structural responses as NNs inputs [49]. The iden-
tification of an additional mass placement was considered in a study case, taken from the Ph.D.
dissertation by G. Piatkowski [50], discussed briefly as a study case in [21, 27]. Other problems of
damage identification were analyzed in books [23, 24, 28] and several papers, cf. e.g. [51].

An extensive research has been developed by K. Kuzniar from the Pedagogical University of
Cracow on applications of ANNs to the analysis of vibration problems of buildings subjected to
paraseismic excitations. The research based on records of vibrations measured on real buildings
in regions of mining exploitation (Upper Silesian Coalfield and Legnica-Glogéw Copperfield), su-
pervised and coordinated by Professors R. Ciesielski and E. Maciag from the CUT Institute of
Structural Mechanics, cf. references in [26]. From among many problems considered in K. Kuzniar’s
monograph [26] and in Chapter 11 of the book [29] the prediction of fundamental periods of vi-
brations of prefabricated buildings, displacement and response spectra are worth emphasizing. The
results of research were published in highly evaluated post-conference proceedings, cf. references
in |26, 29] and in reference journals, cf. e.g. [52, 53].

Generating of response spectra, also related to the soil-structure interaction, cf. case studies
discussed in [21, 22] were especially valuable for the engineering practice. In Section 4.3, a study
case concerns the neural prediction of acceleration response spectra (ARS) at the ground level from
paraseismic excitations related to the mining tremors. Acceleration response spectra caused by the
traffic excitations were also analyzed, cf. reference in [13].
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3.2. Hybrid systems FEM/ANN

Hybrid systems, combining various computational methods, were highlighted in [54] as prospec-
tive new approaches in so-called Computational Structures Technology. ANNs have comple-
mentary features to FEM. These features are related to very great numerical efficiency of
trained ANNs and easiness in analyzing nonlinearities at the implicit modelling of physical re-
lationships. ANNs are also suitable for the inverse analysis and investigation of unilateral con-
straints.

A great operational efficiency of BPNNs was explored in the hybrid Monte Carlo method. This
approach, suggested in [55], lies in the application of FEM for computing the training and testing
patterns which are then used to design BPNNs formulated to generate the MC samples. The hybrid
approach has been developed by J. Kaliszuk from the Zielona Goéra University, Poland, in her Ph.D.
dissertation [56] and applied to the reliability analysis of structures. It was proved on examples of
plane frames analysis, steel girders and cylindrical panels, cf. study cases in [21, 22], that the hybrid
MC approach is much less numerically costly than the application of FEM only for generating the
MC samples, cf. study case discussed in Section 4.4.

BPNNs were used as a part of hybrid systems for updating FE models, cf. [4]. In the frame of
a four stage algorithm, cf. Section 4.5, a BPNN is applied to the analysis of an inverse prob-
lem of computation of values of control parameters, needed for the updating of an initial FE
model. Experimental data (results of tests on laboratory models of measurements on real struc-
tures) are used for the calibration of the control parameters by means of the trained BPNN.
The numerical efficiency of the proposed hybrid MC approach was examined by B. Miller in his
Ph.D. dissertation [57] and related to various study cases analyzed in several papers, e.g. [27, 51,
58].

A great deal of attention was paid to formulation and implementation of hybrid FEM/ANN
programs for the analysis of boundary value problems of solids with nonlinear constitutive equations.
In [59] a great BPNN was applied to the formulation of a procedure to analyze the Return Mapping
Algorithm (RMA) in the analysis of equations of elastoplastic material with HMH yield surface and
isotropic strain-hardening. The BPNN was trained and tested off line and then applied in [59] to
the analysis of plane stress problems. A generalized RMA was developed in [60] for the analysis of
bending of elastoplastic plates. The numerical efficiency of different procedures applied in the plate
bending analysis was examined in [61].

The above mentioned problems have recently been developed by E. Pabisek from the CUT
Institute of Computer Methods in Civil Engineering. The BPNNs applications to identifica-
tion of a simple equivalent (homogenized) material models for real structures are especially
worth emphasizing. This problem, discussed in [62, 63], is related to the formulation of a Neu-
ral Network based Constitutive Model (NNCM) as a BPNN trained on patterns generated on
line, taking into account measurements of structural displacements in selected control points,
cf. a study case discussed in Section 4.6. The algorithms examined in [64] were applied to
the identification of NNCMs in simple structures, cf. [62]. Some new results concerning the
BPNNs training on patterns generated by the hybrid FEM/NNCM programs are presented in
Section 4.6.

A hybrid FEM/BPNN program was analyzed in [65] for the simulation of waves transmission in
elastic solids using BPNNs to formulate artificial (transparent) boundary conditions.

