Computer Assisted Mechanics and Engineering Sciences, 13: 513-521, 2006.
Copyright © 2006 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Adaptive analysis of inelastic problems
with Bodner—Partom constitutive model

Witold Cecot
Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland

(Received in the final form October 6, 2006)

The Bodner-Partom elastic-visco-plastic constitutive equations [4] were used for numerical analysis of
inelastic problems. This rate-dependent model makes it possible to describe elastic, plastic and viscous
processes in metals, including temperature and continuum damage effects. The adaptive finite element
method [9] was applied to approximate solution of the governing equations with two a posteriori error es-
timates that control accuracy of time and space discretization of displacements and internal variables. The
paper addresses a further development of the methodology proposed by the author in previous works [7, 8]
and used in [6]. We present here certain additional theoretical background and propose a novel strategy
of adaptation as well as verify the method of solution transfer.
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1. INTRODUCTION

The rate-dependent Bodner—Partom equations have been already integrated using the adaptive
finite element method by Bass and Oden [3], Min, Tworzydlo and Xiques [18], as well as by the
author and Rachowicz [7, 8]. In this paper we present further development and verification of the
error estimate, adaptation strategy and the solution transfer after the mesh refinement.

The processes modeled in this monograph are considered as: isothermal, quasi-static, with small
displacements and their gradients, and with neglected body forces. The Bodner—Partom [4] con-
stitutive equations belong to the family of unified models i.e. they are based on the supposition
that rate-dependent and rate-independent parts of inelastic strains are non-separable. The inelastic
strain rate is determined in this model by the following equations

e ey 1 3R
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where: s;; represent components of deviatoric part of the stress tensor, Jo = %smnsmn, Z stands

for the internal variable, responsible for isotropic hardening, with initial value denoted by Zj.
Equation (1) refers to the simplest version of the model and makes use of seven material constants:
E, v, Z, Z1,Dy,m, my.

The following semi-weak formulation defines the problem we consider

Find field of displacement rate u(z,t) € V such that for every time instant 7 € [0, T
/ Cijkl €ij ('U) Ep()d = t, v; ds + / 21 5'2}' Eij(’v) df? YveV,, (3)
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where V = {v € (H')"; v=1% on 32}, Vo={v € (H))"; v=0 on 90p}, €}; € L*(N)
is given by Eq. (1), the initial conditions for u, €*, Z are compatible with the boundary values
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%,- on 802y and & on O0f2p that in turn are understood in the sense of traces of H'! functions, C
is the tensor of elastic material constants, i is the Lame constant.

2. APPROXIMATION OF THE SOLUTION BY THE ADAPTIVE FEM

Mesh adaptivity becomes especially important when large time dependent nonlinear problems are
analyzed. The selective mesh refinement should be based on a reliable error estimates since dis-
cretization error can be unpredictable by heuristic means.

The numerical solutions of the problems discussed in this paper were obtained by computer
programs that make use of the adaptive finite element method proposed in [9, 19, 21]. In particular
the kernel of 2Dhp code [10] has been employed. Its basic routines (data structure, mesh generation,
integration of element stiffness matrices, frontal solver, mesh refinement) have been supplemented
with the appropriate modules defining the problems, driving the solution algorithms, performing
a posteriori error estimates and refinement strategy. Thus, we use

— triangle elements with second order hierarchical shape functions (p = 2 at every element),

— h-adaptive mesh refinement based on subdivision (partitioning) of selected elements into smaller
ones by h-4 technique shown in Fig. 1a.

— l-irregular nodes (Fig. 1b) with constraint approximation [9] that provides continuous FEM
solution, therefore uniqueness and convergence of the numerical results are assured.

T

Fig. 1. h-4 refinement and an example of 1-irregular mesh with the constraint (hanging, irregular) vertex
node A

The following key components of the adaptive approach are discussed in this Section: error
estimate (in time and space), strategy of the mesh adaptation and transfer of the solution to the
new mesh.

