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The concept of experimental data interpretation in mechanics using Dirac function is presented. The
objective is to find general differential equation, which may be used to approximate the stress field sought.
Application of this method may convert problem from general spline to variational one. Basic idea has
been presented earlier in [6] where both theoretical data and results of experiments have been taken into
account. Here, the method has been used to solve a 2D problem. Numerical tests performed for both
generated and experimental data proved its usefulness.

1. INTRODUCTION

Experimental measurements in mechanics are usually carried out on the surface of the analysed
body. Due to very high cost and extremely complicated equipment needed for 3D experiments such
analysis is performed rather seldom [10]. Therefore the method presented here has been prepared to
solve 2D problems although proposed algorithm could be generalised onto 3D space using Maxwell
functions instead of Airy function.

The general problem of restoring stress tensor by using experimental data has been discussed
many times before e.g. [4, 6, 8, 9].

Data measured in experiment is always obtained at separate points. Usually because of significant
costs, physical constraints and other reasons, number of measurement points is minimized. Moreover,
measurements are disturbed by experimental errors and usually this error is difficult to estimate.

Therefore presented algorithm has to fulfill two goals of post-experimental analysis:

o extend data to the whole analysed area,
e improve data in order to minimize experimental errors.

Stress field almost always satisfies equilibrium equations, which should be taken into account [6].
Usually one additionally has to deal with boundary conditions. All this information may be treated
together by proper definition of the functional, containing all available data. Minimization of this
functional leads to the optimal stress field distribution. This may be achieved by a transformation
of the relevant functional having general spline character [1] to a variational one [4]. Euler equation
thus becomes a differential equation for a certain new problem. Solutions may be recognized as
a representation of the relevant stress problem.

Due to small equation system (depending only on number of measurements), presented algorithm
is very fast and efficient and therefore requires a small amount of computational time. For this
reason the presented method does not require special computer hardware and can be widely used in
processing of experimental results. The proposed method is physically based (satisfies equilibrium
equation) and the obtained solution covers the whole analysed area.
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2. MATHEMATICAL FORMULATION

In this case general spline functional takes into account both certain theoretical relationships and
experimental data, and may be expressed as a following functional of unknown function “f”

N
O(f,A) == A+ XY an6u(f) (1)
n=l

where N is the number of experiments, parameters a, are introduced to weight the relative share
of measurements @, which may have different physical types. Parameter A is introduced to weight
the theoretical (4) and experimental (©) parts. Minimization of such a functional leads to smooth
and physically based stress field.

The theoretical part of Eq. (1) in solid mechanics may be obtained from equilibrium equation,
i.e. if f is the searched stress tensor, then if 2 denotes the analysed domain:

A@G) = /Q (divs)?dn (2)

Equation (2) represents mean quadratic error of equilibrium equations. Alternatively, f may be
defined as an Airy function. This ensures fulfillment of basic rules of mechanics such as equilibrium
equations,

003z  O0gy O00zy = Ooyy
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When f is defined as the Airy function, 4 may be an universal measure of field curvature. In [4]
this curvature was proposed as

A(f) = /!2 K2(f) AR (4)

and k as

H—\/zﬁ/z’r 62f> : (5)

Experimental parts of the functional can take the form

=0, =0. (3)

On(3) = Dn [|5(7%) — 5all® , (6)
where
5] = (tr52)1/2 (7)

to represent the discrepancy between measured and approximated data, where D, is a local weight-
ing factor, 3§, is the measured stress tensor (e.g. by strain gauges).

The experimental term of the functional may be converted to the surface integral all over the
domain if each sought value at a given point will be multiplied by the Dirac pseudo-function

() =0 for 7#0 (8)
and with the condition
/ SR AV =1 9)
1%

centered at the analysed point, where V represents the whole space. Minimization of the func-
tional (1) leads to the following equation (in the case of Airy function version):

ot +)\Zan (& (Fn) — 3n);; 83 6(F — ) = 0. (10)
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The Airy function may be now presented as

f(F) =)‘ZDn7,ij(F—Fn)wnij+f*("_") (11)
where:
‘ 0 =0,
LSS { s (lnr—=§) r>0, ()
and
Wnij = —(055f)(Tn) + snij - (13)

The first term of Eq. (11) constitutes a sum of arbitrary solution of above equation and a general,
homogeneous square-biharmonical function (f*), which may be presented as a linear combination
of basic solutions G, s;; are components of known, measured stresses. The proposed stress field
obtained from the Alry function (11) at point 7, is the same as (7). This leads to a system of 3N
linear equations

Wn 45 + )\Z DﬁGij,i]" (T — 'Fﬁ)aij = Snij (14)

where the tensor G(r, ¢) satisfies the following relationships:
3
i =T (Inr(48 cos? ¢ + 12) + 8 cos® p — 4sin®p — 1),

2
r 5
Gzzay = Geyze = 384 sinpcosp(12Inr + 4cos® p + 1),
o2
Geyazy = Gezyy = Gyyez = 768 (121nrcos ¢(8sin? p — 1) — sin go) (15)
2
i :
Gryyy = Gyyay = 384 Snpeos ©(121In7 + 4sin ¢ + 1),
2
Gyyyy = 768 (lnr(4851n v+ 12) + 8sin g — 4 cos? ©— 1)
™

Such a value of X is proposed to ensure minimization of a’posteriori error norm determined as
a difference between computed and measured values, i.e. of the second part of Eq. (1).