Besides BPNNs also the Hopfield-Tank recurrent network (HTNN), cf. [2, 11], was applied in
hybrid FEM/HTNN programs to analyze elastic and elastoplastic plane stress problems with uni-
lateral constraints, cf. reference in [14]. The Panagiotopoulos approach was explored, i.e. FEM
matrices were substituted into HTNN to formulate evolutionary equations as a differential analogue
of the FEM algebraic equations, cf. [11]. This approach was also applied in [66] to formulate in-
terfaces at boundaries of FE systems in order to consider unilateral constraints with Coulomb and
non-monotonic models of friction.
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3.3. Applications of ANNs in the analysis of various problems

The Seminar participants were also involved in the analysis of other problems than those listed in
Sections 4.1 and 4.2. The FWNN was applied to prediction of water absorption in the sealing process
in a dam ground curtain [67]. BPNNs were explored in the inverse analysis for health assessment
of concrete dams [68]. In [69] BPNNs were applied to the identification of dynamic deformation
modulus for non-cohesive soils.

In the frame of cooperation with the Catholic University Leuven, Belgium ANNs were applied
in a biomechanics problem. In [70] BPNNs and the neuro-fuzzy system ANSYS were explored to
predict the proximal femur strength.

The feed-forward ANNs (BPNNs and Radial Basis Functions) were applied in [71] for the pre-
diction of the lie land of the town Zielona Géra in Poland.

Radial Basis Functions were used in [72] for prediction of the assessment of the technical state
of old flat buildings in Zielona Gora, Poland. A problem of valuation of building lots in Cracow,
Poland was analyzed by BPNNs in [73].

3.4. Modifications of ANNs and methods of their learning

For the analysis of the problems described above the standard ANN computer simulators were
applied — mostly SNNS (Stuttgart Neural Network Simulator [34]) and the MATLAB Neural
Network Toolbox [35]. Our own software was related first of all to programs for interaction
with the mentioned simulators in the hybrid FEM/ANN systems and programs described in Sec-
tion 3.2.

What is worth emphasizing is the modification of BPNN for computation of membership func-
tions in the network FWNN (Fuzzy Weight Neural Network) parameters, cf. [38]. This network
enables us to obtain predictions in intervals, instead of crisp outputs computed by standard BPNNs.
This approach was applied in the analysis of problems of concrete mechanics, cf. Section 4.1, and
semi-rigid steel connections.

In order to improve the accuracy of neural approximation the Kalman filters, applied in the
control theory, have recently been used as an advanced method of BPNNs learning. The application
of Kalman filtering algorithms, formulated in [32], enables an increase of the accuracy of response
spectra prediction in [74], as discussed briefly in Section 4.3.

An important problem of data pre-processing was analyzed in some papers quoted in the present
paper, cf. e.g. [27, 48, 52, 53]. Besides application of a replicator for the input data compression, cf.
Section 4.2, also the Principle Component Analysis was used in [75, 76].

Besides the feed-forward ANNs and Hopfield-Tank recurrent neural networks the neuro-fuzzy
system ANFIS (Adaptive Neuro-Fuzzy Inference System) was also used to the analysis of some
problems of experimental mechanics and biomechanics [77]. This system is in fact a feed-forwards
network since it performs the mapping x — y of crisp data.

Quite recently we have turned attention to probabilistic neural networks, namely to Bayesian
NNs, cf. [3, 33]. The advantages of this approach are associated with the computation of both
mean values and the probability density distribution of outputs. Another advantage is related to
the penalization of the over-fitting phenomena. The application of Bayesian inference approach
was demonstrated in [78] where the analysis of a soil-structure interaction problem related to the
prediction of response spectra was made. The Gaussian Process Analysis (GPA) was efficiently
applied to predict fatigue failure of concretes in paper [79], published in this CAMES special issue.
A similar approach was applied in [76], where GPA was used for the identification of characteristic
length of microstructure in heterogeneous material.
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3.5. Promotion of ANNs

A real achievement related to the development of research on applications of ANNs in C&SE was
promotion of ANNs at the Polish universities. A visible result of scientific activity was also pre-
sentation of ANNs at various scientific conferences in Poland and abroad. An increasing number of
papers on ANNs applications in various disciplines of civil engineering was presented at the Polish
Conferences on Civil Engineering in Krynica, Poland, at the Polish Conferences on Computational
Methods in Mechanics and at international congresses of Computational Mechanics (CM). An im-
portant promotion of ANNs was made due to invited lecturers and organization of mini-symposia
and special sessions, see e.g. the 2nd and 3rd European ECCOMAS Conferences on CM, Cracow
2001, Lisbon 2006; Asian-Pacific Congress of CM, Sydney 2001; V World IACM Congress, Vienna
2002; MIT Conferences on Computational Fluid and Solid Mechanics in 2003 and 2005. The Inter-
national Symposium on Neural Networks and Soft Computing in Structural Engineering was also
organized in Cracow in 2005 in the frame of ECCOMAS Thematic Conferences (a special issue of
CAMES is in preparation).

