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Wood exhibits an intrinsic structural hierarchy. It is composed of wood cells, which are hollow tubes
oriented in the stem direction. The cell wall is built up by stiff cellulose fibrils which are embedded in a soft
polymer matrix. This structural hierarchy is considered in a four-step homogenization scheme, predicting
the macroscopic elastic behavior of different wood species from tissue-specific chemical composition and
microporosity, based on the elastic properties of nanoscaled universal building blocks. Special attention
is paid to the fact that the fibrils are helically wound in the cell wall, at an angle of 0°-30°, generally
denoted as microfibril angle. Consideration of this microfibril angle in the continuum micromechanics
model for wood is mandatory for appropriate prediction of macroscopic stiffness properties, in particular
of the longitudinal elastic modulus and the longitudinal shear modulus. The presented developments can
be readily extended to the prediction of poroelastic properties, such as Biot and Skempton coefficients.

Keywords: wood, continuum micromechanics, anisotropic elasticity, wood cell wall, experimental valida-
tion

1. INTRODUCTION

Macroscopic mechanical properties of wood are characterized by a wide variability and diversity [4,
32|. This variability results from differences observed at the macro-, micro-, and ultrastructural
scale.

Wood is a cellular material with an intrinsic structural hierarchy [19, 32] as illustrated in Fig. 1.
The wood cells are hollow tubes oriented in the stem direction (longitudinal direction L). In softwood,
the cell diameter is typically around 20-40 pm, while in hardwood, there exist additional cells with
up to 500 um diameters, forming interconnected pipe-like structures called vessels. The cell wall is
made up of cellulosic fibers with diameters of about 50-200 nm, embedded in a non-cellulosic matrix.
The fibrils are helically wound around the lumens within the cell wall. The inclination angle of the
fibers to the cell axis (microfibril angle 0, see Fig. 2) ranges between 0° and 30°. Only the inner core
of a fibril is crystalline, while the surface region is more or less amorphous. The matrix deposited in
the spaces between the cellulose is composed of non-cellulosic polysaccharides (commonly denoted
as hemicelluloses), lignin, extractives, and inorganic compounds. In the wet state, water molecules
interpenetrate the matrix. At higher water contents, water is also stored as free water in the cell
lumens. The moisture content, at which the cell walls are saturated with bound water, but the cell
lumens are still empty, is denoted as fiber saturation point. In the following, only wood tissues with
water contents below this point are considered.

Predictions of the macroscopic mechanical behavior require consideration of the wood microstruc-
ture. The most common approach is that of cellular solids [21], which provides only very poor es-
timates of the elastic behavior with errors of more than 1000% between experimental values and
theoretical estimates (see [21, p. 403, Fig. 10.12]. More detailed descriptions of the microstructure of
wood, based on laminate theory for the representation of the internal structure of the cell wall (2, 44],
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Fig. 1. Hierarchical organization of wood
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longitudinal direction L
(cell axis, stem direction)

microfibril angle 0

Fig. 2. Fibrillar (micro-)structure of wood cell wall

often require material parameters which lack a clear experimental basis. This limits the applicability
of such models; in particular, it does not permit model predictions for non-tested conditions.

Thus, the authors invested in more reliable model predictions resting upon the method of con-
tinuum micromechanics [40, 46, 47]. In a first approach, the hierarchical structure of wood was
represented by a four-step homogenization scheme [28], which is recalled in Section 2. A good
agreement between model predictions and corresponding experimental results in terms of Young’s
moduli in the longitudinal and the transverse direction was obtained. This confirmed the suitabil-
ity of the chosen approach as valuable tool for estimating the elastic properties of wood. Shear
properties, however, were reproduced insufficiently by the micromechanical model, presumably due
to the assumption of a zero microfibril angle. In detail, the axial straining of inclined fibers upon
(macroscopic) shear loading of the composite material was disregarded. The crucial influence of the
microfibril angle on the mechanical properties of wood has already been stressed by several authors,
e.g. [8, 38].

Herein, we focus on consideration of the fiber inclination in the continuum micromechanics model.