2.1. Time step control

Integration in time is carried out by the semi-implicit (known also as improved or trapezoid) Euler
method with automatic time-step control proposed by Kumar and co-workers [13].

Certain numerical tests have revealed that, for the problem considered, this simple scheme is
more efficient than the sophisticated Bulirsh-Stoer or higher order Runge-Kutta approaches [8].

2.2. Error estimate in space accounting for inelasticity
As usual, the approximation error e € V is defined as
e=u—uX (4)

where: u, uX are the exact and approximate solutions, respectively.



Adaptive analysis with Bodner-Partom model 015

We use the explicit residual estimate [2] in order to bound a norm of the error norm. In the
standard version it leads to the error indicator attributed to each finite element wy in the form

1
= \/hz||R||i2<wk) + 5heITI2, (5)

where R denotes residuum of the governing equation in the considered element, J* = J in 2\ 02y
and J* = 2J on 082y, J represents the flux jump along the element boundary.

The error estimate mentioned above accounts for only space discretization of displacements. In
the case of inelastic problems plastic or visco-plastic deformations are the additional quantities
(despite of displacements) that are approximated in the numerical analysis. Thus, the quality of
this approximation should be considered in the error analysis. Methods concerning this issue are
discussed in many papers.

Most frequently the smoothed gradients of inelastic strains are employed [11] by an analogy with
smoothing of stresses in elasticity. In another heuristic approach Sandhu and Liebowitz [23] use
ratio of the maximum and average values of either the effective stress or effective plastic strain as
an error indicator. Ladeveze [15] suggests verification of the Drucker postulate on statically and
kinematically admissible numerical solutions. The method has been generalized for materials with
softening [14]. In another approach Stein and Schmidt [25] propose to control the yield condition
at certain points that do not coincide with the Gauss integration nodes. Also the dual solution
may be used to asses the error for the elastic-plastic problems as it is proposed in [22]. Johnson
and Hansbo [12] extended the explicit residual approach for inelastic problems by weighting the
resulting error indicator with the L;-norm of increment of the total strain.

None of the above enumerated methods seemed to be fully adequate for our purposes. The
smoothing technique may give false results [20], the Drucker postulate does not always hold, the
Bodner-Partom model does not make use of the yield function and the additional dual solution is
time consuming. Thus, we propose another approach (presented initially in [7, 8]) and motivated as
follows.

The inelastic strains contribute to the right-hand side of our problem. Their accuracy at the
Gauss integration points is controlled by the variable time step. However, unless this “loading” is
properly represented in space domain (not only at the Gauss points), the solution may be far from
the exact one.

In the residual estimate we are able to evaluate only an approximation of the residual due to the
interpolation of the right hand side. Therefore, an additional term in the residual estimator shall
be introduced.

Formally, we have by simple algebra and the triangle inequality

IR = I (ufy) + Fipell = IL(u{l) + £ = £y + Flecl SIRE @O+ 11£1c — £ (6)

where RX = L(u[)f{ )+ f,)f{ represents the approximation of the residual in which interpolant % of
the right hand side is used instead of the exact right hand side that in turn has the form

fi=2pe";5. (7)

Usually, the interpolation of inelastic parameters is constructed by using the Gauss quadrature
points [24] since, at these points accuracy of fluxes is better than at the element nodes!. We assumed
the second order elements with 3 Gauss points. Thus, the plastic parameters are approximated by
the piecewise linear polynomials and consequently the right hand side f is approximated by the
piecewise constant functions.

Consequently, the residual error estimate shall be evaluated as

1 *
(mE)* = REIRFIE, ) + BN Fc = FliclTan) + 351971 5 000, (8)

't is reported in [26] the most accurate points for second order triangles are the middles of the edges but this
observation has been done for particular examples with regular meshes and other shape functions then used by us.
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The problem of using a projection of the right hand side instead of its exact value is considered
in another contexts (a priori estimation of the residual) in [1, 5].