We should also mention the organization and delivering of lectures at the CISM Advanced Schools
in Udine, Italy, devoted to ANNs applications in mechanics of structures and materials, cf. chapters
in the corresponding books [11, 27|. The same concerns the course organized on soft computing by
the Polish Association for CM in Rzeszéw in 1999 [58].

ANNSs were introduced in the syllabus for graduate and Ph.D. students at the Faculty of Civil
Engineering of CUT in the frame of special one semester courses. Lectures on ANN engineering
applications were delivered at the invitation of various Polish and foreign universities, including
a series of lectures for Ph.D. students of the Heriot-Watt University, Edinburgh, UK, and for grad-
uate students of the Budapest UTE and University of Florence in the frame of the CEPUS and
Socrates programs, respectively.

4. STUDY CASES
4.1. Concrete fatigue failure

Fatigue failure is defined as the number of load cycles N causing fatigue damage of plain con-
crete specimens. In [39] there was collected evidence corresponding to over 400 cubic or cylindrical
specimens, tested in many laboratories in the years 1934-80. All the specimens were subjected to
compressive loads within cycles at fixed frequencies.

The fatigue failure N can be related to the mechanical properties of concrete and to the char-
acteristics of the load cycle. A relationship between N and four input parameters z; was derived
in [39] as an empirical formula F(N,z;) = 0,

A

where five basic variables were used: N — number of cycles associated with fatigue damage, R =
Omin/Omax — ratio of minimal and maximal stresses in a loading cycle, f [Hz| — cycle frequency,
X = fen/fe — ratio of fatigue strength of concrete f.n and strength of concrete in compression f. .
The main variables C'y and B are functions of basic variables.

Laboratory results with crisp variables, correspond to P = 218 concrete specimens. This set was
randomly split into L = 118 and 7' = 100 training and testing patterns, respectively. The BPNN: 4-
5-4-1 was designed for the input vector x = {f.,x, R, f} and output scalar variable y = log N. The
sigmoid bipolar neurons in the hidden layers and linear output were used, cf. Fig. 1.

In Table 1 selected computational errors, taken from [41] are shown. Besides the errors obtained
by Eq. (6) errors for the network BPNN are shown. Then the errors for the neuro-fuzzy network
FWNN (Fuzzy Weight NN) are written, obtained for the value ty = 1.0 of the output membership
function (it corresponds to the a-cut o = 1.0 of triangular membership function, cf. [38]). In

log N = & [Iog (1.16 %) + log (1 +BRlogN)} . (6)



Artificial neural networks in civil and structural engineering 497

Table 1. Errors of fatigue failure predictions

i e a\g ep(V) [ﬁ)] = r(V) . StE(LV) = RMS?(V)
Formula (6) 17,0 26.3 0.843 | 0.843 0.873 0.991
BPNN: 4-5-1 13.6 20.5 | 0.871 | 0.855 0.701 0.777
FWNN: 4-5-5 for a = 1.0 | 14.0 19.7 | 0.879 | 0.861 0.700 0.772
ML GPR: 1-15-1 12.9 20.4 0.868 | 0.879 0.724 0.681
a 1 T T T T T T b) 1 T T T T Y Y
é : § No9% |
08 & 0.8 [~
«2 “2 -
e ~ B s
z =
“2 “S
0.6 - = 0.6 -
: H ! 1 i 1 ! 4 i 1 ! 1 i A
y = 1 2 3 4 5 6 7 ) 1 2 3 4 5 6 7
logN loghN

Fig. 2. Neural crisp and interval predictions (for a = 1.0, 0.9, 0.75) of relation x = fen/fe —log N for data
taken from data banks: a) No. 1, b) No. 9b

Table 1 there are also shown errors obtained for the Bayesian neural network ML GPR: 4-15-1,
taken from [79].

The errors obtained for Eq. (6) and different neural networks seem not to be too distant from
each others (this concerns especially the linear regression coefficients V). The applied ANNs enable
us to obtain distributions of predicted variables fitting much better experimental results than those
calculated by means of the empirical formula (6). In Fig. 2 , the relationships fey/fc — N are
shown for the data banks Nos. 1 and 9b taken from [39]. In the same figures there are shown
results obtained by the network FWNN for different a-cuts. The used intervals cover the majority
of laboratory tests.

The neuro-fuzzy network FWNN was also used in [41] for the prediction of concrete fatigue
failure for the experimental evidence completed in [39] for intervals of the input variables f. and f.

4.2. Buckling of cylindrical shells with geometrical imperfections

Axially compressed cylindrical shells are very sensitive to geometrical imperfections. In [48] the
geometrical imperfections were analyzed as related to an inclination of the shell midsurface from
the perfect cylindrical surface. Such imperfections are an unavoidable effect of manufacturing process
and they significantly decrease buckling load of axially compressed shells.