2. CONTINUUM MICROMECHANICS MODEL
2.1. Fundamentals of continuum micromechanics

In continuum micromechanics [40, 47], a material is understood as a micro-heterogeneous body
filling a representative volume element (RVE) with characteristic length [, [ > d, d standing for
the characteristic length of inhomogeneities within the RVE (see Fig. 3). The ‘homogenized’ me-
chanical behavior of the material, i.e. the relation between homogeneous deformations acting on
the boundary of the RVE and resulting (average) stresses, can then be estimated from the me-
chanical behavior of different homogeneous phases (representing the inhomogeneities within the
RVE), their dosages within the RVE, their characteristic shapes, and their interactions. Based on
matrix-inclusion problems [17], an estimate for the ‘homogenized’ stiffness of a material reads as [47]

o
Cest — {ZfTCT c[I+P2: (e —(CO)]—l} : {Z fs [T+PY: (c, —CO)]_l} , (1)

where ¢, and f, denote the elastic stiffness and the volume fraction of phase r, respectively, and
I, Liju = %(51'153'1; + 6ixdj1), is the fourth-order unity tensor. The two sums are taken over all
phases of the heterogeneous material in the RVE. The fourth-order tensor PO accounts for the
characteristic shape of phase r in a matrix with stiffness C°. Choice of this stiffness describes the
interactions between the phases: For C° coinciding with one of the phase stiffnesses (Mori-Tanaka
scheme), a composite material is represented (contiguous matrix with inclusions); for V= C** (self-
consistent scheme), a dispersed arrangement of the phases is considered (typical for polycrystals).
If a single phase exhibits a heterogeneous microstructure itself, its mechanical behavior can be
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Fig. 3. Multistep homogenization

estimated by introduction of RVEs within this phase, with dimensions Iy < d, comprising again
smaller phases with characteristic length dy < I3, and so on (see Fig. 3). This leads to a multistep
homogenization scheme. Such a procedure should, in the end, provide access to ‘universal’ phase
properties inherent to all wood tissues at a sufficiently low observation scale.

2.2. Candidates for (tissue-independent) micromechanical phases in wood

It follows from the aforementioned hierarchical organization that ‘universal’ properties inherent to all
wood species may be identified only at an observation scale below the cell wall. Therefore, we lump its
components (crystalline cellulose, amorphous cellulose, hemicellulose, lignin, extractives, inorganic
compounds, and water) into as few phases as possible, characterized by remarkably differing elastic
properties. The relevance of the subsequent candidates for universal phase properties (elementary
components) inherent to all wood tissues will be checked in the validation section.

The first candidate for a tissue-independent (‘universal’) phase is amorphous cellulose. While
we are not aware of elasticity measurements on amorphous cellulose, it is remarkable that glassy
polymers with molecular structure similar to amorphous cellulose [13] exhibit Young’s moduli of
around 5 GPa [45]. Exploiting the similarity of the molecular structure of amorphous cellulose and
hemicellulose, we assign a Poisson ratio of 0.35 to amorphous cellulose, which leads to the material
properties given in Table 1. The amorphous nature of the material clearly suggests elastic isotropy.

Table 1. Experimental set I: ‘Universal’ (tissue-independent) phase stiffness values

Pio Mater.ial Bulk modulus Shear modulus
behavior k [GPa] w [GPal
Amorphous cellulose isotropic kaihveeri=5:56 Witnocer-=:1,88
Hemicellulose isotropic Knemeel =889 Ukemecel =296
Lignin isotropic kiig =:5.00 Hiig =280
Water+extract. isotropic kH,0ezt = 2.30 WHyOext = 0
Cijkl [GPa] Cijkl [GPa]
~ Crystalline cellulose transversely Copyeet: 15 34.86 Cerycel,1122 =0
isotropic
Cerycel, 3333 = 167.79 Ccrycel,2233 = 0
Cerycel, 1313 = 5.81

The second candidate for a tissue-independent phase is lignin. Periodate lignin' was shown to
behave — in good approximation - isotropic in a uniaxial tension test [10], with Young’s modulus of
dry lignin amounting to slightly less than 6.7 GPa. This motivates a choice of 6 GPa for the elastic

'The term periodate lignin refers to the mode of extraction of the lignin from the cell wall [19]. Periodate lignin
comes very close to in-situ lignin in terms of morphology and mechanical behavior.
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modulus of lignin. Following [10], we assign a Poisson ratio of 0.3 to lignin, which leads to the phase
properties given in Table 1.

