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This paper deals with the second-order computational homogenisation of a heterogeneous material under-
going small displacements. Typically, in this approach a representative volume element (RVE) of nonlinear
heterogeneous material is defined. An a priori given discretised microstructure is considered, without fo-
cusing on detailed specific discretisation techniques. The key contribution of this paper is the formulation
of equations coupling micro- and macro-variables and the definition of generalized boundary conditions
for the microstructure. The coupling between macroscopic and microscopic levels is based on Hill’s aver-
aging theorem. We focus on deformation-driven microstructures where overall macroscopic deformation is
controlled. In the end a numerical example of a thin layer shear is presented.

1. INTRODUCTION

A wide range of materials produced by industry as well as natural materials are heterogeneous at
a certain scale of observation. The macroscopic (equivalent) properties of a heterogeneous material
should describe the essence of microstructural response. It must be independent of its macrostruc-
tural loads or geometry. The micro-to-macro transitions have to be consistent with the basic princi-
ples of continuum mechanics, i.e. they are subjected to principles of conservation of mass, momen-
tum, energy, and to the Clausius-Duhem inequality.

A comprehensive review of overall properties of heterogeneous materials is provided in [9]. Equiv-
alent material properties are obtained as a result of analytical or semi-analytical solution. In recent
years a promising alternative approach has been developed, i.e. computational homogenisation [5].
This micro-macro modelling procedure does not lead to closed-form constitutive relations, but com-
putes on line the strain-stress relationship at a selected point with attributed detailed microstructure
assigned to that point. This approach does not require any constitutive assumption on the macro
level and enables the incorporation of nonlinear geometric and material equations [2, 5]. The com-
putational homogenisation analysis is possible for any discretisation technique in space and time.

In the paper a well-known framework of linking material properties at two levels of material
description is presented. The materials heterogeneous on one level (microscale), while the material
is considered homogeneous at macroscale level of observation. There are a number of strategies which
are used in multiscale analysis. In this paper we discuss a numerical approach, i.e. computational
homogenisation Fig. 1.

After [3], multiscale models are constructed using three main ingredients Fig. 2:

1. modelling of mechanical behaviour at microscale (representative volume element RVE),

2. localisation rule which determines the local solution inside RVE for given macroscopic deforma-
tion measures,

3. homogenisation rule giving the macroscopic stress measures, knowing the micromechanical stress
state.
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Fig. 2. Computing nonhomogeneous material response

In Section 2 the boundary equations as well as the macrostrain and macrostress expressed in
terms of displacements and traction forces on the boundary of RVE are given. In Section 3 after
finite element discretisation and deformation driven microstructures, the overall stresses and tangent
moduli are defined only in terms of discrete forces and stiffness properties of RVE. To enforce
boundary conditions and to compute stresses and tangent moduli the projection matrices are used.
In Section 4 a numerical solution of a thin layer shear for a porous material is presented. In the end
conclusions are presented.

2. MACRO TO MICRO AND MICRO TO MACRO TRANSITIONS

The paper concentrates on some issues of a fully coupled second order homogenisation scheme.
Attention is focused on micro-macro transitions of the discretised microstructure. A new approach
is proposed which can handle any type of boundary conditions (i.e. displacement, periodic and static
boundary conditions). The boundary conditions enforce the deformation of representative volume
element (RVE) according to a given gradient and second gradient of displacements in average sense.
We note that the method is used to couple two different continua: classical one at the microscale,
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and Mindlin’s continuum (8] at the macroscale. After expansion of the displacement vector at the
geometric centre of RVE and truncation after the second-order term we obtain

(X, x) = u'(X) +x - 5(X) + %x@x  A(X) + (X, %), (1)

where € = sym|grad[u]] is the macrostrain tensor, 77 = grad|[grad[u]] is the second-order macroscopic
strain tensor, r is the microfluctuation of displacement added to fulfill the equilibrium equation in
RVE.