Results of buckling tests on laboratory specimens of cylindrical shells subjected to axial compres-
sion were stored in the initial imperfection data bank arranged at the Faculty of Aerospace Engi-
neering of TU Delft, the Netherlands [47]. Geometrical and material data of a group of 33 specimens
are shown in Fig. 3a, and an example of the imperfect shell midsurface is shown in Fig 3b.
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v =0.3 10 e =
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M= 0=y/R

[rad] in

Fig. 3. a) Axially compressed cylindrical shell, b) Measured initial imperfections of a cylindrical shell
midsurface

The field of imperfections is expanded into the Fourier series,

s ke~ dn
w(a;,G) = Z Z [Ags cos k€ coslf + By cos k¢ sin 6]
k=0 1=0
ks lu
- Z Z [Cki sink€ coslf + Dy, sinké sinl6], (7
k=1 1=0

where: { = mx/L, 0 = y/R. For each shell, 4 x 21 x 15 = 1260 values of coefficients Ak, Bri, Crr, and
Dy were stored in [47]. In what follows these coefficients are called imperfection parameters. BPNNs
were used for the mapping of condensed imperfection parameters into the dimensionless buckling
load y = Pexp/Pe1, where Py = 2nEt?/(3 — v?)Y/2. In order to diminish the number of inputs, the
data compression procedure was applied. For this purpose a BPNN is used as a replicator , cf. [2].
In Fig. 4 the replicator is shown as an autoassociative network with one hidden layer composed of
n < N sigmoid neurons, where N,n — initial (not compressed) and compressed number of inputs.
After training the replicator can be split into two BPNNs which can be used as the data compressor
and decompressor.

00|

—
b) Q
&

o A
I3 v

Fig. 4. a) Replicator as an autoassociative BPNN, b, ¢) Splitting of trained replicator into compressor and
decompressor

In the paper [48] a replicator was formulated as BPNN: 360-n-360, where the number of inputs
N = 360 corresponds to 90 coefficients Ay;, By, Cii, and Dy in the Fourier series (7)for: b=
0,1,...,5and [ = 0,1,...,14. The number n = 4,8,12 was considered for the data compressed
values. Two types of replicators were trained. The general replicator (g) was trained by means
of 30 specimens and tested by 3 specimens selected, as in paper from 1997, referred in [13]. The
individual replicator (i) was initially trained by means of all specimens to have initial parameters
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of network parameters. Then the individual replicator training was ended for one specimen only. In
this way input data were compressed for each specimen individually.

The compressed data were used as inputs in BP neural networks of structures (g) n-H-1 and (i)
n-H-1, where n = 4, 8,12 — number of input data compressed by general and individual compressors,
respectively. These BPNNs were formulated as networks with sigmoid neurons in the hidden layer
and with linear neuron in the output layer. Then they were trained and tested by means of the
same patterns as those described in [13].

In Table 2 relative errors are put together for BPNNs of structure (g) n-5-1 and (i) n-5-1.
It is clear that the network BPNN for (i) n = 8 gives satisfactory approximation. Looking at the
regression parameter 77 (for pairs (y(), t(P)) and number of patterns P = L+T = 30+3 = 33) we can
conclude that the increase of the number of inputs n from 8 to 12 does not influence significantly the
approximation accuracy. In Table 2 there are also shown relative errors for the networks of structure
N-H-1, obtained in 1997 and discussed in [48]. In these networks the number of inputs N = 180, 90,
20 was obtained on the basis of algebraic transformation of selected imperfection parameters. The
networks N-H-1 are much larger than networks BPNN: (i) n-H-1 in which data compression was
explored. This is of great importance from the view point of the neural approximation overfitting
(in networks of structure N-H-1 a great over-fitting took place). In order to block the overfitting
the early-stop cross validation was performed assuming the stopping number of epochs S*, which
corresponded to the minimum of validation error function, cf. [2].

Table 2. Average and maximum relative errors in [%] and regression coefficients 7 for different BPNNs

Waszczyszyn and Bartczak (2001), [48] Waszczyszyn et al. (1997)
(g) n-H-1 (i) n-H-1 N-H-1
BPNN 4-5-1 | 8-5-1 | 12-5-1 | 4-5-1 | 8-5-1 | 12-5-1 | 180-12-1 | 80-50-1 20-3-1
avrep(P) | 6.66 | 3.59 4.43 0.27 1238 1.18 0.64 3.05 5.07
i 0.595 | 0.897 | 0.828 | 0.699 | 0.943 | 0.979 - —*) —*)
ST 2030 | 800 280 120 280 480 200 64 200

4 regression coefficients ¥ were not computed in paper published in 1997, cf. reference in [48]

4.3. Acceleration response spectra

Response spectra are often applied in structural design as for determining resistance of existing
buildings, cf. references in [26]. The response spectrum is computed on the basis of the equilibrium
of motion of a 1DOF oscillator assuming angular frequency w; = 27/7;, damping fraction ¢ and
kinematic excitation corresponding to ground acceleration ay(t). In what follows, we consider only
the Acceleration Response Spectrum (ARS) using the definition

pr) = 20

Qg max

for it = mjax la(ti; T, &) + aglts; E,7e)] - (8)