The third candidate for a tissue-independent phase is hemicellulose. Cousins [11] tested rods
made of (isotropic) hemicellulose powder extracted from Norway spruce by indentation with steel
balls. Assuming a Poisson ratio of 0.35, he obtained an estimate of approximately 8 GPa for the
elastic modulus of nearly dry hemicellulose (water content 1.51%) (see Table 1).

Since crystalline cellulose is anisotropic, it constitutes a fourth phase. Tashiro and Kobayashi [42]
estimated the elastic stiffness of crystalline cellulose theoretically. They performed lattice-dynamical
calculations, regarding crystalline cellulose to be of monoclinic crystal form. The corresponding
stiffness tensor c™¢t | reads as [42]

cryce.
[~-54.55 1.58 —2.52 0 0 -3.23
(c1111) (enze) (c1133) (c1112)
15.16 1.26 0 0 4.31
(c2222) (c2233) (c2212)
%67.7% 0 0 (0.5%
3333 3312
Coryest = 353 1.43 o] =84 @)
(c2323) (c2313)
8.08 0
(c1313)
symm. 4.53
i (c1212) |

In Eq. (2), the third axis is aligned to the direction of the axes of the cellulose chains, whereas the
first and second axes span the cross-sectional plane. The off-diagonal terms representing Poisson ef-
fects and coupling between shear and normal stress are remarkably smaller than the diagonal terms
related to normal stress. Therefore, in a first approximation, Poisson effect and coupling between
shear and normal stress can be neglected. The remaining components represent orthotropic elastic-
ity. It stems from the sheet-like structures formed by cellulose chains connected by intermolecular
hydrogen bonds. These sheets are, in turn, stacked together by van der Waals forces into a three-
dimensional crystal, considerably softer in the direction of the van der Waals forces than in that of
the hydrogen bonds within the sheets. The sheets are mainly aligned in the circumferential direction
of the cell wall, so that, with regard to an entire cell, an even distribution of sheet orientations is
encountered. This motivates the assumption of an isotropic material behavior in the cross-sectional
plane of the cellulose chains, as also used by Bergander and Salmén [3]. The transverse isotropy may
be considered by taking the average of the stiffness values in the principal cross-sectional directions
of the monoclinic crystal,

1
i mcl mcl Rrts
Coryeel, 1111 = Ceryeel2222 = 5 (Coryeet1111 + Cergeel,2222) = 34.86 GPa, (3)
Cerycel,1313 = Cerycel, 2323 = 5 (Ceryeet,1313 T Ceryeet,2323) = 5. a. (4)

The phase properties of crystalline cellulose are summarized in Table 1.

The term ‘wood extractives’ covers a large number of different compounds, which can be extracted
from wood by means of water or organic solvents [19]. They are generally in the solute state, which
motivates their common treatment with water in a fifth independent phase indicated by suffix
‘HsOext’.

Inorganic compounds as, e.g., ash are only found in traces of typically 0.1-0.5%. Given, in
addition, their presumably insignificant stiffness, they hardly affect the mechanical properties of
wood at a macroscopic scale. Hence, they are not regarded in the micromechanical model.
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2.3. Continuum micromechanics model for wood

The interaction of the elementary components is considered in four homogenization steps (Fig. 4),
which we describe in the following.

Polymer network

Within an RVE of polymer network with 8-20 nm characteristic length (see Fig. 4(a)), hemicellulose,
hgmn and water are intimately mixed, occupying volume fractions fiemeer fhg, and szoext,
| e - fhg - szOe,;t = 1. The disorder of the chemical components in the network and the
intimate mixing of the polymers and the water motivate the use of a self-consistent scheme with
inclusions of spherical shape. Accordingly, in order to estimate the stiffness of the polymer network,

Cﬁr%net » Eq. (1) is specified for three (spherical) inclusion phases, i.e. for 7 € [hemcel , lig, HQOB.’Et]a

for Chemcel, Ciig, and Cr,0eqt according to Table 1, for C° = g{%ne“ s Tor P?Lemm i P%g A
lynet

]PHQOez-t ]Pg;hyne I‘esultlng 1n

i
lynet
et = { S e [T+ (¢, — €] } :