3. BENCHMARK TESTS
3.1. Test for generated data (known solution)

Approximations obtained for different values of parameter A are compared with the known, exact
solution. Pseudo-experimental points shown in Fig. 1 are generated randomly in 2D.
Values of stresses at these points have been generated using testing Airy function

cos? (mp%) cos® (mp%)
n2p?

F(z,y) = -24A : (16)

for A and p assumed arbitrarily. For such a function F, stress tensor components sy , Szy and sy,
may be found easily:
cos(mpz)

1
senla,) = Acosrpy) (2072 4

Szy(z,y) = gsin(ﬂpx) sin(mpy), (17)

syy(z,y) = Acos(mpz) (as(;_rw + %) >
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Fig. 1. Pseudo-experimental points
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Fig. 2. Difference between exact solution and approximation in L2 norm due to various parameters \

Parameters p = %, A = 1000 have been assumed for further calculations. After generation, data
has been disturbed randomly at each point of measurement n, separately for each stress component
si; using random value the range of (-20%,20%).

This test has been conducted for various values of parameter A and obtained approximation has
been compared with exact solution in L2 norm. Approximations for s, stress component, y = 0.5
and different values of parameter A have been shown in Fig. 2. These results were compared with
the exact value and Liszka’s approximation [7].
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Fig. 6. Approximation (sgs stress component)

Relative difference, in L2 norm, between known (exact) and approximated solutions for different
values of parameter A, has been shown in Fig. 3.

The smallest difference between the exact and approximated solution (shown in Fig. 3) may be
observed for A = 1073 and the error in L2 norm is ery = 0.3. Thus one may observe substantial
improvement in quality of results when the optimal X is used.

Exact solution is shown in Fig. 4 while randomized s;, stress component is shown in Fig. 5.
Finally the approximation of randomized data for the best parameter )\ has been shown in Fig. 6.

3.2. Test for generated data (original values set to 0 in 2 points)

In the second test data at two arbitrarily chosen points have been set to 0. This was to simulate
the situation when for example strain gauge fails or gets unbounded.
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Fig. 7. Experimental points
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For this test N = 80 experimental points shown in Fig. 7 have been generated randomly, but
satisfying the condition that distance between any two of them should not be too small.

Values of stress components have been generated and then randomized at points shown in Fig. 7.
Finally obtained values have been replaced by 0 for each of the stress components at points marked
with X.

The randomized s, stress component with values set to 0 in two arbitrary points is shown in
Fig. 8, the best approximation (obtained for proper value of )\) is shown in Fig. 9 while the exact
solution is presented in Fig. 10.

Fig. 9. Data approximation (ss. stress component)
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Fig. 10. Exact solution

For the input data the difference between them and the exact solution in L2 norm is e 2 = 0.62
while between approximation and exact solution for the best parameter A = 1.01e+03, ers = 0.46.

Those results have been obtained for local weights D, equal to 1. Far better results could be
obtained using local weighting parameter, but such a test has not been performed so far and is
planned as a future development.

3.3. Test for different numbers of pseudo-experimental points

In this test approximation has been obtained for different numbers of pseudo-experimental points.
Test was begun with 20 and ended with 160 experimental points.

In Fig. 10 one can see the exact solution. Arrangements of 20 and 40 pseudo-experimental points
have been shown in Fig. 11 . Approximations for 20 and 40 points have been shown in Fig. 12.

It is observed that for this stress function 20 experimental points are not sufficient to obtain
high accuracy approximation. Satisfactory results may be achieved using 40 experimental points.
For more than 40 points obtained results were quite similar and thus are not shown in this paper.
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Fig. 11. Arrangement of 20 and 40 pseudo-experimental points
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Fig. 12. Approximation for 20 and 40 pseudo-experimental points (s;. stress component)

3.4. Test on the real life experimental data

Results of stress field analysis in a rail cross-section due to Groom [3] have been used as the input
data for this test. The main objective of Groom’s experiment was to determine the residual stresses
in railroad rail subject to service loads.

A slice of such a rail has been diced into pieces after gluing strain gauges to it’s face. Thus
deformation of those pieces has been recorded and residual stresses released during sectioning have
been determined using material constants and physical laws.

Original data obtained by Groom [3] for s, (longitudinal) stress component (a) and it’s approx-
imations for different values of parameter A (b, ¢, d) have been shown in Fig. 13.

The choice of optimal parameter A is a very difficult task. Several advanced methods to deter-
mine ) are described in [5]. It seems that the variant (b) presented in Fig. 13 is optimal, what agrees
with concluding remarks proposed by Magiera in [9, 10].

4. CONCLUDING REMARKS

The paper presents a new idea of experimental data approximation that takes into consideration
general equations of mechanics, algorithm is very fast and efficient.
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Fig. 13. Data obtained by Groom (a) [3] and computed for A = 10° (b), A = 107 (c) and A = 10° (d)

Results obtained in 2D case prove that the above method is very convenient in numerical practice
of mechanics. Proposed algorithm may be easily parallelized and is applicable to experiments in
which many experimental points may be taken into account.

A future expansion to 3D problems is possible by Maxwell functions and is planned in the future.
Also ways to obtain the global A and local D,, weighting parameters will be analysed.
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