The accelerograms of surface waves, caused by mining tremors of two parameters, i.e. the tremor
energy E € [2 x 10%,4 x 10%]J and epicenter distance r, € [0,1200] m, were recorded on the soil
level at monitored buildings of the Upper Silesian Coalfield region, Poland. A set of 145 ARS was
randomly selected and then computed in [81] in discretized form B(T}) for pseudo-time parameters
k=1,2,...,198. This made a set of P = 145 x 198 = 28710 patterns. The 145 sets were randomly
split into ARSL = 113 and ARST = 32 training and testing sets, respectively.

The following input vector and output scalar variables were adopted in [81],
X = {Ea Te, Tk}a

Y = Br+1 = B(Tk41)- 9)
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Fig. 5. Target and neurally computed spectra for selected testing accelerograms Nos. 5 and 17

From among BPNNs designed in [81] the smallest network BPNN1 had the architecture 3-12-
6-1 corresponding to NNP = 133. The network was trained by the standard learning method
Rprop (Resilient-Propagation), cf. [35]. After S = 10000 epochs the training and testing errors
MSEL = 6.0 x 10~2 and MSET = 7.8 x 1073, respectively, were obtained. In Fig. 5 two testing
spectra ARS t # 5 and ARS t # 17 are shown. Great differences are visible between target and
predicted ARS, especially for low values of vibration periods.

In the paper [74] the time delay variable 8), was used instead of T} , so the following input vector
was formulated,

X = {E,rmﬂk}a

applying the output variable y = B;1; as in [74]. Using theses inputs and output variables the
network was significantly diminished to BPNN: 3-15-1 with NNP = 76. Applying the Rprop learning
method and S = 10000 epochs the errors were diminished to MSEL = 0.40 x 10~3 and MSET —
0.56 x 1073. In the paper [74] the standard network BPNN was modified to the Recurrent BPNN
(RBPNN) shown in Fig. 6.

(10)

Sk il
A2
first second
hidden hidden output
X layer layer layer Vit
1 1 2
A V, L Ve L
: z z

Fig. 6. Recurrent Back-Propagation Neural Network (RBPNN) with internal time-delay connections and
autoregressive input

This modification lies in the introduction of internal time-delay connections (feedback) corre-
sponding the neuron potential, similarly as that applied in the Elman NN, cf. [82]. In case the
network RBPNN: 3-15-1 was trained by the Rprop method during S = 10000 epochs the errors
were decreased to MSEL = 0.40 x 1073 and MSET = 0.45 x 10~3. The error graphics related to
the application of BPNN and RBPNN are shown in Fig. 5.
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The paper [74] was devoted to application of Kalman filtering as an advanced method for the
BPNNs learning. This approach is supported on the equations of discrete stochastic processes and
the computation of ‘a posteriori’ values of state variables w(k) and y(k) applying the following
recurrent equations, cf. [32],

{wi(k +1),vi(k + 1)} = {wi(k),vi(k)} + w(k),  y(k) = h(w(k),v(k),x(k)) +v(k),  (11)

where k — discrete pseudo-time parameter, 7 — the number of neuron in ANN; w(k) =
{wi(k),vi(k) |7 = 1,2,...,n} — state vector (one-column matrix) corresponding to the set of vec-
tors w of synaptic weights and biases, and neuron recurrent outputs v for n neurons of NN; h —
nonlinear function of input/output relation; x,y — input vector and output variable; w(k), v(k) -
Gaussian process and measurement noises.

In [74] the RDEKF (Recurrent Decoupled Kalman Filter) algorithm was applied in RBPNN:
3-15-1. The use of RDEKF as a learning method led to errors MSEL = 0.41 x 1073 and MSET =
0.37 x 1072 after S = 100 epochs. Unfortunately, such great acceleration of the training procedure
caused about 37% increase of CPU time than the application of Rprop learning method and S =
10000 epochs.

4.4. Reliability of a plane frame

The probabilistic analysis has to be applied in the assessment of a structural system, cf. references
in [56]. The Monte Carlo (MC) methods are usually explored and MC samples are simulated on
the basis of the Finite Element Method (FEM). Thousands of needed simulations make the FEM
analysis very costly. That is why in [55] BPNNs for computing MC samples were suggested. In such
a hybrid approach FEM is used only to compute patterns for the BPNN training and testing.

A stationary type structural problem is analyzed with the probability of reliability @ defined for
a fixed time by the following relationship,

Q = Prob{G(R, S) > 0} = Prob{R > §} = /G R CaLE s (12)

where: R — resistance of structure, S — actions (loads) applied to structure, X = [X® X 5] - vector
of random variables.