-1
= { S Fo [THEEE (e, - C5Gher)] } , (5)
s
r,s € [hemcel , lig, HyOext].
The elasticity tensors ¢, of the isotropic phases are of the form
Cr =3k J+2u,K, 1€ [hemcel,lig, HyOext], (6)

where k. and p, are the bulk and shear moduli of the phases, J, Jijki = 16” Okt , is the volumetric
part of the fourth-order unity tensor I, and K = I —Jis the deviatoric part. PP is of the form [24]

sph
polynet Esh,polynet . ~SCI ,—1
IP)sph =8 (Cpolynet ’ (7)
Esh,polynet __ SCI Scr
S i A polynet J+ Bpolynet K1 (8)
with
scr scr ScCI
o501 3 K potymet gscr  _ 6 (Kpoiynet + 2 Hiotynet) ()
Xpolynet = 97.5CT scr ! polynet — Scr ScCT ’
3 kpolynet +4 ru’polynet 5 (3 kpolynet .. lj‘polynet)

For implicit solution of Eq. (5), together with Eqs. (7)—(9), with respect to (Cp we refer to

Hellmich and coworkers [24, 25].

olynet >

Cell wall material

Within an RVE of cell wall material with 0.5-1 um characteristic length, cylindrical fiber-like aggre-
gates of crystalline cellulose (with volume fraction fepycer) and of amorphous cellulose (with volume
fraction famocer), €xhibiting typical diameters of 20-100 nm, are embedded in a contiguous polymer
matrix (with volume fraction Fpotynet = 1= ferycet— famocet)- The behavior of such a composite mate-
rial is suitably estimated by a Mori-Tanaka scheme. Accordingly, in order to estimate the stiffness
of the cell wall material, CMTT Eq. (1) is specified for two (cylindrical) inclusion phases (crystalline
and amorphous cellulose) and one polymeric matrix phase, i.e. for r € [crycel , amocel , polynet],
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Fig. 4. Four-step homogenization procedure for wood

for Cerycet and Camocer according to Table 1, for @ = Cpolynet = Cﬁ%net from Eq. (5), and for

IEDO

crycel =

ML
chm 3

polynet
3 cyl,1111

polynet
2 cyl, 1122

polynet
£ cyl,2323

IP)O

amocel

polynet
cyl

, resulting in

-1
SCI ! polynet SCI
fpolynet Cpolynet 3 Z fT Cr: []I & ]Pcyl { (CT % Cpolynet )]
r

fpolynetH+Zfs: [H+IP>
s

cyl

-1

-1
polynet . (Cs — Cgocl‘;net)] i (10)

r,s € [crycel , amocel).

The non-zero components of the symmetric tensor ]P’ﬁgfy"et read as follows,
__ ppolynet __ SCI ScCI ScCI
e Pcyl,2222 o 1/8 (5 Cpolynet,llll &3 Cpolynet,ll??)/Cpolynet,llll/Da (11)
__ ppolynet _ scr scr scI
T eyl 221 =% —1/8 (Cpolynet,llll * Cpolyn.et,1122)/Cp01ynet,1111/D’ (12)
__ ppolynet __ sG]
= Pouiais = 1/(8 Crolynet,2323)5 (13)
i ScCI ScI ScI
3 1/8 (3 Cpolynet,llll T Cpolynet,1122)/Cpolynet,1111/D7 (14)

polynet
P cyl, 1212
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whereby

— 15¢rI ScCI
D= Cpolynet,llll S Opolynet,1122 (15)

= scr scr ; - o1 i i -
and C323 = 1/2(Choiyner 1111 — Chiynet,1122)> Since the matrix material is isotropic.

Softwood

Within an RVE of softwood with 100-150 um characteristic length, cylindrical pores with character-
istic diameters of 20-40 um, representing the cell lumens, are embedded in a contiguous matrix built
up by the cell wall material of homogenization step II (Eq. (10)). The volume fractions occupied
by these two phases are f;um and fcwm ; flum + fcwm = 1. Using again a Mori-Tanaka scheme for
the estimation of the stiffness of the composite material ‘softwood’, CMTI | we specify Eq. (1) for
one (cylindrical) inclusion phase (lumen pores), and one cell wall matrix, i.e. for r € [lum, cwm],
for vanishing stiffness of empty pores, Cjm = O, for 0 = Coum = CMTI fom Eq. (10), and for

cwm
IP’?um = H”ﬁ;’l"‘, resulting in

A 3 “ o e §
CHP = {1~ fim) CURL ) {(1 = Fuam) L+ fuum - [1~ RS M) 1L (16)

The non-zero components of lP’ﬁ;"lm follow from substitution of ‘polynet’ by ‘cwm’, and of ‘SCI’ by
‘MTI’ in Egs. (11)—(15).