We propose here to estimate the new term in the explicit residual estimate by the bounding the-
orem of the interpolation theory which states that whenever the interpolated function has bounded
derivatives of order p + 1, the following inequality holds,

||f|K 3 f|),{<||%2(wk) < C'h”+1|f|p+1,w,c ; (9)

where p denotes the order of interpolation and C' stands for an unknown constant. Therefore, in the
case of inelastic problems we use the following extended residual error indicator,

hted
(1) = RRIRX I ) + HRIF R oy + 520097 000 (10)

where by making use of Eq. (7),

oMgr \2
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The second derivatives of inelastic strains are evaluated by the moving least square technique [16,
17].

2.3. Strategy of mesh adaptation

Various strategies of mesh adaptation may be used. We have chosen fixed fraction approach, i.e.
refinement or unrefinement of specified fractions of elements. Such a strategy prevents creation of
a large number of new elements during a single refinement.

Since a posteriori error estimates make use of the actual solution the error indicators are evaluated
with precision dependent on the solution accuracy. Therefore, the adaptation process is a non-linear
task. Consequently, optimal (or close to optimal) mesh may be obtained only in an iterative way.

After a mesh refinement or unrefinement the time integration is performed at the new Gauss
points and accuracy of the space approximation changes. We use the adaptation strategy for inte-
gration of the rate-dependent models that assumes a re-analysis of small parts of the load history.
Whenever the mesh is refined the second run over certain time intervals (0t¢) helps to avoid the
situation when the error done in one time interval influences the accuracy of the further solution.
On the other hand the adaptive time stepping prevents from the excessive error cumulation in time
integration. dt may be assumed in a wide range. We usually assume it as one tenth of the time
interval between the previous and present mesh adaptations.

2.4. Mapping of the solution

The solution mapping may be easily performed when the mesh is refined by subdivision of elements.
Only the internal variables and inelastic strains are mapped from the old mesh to the new one. The
former quantities are used to evaluate all necessary rates while the inelastic strains uniquely define
actual displacements, strains and stresses.

All fields to be transfered are approximated by the Lagrange polynomials (L™) with the inter-
polation nodes assumed at the Gauss integration points. After h-4 refinement (Figs. 2) the solution
values at the new nodes are easily computed since, all the new interpolation points belong to one
old element. Thus, we have a straightforward mapping

new

B (,y) = ) L™(2,y) ¢5° (bm) (12)

-
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Fig. 2. h-4 refinements; old and new interpolation points for inelastic parameters

that does not alter the transferred function. However, it is worth mentioning that even though the
field of internal parameters remains unchanged during such a mapping the resulting, numerically
evaluated displacements may not coincide with the solution on the old mesh due to altering of dis-
cretization. In order to avoid significant influence of the mesh adaptation on the numerical analysis
a re-analysis of small parts of the load history (over the already mentioned time interval dt) is
carried out whenever the mesh is adapted.

On the other hand, unrefinement is done wherever these parameters have small second derivatives
(are distributed almost linearly). Consequently, unrefinement introduces controlled disturbances in
the load history. The difference between the transfered and original fields may be easily computed
and if it is too large the unrefinement may be canceled.

3. NUMERICAL TESTS

The following tests have been performed to verify the proposed error estimates: thick walled cylinder
subject to internal pressure, sheet with a hole, and railroad rail.

The following material constants (for a steel) were assumed during the analysis: £ = 207 GPa,
v =0.3, Zy = 1435 MPa, Z; = 1900 MPa, D, = 108, n = 1.73, m; = 0.06 MPa"".

For the cylinder problem, considered as the plane strain state (Fig. 3), the adaptive mesh refine-
ment significantly reduces the number of necessary unknowns (even 2-3 times) as it was already
reported in [7] for a similar inelastic problem.