The Monte Carlo simulation corresponds to computation of integer in Eq. (12). Following the
law of large numbers the Classical Monte Carlo (CMC) estimator of the probability of reliability is

5 1 NMC
Q=15 2 1%, (13)
=1

where NMC - the number of CMC samples.

A simple plane frame, called calibrating FRAME I, with data taken from [83], was analyzed
in [84]. The geometrical and material data are shown in Fig. 7.

Yield points of the frame beams and columns, R, and R., respectively, as well as the global
inclination 1)y were adopted as random variables. The following mean values and standard deviations
were adopted in [84]: R = 09 = 300 MPa, o = 30 MPa, Po =0, oy = 0.00394.

The single parameter load vector Py, = Ayt P* was assumed, where the reference vector P* =
{p1, p2, H1, Hy} = {68.89,44.28,28.68,14.35} was calibrated in [84] to have Ay = 1 for 99 = 0.
In this way the load parameter A,y was adopted as the function I(X;) in Eq. (13).

In order to compute the training and testing patterns the FE program ELPLAF-vl was taken
from [85]. The program is based on the II order nonlinear theory and small elastoplastic uniaxial
stresses. The components of the cross-sectional consistent tangent matrix were computed by the
Simpson formula, cf. Fig. 7b. The number of training patterns was computed by the formula L =
(n+1)N, where: N — dimension of input space, n — number of equal part division of the N-cube side.
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Fig. 7. a) Scheme of FRAME I, b) Simpson points Jj=1,...,45 and mechanical data for I cross-section

The lengths of the cube sides correspond to the following ranges of intervals: R € [R—40p, R+4og),
Yo € [~2tp, 2¢h9]. The testing patterns were randomly selected from the above listed interval
assuming Gaussian pdf N(u,o?).

Two numerical examples were considered with the scalar output y = Ay, and the following input

vectors,
1) N=2: x={Ry, R}, 2) N=3: x={Ry, R, to}. (14)

The number of adopted training patterns L is listed in Table 3. For these patterns and randomly
selected T' = 2000 patterns the values of ultimate load parameter Ayy; were computed by the program
ELPLAF-v1. The average CPU time of the PC used (see detailed description in [84]) was circa 27s
per one computed pattern.

Table 3. Errors of neural approximation

RMSE x 10* | avrep [%]
L /5 L T
2 9 2-2-1 2.70.| 7.14 | 2.44 | 3.89
9 | 4 25 2-5-1 1393+ 1.735 :[€1:89 i1:1:39
8 81 2-6-1 0.60 | 0.87 | 0.52 | 0.59
32 | 1089 | 2-5-4-1 | 1.71 | 0.69 | 1.26 | 0.41
4 | 125 3-8-1 0.98 | 0.90 | 0.67 | 0.69
16 | 4913 | 3-20-6-1 | 0.71 | 0.70 | 0.38 | 0.38

N | n L BPNN:




Artificial neural networks in civil and structural engineering 503

From among many examined networks only some selected networks are listed in Table 3 in order
to show that even very small BPNN networks 2-6-1 and 3-8-1 give approximation quite satisfactory
from the viewpoint of testing errors.

In Fig. 8 two reliability curves are shown, obtained for BPNN networks corresponding to N = 2
and 3 random input variables. These curves are very close to each other so the conclusion is that
adding the third variable X3 = 1)y does not affect significantly the reliability of the frame in question.
In Fig. 8 the case N = 2 is investigated only applying small networks. It can be concluded that the
network BPNN: 2-6-1 gives results accurate enough, comparable with those obtained by means of
a great network BPNN: 2-5-4-1.

It was stated that the selection and computing 57 points at the reliability curves shown in Fig. 8
needed the CPU time circa 34s and 58s when the trained networks BPNN: 2-5-4-1 and 3-20-6-1
were applied, respectively. It was evaluated that the computation of 1 x 10° CMC samples by the
considered BPNNs needed on average about 0.46s or 1.10s, correspondingly. The total CPU time
written in Table 4 was needed for the computation of one reliability curve by the hybrid FEM/BPNN
method and a hypothetical time corresponds to the computer simulation of CMC samples by the
FE program only. It was evaluated that the application of hybrid approach enables a decrease of
the CPU time of order 10 times in comparison with the FE program for simulation of 100000 CMC
samples. In case we use L = 125 and T = 200 patterns and 100000 CMC simulations this time can

be decreased 34 times.
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Fig. 8. Reliability curves @ (\) corresponding to simulation by networks: a) BPNN: 2-5-4-1 (1089) trained by
means of L = 1089 patterns, BPNN: 3-20-6-1 (4913), b) BPNN: 2-2-1 (9), BPNN: 2-5-1 (25), BPNN: 2-6-1 (81)

Table 4. Comparison of CPU 'times for two numerical versions of CMC (Classical Monte Carlo method)