The boundary conditions can be written in an integral form as

/5t-rdF=0, /n®rdF=0, /n®x®rdF=0, (2)
i r P

where n is the normal vector field and dt is a statically admissible variation of tractions on the
~ boundary. If the first integral satisfies Hill-Mandel theorem, the second and third integrals enforce
the deformation of RVE according to a given macrostrain tensor and given gradient of macrode-
formation tensor in an average sense, correspondingly. For further FE discretisation, the boundary
conditions can be expressed in terms of microscopic displacement tensor and macrostrains,

il

/6t-(u—x-€——x®x:ﬁ) dr =0, (3)

r 2
il & ne

/n®<6u—x-s——x®x:n> ar =40, (4)
r 2

/n®x®(6u——x-€—%x®x:ﬁ> dI' = 0. (5)
r

To make the model complete, the macroscopic strain and stress measures in terms of micro-
quantities are given. For a statistically homogeneous body macroscopic quantities can be defined as
averaged microquantities over volume RVE [9], for simplicity, for the geometrically linear problem
we have

1

Ezv/Fn@udF, (6)
"'-l/x®tdl“ (7)
T= E .

1

5/(x®x®1+x®1®x+1®x®x)dV:ﬁz/n®x®udF, (8)

1% 'y
Fz%/ﬁ@x@tdr, (9)

where @ is second-order macrostress tensor work-conjugate to €, 7 is third-order macrostress tensor
work-conjugate to i7. It can be noted that macro quantities are given exclusively by displacements
and traction forces on the boundary of RVE. According to Hill-Mandel theorem it can be shown
that for the given equations the work of macrostrains on macrostresses is equal to the work of
microstrains on microstresses in the RVE attached to a macroscopic point.

3. FINITE ELEMENT DISCRETISATION AND ENFORCING BOUNDARY CONDITIONS FOR
RVE

The application of boundary conditions and other constraints to the stiffness matrix and load
vector is an integral part of the finite element code. This process can pose difficulties when certain
combinations of boundary conditions for RVE occur. A general approach to the problem of enforcing
constraints for any finite element code is shown in [1].
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After FE discretisation of RVE the vector of the nodal displacements u is defined as a solution
of the constrained quadratic programming problem:

min, Q= %uTKu ~u'F, (10)
subject to Cu—g =0,

where K is the stiffness matrix, F is the load vector, C is constraint matrix and g is the displacement
constraint vector. The common solution method is to introduce Lagrange multipliers A,

L= %uTKu—uTFqL)\T(Cu—g). (11)

The Euler conditions for the stationary point of the Lagrangian are found to be
Ku 4 CIA=Fs "Cuzg. (12)

However, this approach increases the number of unknowns and the character of the matrix is altered
(to an indefinite saddle point problem). The numerical solution of such a problem is inefficient, so
it is not adequate for solving computationally complex multiscale problems, where for each Gauss
integration point the solution of the constrained quadratic problem has to be found.

In papers [6, 7] the solution for micro-to-macro transition of discretised microstructure by the
computation of condensed matrices, associated with the boundary of RVE, can be found. In this
paper an alternative approach to solving such problems in case of second-order homogenisation
is presented. On the assumption that the problem is well-posed, the following matrices are well
defined,

Q =1-RC, (13)

R = CT(ccT)L, (14)
where R is the auxiliary matrix and Q is the projection matrix. If matrix K and the right-hand
vector F are defined by expressions

K = CcTC + Q"KQ, (15)

F = C"g+ Q" (F - KRg), (16)

there exists a unique solution u of the problem (10),

Ku =F, (17)
and the Lagrange multipliers are given by
A =RT(F - Ku). (18)

Matrix K involves the computation of global stiffness matrix K. However, in practical computations
there is no need to perform global operations on matrices, or to assemble global matrix K. Enforcing
constraints can be performed by subassembly procedure element by element [1].

This approach enables one to apply any boundary condition, e.g. displacement, periodic or trac-
tion boundary conditions on the boundary of RVE. This method can also be easily applied to any
shape of RVE.
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3.1. Matrix form of boundary conditions

After FE discretisation of RVE the boundary conditions (3)—(5) can be written in a matrix form as
Cu=De+En=g. (19)

Matrix C is given by
C = /F HNTNdr, (20)
where matrices D and E are in the form
D= /FHNTX dr, (21)
B /F HNTZdr, (22)

N is the matrix of shape functions, and matrices X and Z are defined by

ok bodz. U, ¥
X_Z[O 2y x]’ (23)

1722 0 22 0 zy O
Z =- .