Hardwood

Within an RVE of hardwood with 2-4 mm characteristic length, cylindrical pores with characteristic
diameters of 400-500 um, representing vessels, are embedded in a contiguous matrix built up by the
softwood-type porous material of homogenization step III (Eq. (16)). The volume fractions occupied
by these two phases are f,.; and fsw, P fsw = 1. Using again the Mori-Tanaka scheme for
the estimation of the stiffness of the composite material ‘hardwood’, CHIT | we specify Eq. (1)
for one (cylindrical) inclusion phase (vessels), and one softwood-type matrix, i.e. for r € [ves, SW],
for vanishing stiffness of empty vessels, Cyes = O, for €0 = cgpy = MII from Eq. (16), and for

PO H"leV , Tesulting in
5 _ " _fy~1
CHW" = {1~ Foes) CHF"} : {(1 = Foeo) T+ Fues : [T PEY : CHTH] b (17)

The non-zero components of ]P’f"lv follow from substitution of ‘polynet’ by ‘SW’, and of ‘SCI’ by
‘MTIT’ in Egs. (11)—(15).

3. CONSIDERATION OF NON-ZERO MICROFIBRIL ANGLES
3.1. Treatment of inclined inclusions in the framework of continuum micromechanics

The cellulose microfibrils are arranged in the wood cell wall in several concentric layers around
the cell lumen [19]. The arrangement of the microfibrils is approximately axisymmetric at the
observation scale of an entire cell [1]. The assumption of axisymmetry implies transverse isotropy
of the material behavior of the cell wall, as in case of a zero microfibril angle.

The orientation of the microfibrils in a Cartesian coordinate system Oz;z923 is defined by the
Euler angles 6 and ¢ (see Fig. 5). Provided that the z3-axis is aligned with the axis of the wood
cell, the angle @ corresponds to the microfibril angle.
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Fig. 5. Orientation of a microfibril defined by two Euler angles § and ¢ in a Cartesian coordinate
g system Oziz2x3

Consideration of the inclination of the microfibrils in homogenization step II requires reformula-
tion of Eq. (10) for inclusions with orientation distributions. Given the axisymmetric arrangement
of the fibrils with respect to ¢ and their constant inclination angle 8 = 6, we obtain

Cﬁ;{ujr;{,inclin = fpolynet Cgocl'{/net o
1 27
- ! 11 - -1
+ L fr 5 / (0, ¢) : [H + P8, ) : (cr(6,0) — ;i%m)] dp
P =0
] 2m -1
; _ _ -1
fpolynet I+ Z fs ﬂ / []I + lp,zcx;lynet (97 <P) : (‘cs(97 (P) - ggénet)] d‘P )
s =0
r, s € [amocel , crycel] . (18)

The fourth-order tensors ¢, and P’c’;fy"et depend on the orientation of the inclusions. They are

generally defined in a base frame €}, 1 = 1,2,3, eg-e;- = §;5, aligned with the axis of the (cylindrical)
inclusion,

s /] ! / ! ! polynet __ polynet 1 ! li / !
Cr = (cr)ijue; ®e; e, e, PL = (P’ ijuei®e; ®ep Qe

(see [24] and [28] for mathematical details). The transformation of their components to the reference
frame €;, g 1,2,3, €; - €; = 045,

i polynet __ polynet
Cpi= (Cr)ijkl e®e Qe e, Pcyl = (Pcyl )ijlcl eRe; e, e,
requires standard rules of tensor calculus,
- ! polynet e polynet s
(cr)ijht = Nim Mjn Tkp Mg (S )mnpg s (Pt Dight = Nam Njn Tkp g (Peyy” imnpq - (19)

where n;, denotes the cosine of the angle between the base vectors e; and e}, . For bases €] and e;
rotated by Euler angles 6 and ¢, the tensor n = {n;;} reads in matrix notation as

cos(¢p) —singp 0
n = | cos(f) sin(p) cos(f) cos(p) —sin(d) | . (20)
sin(f) sin(p) sin(f) cos(p)  cos(6)