Simulation of CMC samples Simulations of CMC trials
by BPNN: 3-20-6-1 by FEM program ELPLAF-V1
Operations CPU time [sec.] Operations CPU time [sec.|
Fropabiion . 01.J. patioms 186651 Computation of one patte 27
by FEM, 6913 x 27 = 8 Ryt
Training and testing of BPNN, = :
about 20 hrs Iy
Simulation of 105 CMC trials 1.10 Hgrptaasical ciammriions 27x10°
of 10° trials
Total CPU time 2.6 x10°s Total CPU time T 0P g
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4.5. Hybrid updating of a thin-walled beam FE model

Modelling of structures is a difficult task because of many uncertainties corresponding to material
characteristics, parameters of applied loads, modelling of joints, boundary conditions, etc. FEM is
usually applied as a numerical model suitable for computer simulations. The responses of an exper-
imental model (laboratory models or natural scale structures) often do not agree with computed
responses because of the above mentioned uncertainties. That is why the numerical model should
be updated by means of certain control parameters, cf. [51, 57]. The updating process is related
to the analysis of an inverse problem for minimizing differences between computed and measured
structural responses, cf. [86].
A hybrid updating approach bases on the following algorithm:

I.  Direct analysis of FE model is related to generating a set of patterns
P ={(an®|p=1,..,P}, (15)

where o — vector of control parameters, r — vector of FE model response (e.g. eigenfrequencies)
as mapping a — r for all the patterns p.

IT. Inverse analysis corresponds to the training and testing of a BPNN using a set of pat-
terns (15) but with inverse input and output vectors

P:{(x:r,t:a)(”)p:l,...,P}. (16)

The set P is split into training and testing sets £ and 7, where: P = £ U T, LNT =0, which
are then used for designing of a BPNN.

III. Calibration of control parameters is performed by the trained BPNN exploring responses
Texp measured on an empirical model

Qident = YBPNN (Texp) - (17)

IV. Verification of calibrated parameters by substitution of Qligent into the FE model for com-
puting its responses rrgyv and comparing them with measured responses Teyp ,

IFEM (Qident) = Texp = Eupd - (18)

When the identification error vector eypq is not admissible we should consider other control
: p
parameters which could be introduced into the considered FE model and return to Stage 1.

From among many applications analyzed in [57] the updating of thin-walled beam parameters
is discussed. The laboratory model of a beam made of aluminium alloy of density 2743 kg/m3was
suspended on two elastic strings, Fig. 9. Poisson ratio was assumed v = 0.33 and Young modulus
was identified in the range £ € [66.6,80.0] GPa.

Dynamic responses were measured and the vibrations of the tested model were excited using an
impact hammer. The first two eigenfrequencies were omitted as corresponding to the rigid motion
of the beam and the next five eigenfrequencies, numbered w; , ... , ws (they are listed in the first
row of Table 5) were used for the updating of control parameters.

In Fig. 10, the scheme of the beam is shown. 24 Timoshenko elements were used and points of
the excitation application and measured accelerations correspond to FE nodes.

A set of patterns was computed for 16 values of Young modulus F and 21 values of shape ratio k; .
This gave P = 336 inputs to compute five eigenfrequencies w; . A testing set with T' = 34 =~ 0.1P
patterns was randomly selected. After the cross-validation process the network BPNN: 5-10-2 was
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Fig. 9. a) Laboratory model of the tested beam, b) Mass attached to the beam, c) Partially changed
thickness of a flange, d) Locally removed flanges

Table 5. Identified parameters and results of updating by means of eigenfrequencies and compressed FRS

bands
BPNN: Identified parameters Eigenfrequencies [Hz|
" E[GPa] | ks | 4 x 104 w1 wa w3 Wy ws
Measured eigenfrequencies 174 467 885 1404 2009
173.6 467.1 886.8 1407.4 | 2004.3
5-102 | 708 0564 | - | 5900 | 0.02% | 0.20% | -0.24% | -0.23%
1792 470.2 889.5 1405 1992
25-14-3 | 716 | 0551\ 375 | ;6000 | _0.68% | —0.51% | —0.07% | 0.84%
2.5
g 7 T HEF gaf
1130 4185 4

kl&S*ﬁ

Fig. 10. Scheme of the tested beam

—i
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designed and after the network training the following values of control parameters were computed:
Eppny = 70.8 GPa and ks = (0.564.

In Table 5 the values of updated frequencies, taken from [27], are listed. The computed values of
eigenfrequencies w; differ from the measured eigenfrequencies by not more than 0.3%.

Then a more general problem was discussed with respect to three parameters E, ks and vy, where:
v — damping parameter. After estimation of rough values of Young modulus F and shape ratio k;
by means of eigenfrequency responses only 4 values of E were assumed, 5 different values of &, and
6 different values of damping 7. The responses were simulated by 9 different locations of impulse
excitation and 9 different locations of control points. This gave P = 9720 patterns. Then FRSs
(Frequency Response Spectra) were computed for each pattern and in surroundings of w; five bands
each of 100 discrete values were computed. They were compressed 100 — 5 by five compressors and
25 inputs were adopted. Using T' = 0.1P = 972 patterns were randomly selected for testing and the
master network BPNN: 25-14-3 was designed.