4 [ 0 242 0 222 0 =y (24)
In each row of matrix H there are nodal values of admissible distribution of traction forces on the
boundary of RVE. For example, in case of the first-order homogenisation and periodic boundary
conditions all antiperiodic and self-equilibrated boundary conditions are admissible. Matrix H con-

tains nodal values of all linearly independent antiperiodic self-equilibrated distributions of traction
on the boundary of RVE.

3.2. Computation stress and higher order stress

If the equilibrium equation is fulfilled, the work of displacements on tractions is equal to the work
of generalized displacements on Lagrange multipliers,

u't = (D + Ef)TA. (25)

Following the solution of boundary value problem according to Hill-Mandel theorem, the first-order
macrostress vector is given in terms of the Lagrange multiplier vector and matrix D,

7= —‘17DT)\, (26)

and the second-order macrostress vector is given in terms of the Lagrange multiplier vector and
matrix E,

ey
==E"A. 2
T v A (27)



542 L. Kaczmarczyk

3.3. Computation of tangent matrices

Closed-form stress-strain relation is unknown at all the stages of the computational homogenisation
approach. For the finite element method at the macro level only the material tangent stiffness
matrices and stress vectors or increments of strain vectors have to be determined at each Gauss
integration point. The linearized relation between strain increments and stress increments for the
second-order continuum are given by
Aw = C'Az + C?Aw, (28)
AF =T Ar + CHAYW. (29)
To compute tangent stiffness matrices, (3 + 6 + 3 + 6) linear equations at equilibrium for each RVE
' ) .=l
have to be solved. For example, material tangent stiffness matrix C is computed as

C! = [d5!, 652, d5°], (30)
where columns 657, i = 1,2, 3, are computed for given increments of the strain vectors,
o' : for 68 =[100]", 67 =1[000000]T,
652 : for 02=[010]", 65 =[000000]", (31)
o7 for dg=[001]", 7 =[000000]T.
Material tangent stiffness matrix C? is computed as
C? =[5!, 65°, 6a°, 6a*, 65>, 6G° ], (32)
where columns 6%, = 1,...,6, are computed for given increments of the higher order strain vector,
o' : for 08 =[000], 67 =[100000],
652 : for 02 =[000], 67 =[010000],
Y A for 62 =1[000], 6 =[001000],
oot : for 02=[000], 67 =[000100], (33)
65 for 68=1[000], dm=[000010],
653 for 08 =[000], 67 =[000001].
Material tangent stiffness matrix C? is computed as
Q? = [&7, 872, 0], (34)
where columns §77, i = 1,2, 3, are computed for given increments of the strain vector,
67 for 62 =[100], dm=1[000000],
672 : for 68=1[010], dm=[000000], (35)
673 for d€=1[001], &M =[000000].
Material tangent stiffness matrix C* is computed as
C* = [o7, 672, 673, 67°, 67, 070, (36)

where columns §7¢,7 = 1,2,3 are computed for given increments of the higher order strain vector,

o7t for 02 =1[000], dm=[100000],

672 for 68=1[000], ¢ =[010000],

673 for 68 =1[000], 07 =1[001000], )
574 for 08 =1[000], &7 =1[000100], \
670 for 68=1[000], 6m=[000010],

673 for 68 =[000], om=[000001].
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We can see that only the right-hand side of the linear equations is different for each case, so
after the LU decomposition of the left-hand side of the linear equations the computation of tangent
stiffness matrices can be made efficiently.

4. NUMERICAL EXAMPLE

In this section a thin layer shear problem is investigated. Microstructurally a porous material is
analyzed numerically. For the numerical solution of the macroscale problem, the finite element
mesh indicated in Fig. 3 is used. The mesh consists of plane strain quadrilateral elements for the
second-order continuum in [10]. Since for this problem all quantities are independent of z, one single
row of elements is needed. The heights of shear layer are H = 10.0mm and H = 1.0 mm. Vertical
displacements are equal zero between left-hand and right-sides.