The integrals in Eq. (18) are evaluated numerically, the integral being replaced by a sum.
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3.2. Experimental determination of the microfibril angle

Methods to measure the microfibril angle include direct and indirect techniques. The most popular
indirect method is X-ray scattering (wide angle X-ray scattering [6, 18] and small angle X-ray scat-
tering [30, 33, 37]), which derives the microfibril angle from diffraction patterns of irradiated cell
wall sections. Computation of the microfibril angle from the measured radiation intensities requires
several assumptions, concerning, e.g., the shape of the cell or the orientation of the cellulose crystal-
lites with respect to the cellulose microfibrils [7]. This somehow limits the quantitative significance
of such test results.

Direct methods include different applications of polarization microscopy (PM) [12, 14], staining
methods (SM) [15, 27], or examination of the direction of iodine crystals (IC) [39] or of soft rot
cavities [31]. Providing direct access to the microfibril angle, these methods provide data free of
any manipulation during evaluation. Results of microfibril angle measurements by means of direct
methods indicate a mean angle of 20° for the wood cell wall of different species (cf. Table 2).

Table 2. Microfibril angle (MFA) measurements for different wood species by means of direct methods

Species Meth. MFA [°] Reference
Spruce PM 18.1-20.4 [35]
PM 25.5 [36]
SM 13-17 [15]
Pine SM 4-40 27]
PM 20 34]
PM 17-24 [41]
PM Yoo [5]
PM 20 (23]
Douglas fir SM 13-28 [15]
PM 7-30 [16]
IC 10-30 [20]
Hemlock SM 17-22 [15]

4. VALIDATION

The validation of the micromechanical model is based on two independent sets of experimental
data (see e.g. [24] and [28]): Micromechanical stiffness estimates based on tissue-independent phase
stiffness properties of hemicellulose, Cpemeer, of lignin, Cyg, of water lumped together with extractives,
CH,0ext, Of amorphous cellulose, Camocer, and of crystalline cellulose, Cerycer, [experimental set I,
Subsection 2.2 and Table 1] as well as on tissue and sample-dependent composition data in terms
of volume fractions fremcel, flig, fH205 feat, famocels ferycel, fium, and fyes, [experimental set IIa] are
compared to corresponding experimentally determined stiffness values [experimental set IIb]. The
volume fractions are derived from chemical analysis, microscopic methods, and X-ray diffraction
as described in [28], with a degree of crystallinity of cellulose of 0.66, in agreement with many
textbooks on wood (e.g. [19, 32]).

The stiffness values are derived either from quasi-static (tension or compression) tests, or from
dynamic tests, in which the free bending vibration of wood specimens is examined, or from ultrasonic
tests, in which propagation velocities of ultrasonic waves are measured, allowing for computation
of the components of the elastic stiffness tensor. A large number of wood tissues, from a variety of
softwood and hardwood species, are considered, see [28] for details.
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4.1. Comparison between micromechanical stiffness estimates and experimental values

- Mechanical tests, be they static, dynamic, or ultrasonic, show the orthotropy of the elasticity of

hardwood and softwood. The principal material directions coincide with the stem axis and with
the normal and tangent of the growth rings (see Fig. 1a); they are standardly referred to as lon-
gitudinal (L), radial (R), and tangential (T). The difference between the axial and the transverse
properties, e.g. between Young’s moduli Er, and Eg, is by far larger than that between the ra-
dial and tangential properties, e.g. between Eg and Er . Therefore, it seems sensible to consider

. wood, in a first approximation, as transversely isotropic (cf. the transversely isotropic estimates

MTII

C and CMIII in Egs. (16) and (17)). Among the five independent elastic constants derived
SW HW

~ from the experimental data, the focus of the present validation is on Young’s moduli in the axial

(longitudinal) and in the transverse direction, Ez, and Eygns = 1/2 (Eg + Er), and on the longitu-
dinal shear modulus, G, = 1/2(GLr + Grr). Micromechanical stiffness predictions for the elastic