In Table 5 there are shown identified control parameters and verification of the updated frequen-
cies computed by the FE program. The errors of updating by compressed FRS bands input vectors
are worse than the results obtained by means of eigenfrequencies but they do not exceed 1% of the
measured eigenfrequencies.

Three other problems of updating of the beam model for various control parameters were in-
vestigated in [57]. They correspond to Figs. 9b,c,d, i.e.: 1) identification of location and equivalent
FE density of the attached mass, 2) local thickness of flanges, their localization and shape ratio for
defected FEs, 3) location and width of the removed flanges.

It is worth emphasizing that Stage II of the hybrid algorithm presented in this Section can be
interpreted as identification of damage, corresponding to the introduced control parameters. The
accuracy of identification is estimated not only by the network testing but also by responses of the
updated model and their comparison with the test on a laboratory model.

4.6. Hybrid identification of equivalent material in a perforated strip

A hybrid FEM/BPNN program can be formulated for the identification of a simple equivalent
material of real structures, cf. [62, 63]. In the computer program a homogenized (equivalent) material
is implicitly modelled by the Neural Network Constitutive Model (NNCM). NNCM is a BPNN
whose parameters and input/output data enable computation of the consistent, tangent stiffness,
material constitutive matrix, cf. [87]. The NNCM parameters are calibrated on the base of measured
structural responses.

The main problems are the generation of patterns and NNCM training which are analyzed using
the autoprogressive or cumulative algorithms, suggested in [62, 63] and developed in [64], cf. also
references in [88]. The algorithms are based on a two stage modification of the Newton-Raphson
method, as shown in Fig. 11. Stage I corresponds to the classical incremental FEM procedure and
in Stage II the correction of the displacements at the control points j is made using the following
error measure,

ndj = nlul" — uj| > eruadm, (19)

where: nu;”, nu; — measured and computed displacements at each load parameter increment Aj\.
Then the correction of the stress-strain relation at the FE integration points serve to generate
NNCM training patterns, cf. Fig. 11c.

The proposed hybrid approach was discussed in [21] on simple examples, i.e. identification of
material in a plane frame taken from [62] and shown in Fig. 11, and elastoplastic plane stress model
of material in a beam bending boundary value problem taken from [87].

Below new results concerning the formulation and design of NNCM are related to [59] where
anetwork BPNN was applied for the modelling of the elastic-plastic material with HMH yield surface
and isotropic strain-hardening. Figure 12 corresponds to the plane stress analysis of a perforated
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strip by the hybrid FEM/BPNN program. The network for material modelling was trained and
tested off line. The equilibrium curve A — u4 , computed in [59] and shown in Fig. 12, was used as
a pseudo-measured equilibrium curve for the generation of NNCM. The trained network models an
equivalent nonlinear elastic material corresponding to the considered perforated strip.

A simple input and output vectors were used in NNCM,

X@3x1) = {n+1€}, Y@3x1) = {nt+10}, (20)

where € = {ez, €y, Yay}, 0 = {0z, 0y, Tay}. These vectors are related to the n + 1 load level. In
previous papers [87, 88] much more extended input vectors were used, e.g X(9x1) = {n€; nt+1€, no}.
The application of input (20); can be used equivalently to the more extended inputs since in the
neural network mapping x — y we can explore vectors ,& and , 0, stored in the incremental FEM
for the current load step n. This approach made it possible to compute components of the consis-
tent stiffness matrix ,41kij = Opy103/ Ony1€; as functions of NNCM parameters and input/output
variables, cf. [59].

Results of application of the autoregressive algorithm are presented in Fig. 12d. The pseudo-
measurement equilibrium path was approximated in two iterative cycles by means of BPNN: 3-15-
15-3. Tt corresponds to much better convergent process than those obtained in [87], where several
cycles were needed to approximate the measurement curves by trained on line NNCM models. It was
pointed out in [21] that such an acceleration of the iteration process strongly depends on selection
of patterns generated during the on line training NNCM.

5. FINAL CONCLUSIONS

1. Neural networks can be efficiently applied to the analysis of various problems of C&SE, i.e. to
the simulation, identification and assessment problems.

2. The ANNs can be efficiently used either as independent computational tools or parts of hybrid
FEM/ANN programs or systems.

3. The efficiency of ANNs can be increased by the input variables pre-processing and modifications
of standard ANNas or applications of more advanced learning methods.

4. Probabilistic neural networks, especially Bayesian NNs seem to be very prospective in the analysis
of direct and inverse problems. That is why they are planned to be developed and applied in
near future in C&SE.
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