For the sheet with a hole (Fig. 4) an example of adaptively refined mesh and convergence of
solution are demonstrated in Fig. 5. Since the number of dof varied during the computations the
average number of unknowns is shown in the plot of convergence. The solution obtained on a fine
mesh (about 40000 dof) was used as the reference one.

The convergence tests confirm effectiveness of the adaptive approach. Smaller reduction of the
number of dof than in the cylinder problem (7] is observed because the reference uniformly refined
mesh is also adapted, in a sense (Fig. 4), due to the domain shape and mesh generation technique.

7%

Fig. 3. Cylinder test problem; schematic plot of loading used in the tests (p — internal pressure)
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gmax = 300 MPa
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Fig. 4. Sheet with a hole; data for one quarter (dimensions in [m]) of the domain and initial FEM mesh
(128 elements, 289 nodes) — plane stress state

llo| [%]
loezactll
104 N
B
\\\:&\
! N
\>\Ii
0:1L: 5.
] N
1000 10000

Fig. 5. Sheet with a hole; adaptively refined mesh and convergence tests for second order elements: energy
norm of the solution error (logarithmic scale) versus number of scalar degrees of freedom (N), for uniform (U)
and adaptive (A) mesh refinements
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Fig. 6. Cylinder and sheet with a hole; stress history at selected points
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However, even a small reduction of the number of degrees of freedom results, for the step-by-step
analysis, in a significant savings in time.

In Fig. 6 we demonstrate quality of solution transferring used in the adaptive process for both
the cylinder and the sheet with a hole problems. Smooth stress history is observed at time instant Tj,
when the refinement has been performed. Note, that decreasing value of one of the stress components
is not a result of material softening but only of stress redistribution during the increase of the yield
zone.

Next, an infinitely long railroad rail is considered. It is loaded here by somewhat unusual loading,
i.e. by infinitely long one (Fig. 7). Additionally, the rail is fixed at the bottom in such a way that, 2D
plane strain modeling may be assumed. A few adaptive mesh refinements resulted in discretizations,
with about 60000 dof, shown in Fig. 8. It enabled approximating the solution with error less than
3% (error estimated by comparison of solutions obtained on two different meshes). One may observe
that the automatically refined mesh has the largest density along the border between the plastic and
elastic zones. The convergence tests confirm that such refinement, based on an appropriate error
estimation, significantly improves convergence [7].

[0, £y(), 0]

i

z

Fig. 7. Rail test problem; a portion of infinitely long rail, t;** = —1 MPa

Fig. 8. Railroad rail problem with central contact load; a sample of an adaptively refined mesh
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4. CONCLUDING REMARKS

Efficient integration of the Bodner-Partom model requires adaptive approach. We control accuracy
of the approximation by specially generalized explicit residual error estimator. In fact, each error
estimate should be generalized in a similar manner, whenever it is used for inelastic problems.
The proposed strategy of mesh adaptation and mapping of solution to a new mesh have proved to
work properly, especially when re-computation over a certain time interval is used after each mesh
adaptation. The area where the mesh has to be refined is automatically detected by the appropriate
error estimation.

The mesh refinement by subdivision of elements, rather then by the remeshing technique makes
the solution transfer much easier. Therefore, even though the subdivision of elements results in
a complex constraint approximation we recommend this type of the adaptive procedure.

The numerical experiments in which we studied efficiency of different schemes of integration in
time confirmed that the first order implicit methods are suitable for the Bodner—Partom model.
However, a more efficient scheme of integration in time would be welcome.

The further open questions and challenges in the topics of this paper include: making use of
hp adaptivity, parallel, multigrid solution of the algebraic equations, assessment of the modeling
error done by neglecting inertia terms in the momentum equations (quasi-static versus dynamical
loading with rate-dependent material modeling),

Completion of the tasks listed above shall enable an efficient and reliable approximation of rate-
dependent 3D solutions with additional effects like wear, grinding, continuum damage, temperature
influences accounted for.
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