. red red pred MTII ,—1 i S MTIII,—1
moduli E?™ and Efwe., BT = 1/[Cyy ™ 13333, Efrans = 1/[Cyw ~ Jun for hardwood and

Eﬁred = 1/[([3?&;”’_1]3333,.1475::55 = 1/[C§4V%;H’_1]1111 for softwood, and for the shear modulus G’ﬁmd,

d e
G = CMIIL 4 for hardwood and G7™ = ¥ 1313 for softwood, based on non-deviating and

deviating microfibrils (§ = 0°,20°), are compared to corresponding experimental measurements
(see Fig. 6). Each pair of stiffness measurement and corresponding micromechanical prediction is
indicated by a wood species-specific marker. The solid lines indicate perfect agreement between
predicted and experimental stiffness values.
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To quantify the predictive capabilities of the micromechanical model, differences between pre-
dicted micromechanical stiffness estimates and experimental measurements are determined in terms
of mean values and standard deviations of absolute errors £ and S, reading for n pairs (X?™, X 854
of model predictions and experimental results as

n

n n 1/2
n 1 red expY- s 1 : s 1 SEbE 7
E:EZ(X{’ — X! ”)_;;EM S—{n_lz(Ez E)Q} : (21)

i= =1

These error measurements are normalized with respect to the mean value of all experimental results

2 Lt :
xes — ;L_ ZXZ?IP 1 (22)

=l

yielding the error measures € and s in the form

E S

Xew' T X )

€=
Error measures for the pairs of model predictions and experimental results considered in the model
validation, obtained with either zero or non-zero microfibril angle, are included in Fig. 6. They are
based on 118 samples of 16 different species for Ey, , on 84 samples of 14 different species for Epns 3
and on 73 samples of 14 different wood species for G, .

The influence of the microfibril angle is specially pronounced for the longitudinal shear mod-
ulus G, . Consideration of the stiffening effect of inclined microfibrils (f = 20°) results in highly
improved model estimates, expressed by a reduction of the mean error from & = —53.8% to 1.3%,
when increasing the microfibril angle from 0° to 20°. The low mean error of é = 1.3% can be
regarded as almost perfect, and also the corresponding standard deviation of 27.4% is fair.

The elastic modulus in longitudinal direction, Ef, decreases with increasing microfibril angle.
The reduction starts very gently at angles close to zero and continuously passes into a rapid drop
at angles above 10-15° (cf. also [8]). Model predictions for the longitudinal elastic modulus are
improved by consideration of the microfibril inclination, too. Mean errors amount to 20.8% for zero
microfibril angle and to —8.2% for a microfibril angle of § = 20°.

The transverse elastic modulus, Eypgps , is almost unaffected by the microfibril angle.

5. CONCLUSIONS

Experimental validation of a continuum micromechanics model for wood elasticity provides some
evidence that the great variety of elastic properties of different wood species (softwoods as well as
hardwoods) can be attributed to only a few tissue-independent phase properties and their interac-
tions. It affirms the relevance of the chosen phases (crystalline and amorphous cellulose, hemicellu-
lose, lignin, extractives and water as well as pores at higher scales) as universal, tissue-independent
components and the suitability of the micromechanical model as representation of the phase inter-
actions.

Consideration of the inclination of the reinforcing cellulose fibers in the wood cell wall yields an
improved agreement between model predictions and experimental results, as compared to predictions
based on a zero microfibril angle. An experimentally evident microfibril angle of 20° results in
excellent micromechanics model predictions, in particular, for elastic moduli in longitudinal and
transverse direction as well as for the longitudinal shear modulus of a multitude of wood samples
of different softwood and hardwood species. The small mean values of the corresponding relative
errors between model predictions and experimental results, together with a fair standard deviation of
these errors, indicate that the microstructure of wood cells can be suitably characterized by a single
microfibril angle valid for different wood species, at least with respect to prediction of macroscopic
elastic properties. The influence of the microfibril angle is especially striking for the longitudinal
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shear modulus. In particular, model validation elucidates that longitudinal shear stiffness of wood
is largely due to axial straining of the cellulose fibers inclined towards the longitudinal stem axis.

The elasticity model constitutes a basis for prediction of the elastic limit of wood [29] and, in
future research, of poroelastic properties [9, 26]. This will open the door to applications of the model
in wood drying technology and in timber construction design.
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