A material with randomly distributed voids is analysed. For modelling at the microscale, two
RVEs in Fig. 4 are shown. It can be noted that RVEs with different statistical representation are
analysed. The characteristic size of RVEs is L = 0.6 mm and the volume fraction is V¢ ~ 0.12. The
voids are modelled by Level Set Method in XFEM. The finite element mesh at microscale contains
constant strain triangular elements and has a characteristic size A = 0.008 mm. The matrix material
is assumed to be elastic with Hooke’s constitutive equation and materials parameters: Young’s
modulus E = 210 GPa and Poison’s ratio v = 0.3. Because the investigated material has a random
distribution of voids, for each type of RVEs (with small and large voids) and for each height of shear
layer, 100 numerical simulations are analysed.

u=1ug, v=0, us =0, uy =0

- displacements

u=0,v=0, u. =0, uy =0

Fig. 3. Geometry, boundary conditions, and the finite element mesh for boundary shear layer problem

Fig. 4. RVEs consisting of voids with radius rave = 0.032 mm and rave = 0.016 mm
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Fig. 5. Distribution of shear stress and gradient of shear stress along the layer consisting of RVEs with small
void and large voids radius for two heights of strip. Deformation of RVEs and distribution of shear microstress
at the middle and bottom of strip.

In Fig. 5 it can be noticed that the solution depends on the shear layer height, i.e. the size
effect is observed. If the classical continuum is applied at macrolevel, shear strain and stress have a
constant distribution along the height of strip. Near the bottom and upper bounds of the shear layer
the gradients of shear strain are observed. In Fig. 5 at the left-hand bottom corner the deformation
and distribution of shear microstress is depicted. It is worth noticing that for the second-order
homogenisation method RVEs are deformed according to macrostress and second-order macrostrain.
Moreover, the gradient of distribution of shear microstress along height of RVEs is observed. Despite
of this, in the middle of strip the value of gradient shear macrostrain is zero. So the pure shear
deformation of RVEs in Fig. 5 at the upper right corner can be noticed. Distributions of shear
microstress are uniform in RVEs.

The size of RVE should be selected as the minimum size that contains enough microstructural
features. However, the absolute size of RVE is an additional macroscopic parameters of the model
which can not be determined by the homogenisation method. Moreover, a microstructural cell size of
RVE may not be statistically representative. Therefore, once the size of RVE is assumed, a number
of microstructural random realizations should be considered. The statistical representation of RVEs
can be measured by the difference between the upper and lower bounds of the solution. A well known
property can be noticed that the displacement and stress boundary conditions provide the upper and
lower bounds of the response. The solution for the periodic boundary conditions lies between them,
see Fig. 6. The solution for RVEs with a smaller radius of voids has a smaller difference between
the upper and lower bounds of strip shear stress, compared with RVEs with a smaller number of
voids, the solution has better statistical representation. For periodic boundary conditions a smaller
variance of solution is observed for random distribution of voids in Fig. 7. It can also be noticed
that the solution on average compared to the same value for different numbers of voids in RVEs.
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Fig. 6. Comparison of boundary conditions type on histograms for average values of shear macrostress for
displacement, periodic and stress boundary conditions. The comparison of boundary conditions type
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Fig. 7. The comparison of RVEs with smaller and larger radius of voids on histograms for averaged values
of shear macrostress for periodic boundary conditions

5. CONCLUSIONS

Computational homogenisation can be used to couple two different continua at macroscale, i.e.
classical and gradient continua. The advantage of the second-order homogenisation framework is
that it allows one to escape from the classical assumption of scale separation. Taking into account the
size effects enables us to apply multiscale models when the size of RVE does not vanish. Moreover,
when localisation takes place, the results should be meaningful.

In the paper a method of enforcing boundary condition for micro-to-macro transitions has been
proposed. The method enables us to enforce any type of boundary conditions consistent with the
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Hill-Mandel theorem. Moreover, it can be applied to any shape of RVE, which enables us to model
an effective material with a different number of symmetries. More comprehensive description of
presented problem can be found in [4]. '
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