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A thin metal film subjected to a laser pulse is considered. The problem is described by the system of
energy equations describing the electron gas and lattice temperatures. The thermal interactions between
electrons and lattice are determined by the parameter G called the electron-phonon coupling factor. To
estimate the unknown parameter G the identification problem is formulated. The additional information
necessary to solve an inverse problem is the knowledge of transient measurements of the reflectivity or
transmissivity variation which is proportional to the variation of the electron temperature. So, at the
stage of inverse problem solution, it is possible to assume the knowledge of electrons temperature on the
irradiated surface of the system (x = 0). To solve the identification problem the gradient method basing
on the least squares criterion and sensitivity coefficients is used. In the final part of the paper the results
of computations are shown.

Keywords: microscale heat transfer, laser heating, two-temperature model, inverse problem, finite dif-
ference method.

1. INTRODUCTION

Analysis of thermal problems connected with the materials processing technology design requires,
among others, to find the solutions of heat conduction problems in a microscale when the Fourier
law cannot be applied. The differences between the macroscopic energy equation basing on the
Fourier law and the models describing the microscale heat transfer appear because of the extremely
short duration, the extreme temperature gradients and the very small geometrical dimensions of
an object considered. This situation takes place, among others, during a short-pulse laser heating
of thin metal films and the different models are used to describe the non-Fourier heat conduction
[2, 5, 8, 10, 16]. One of them is the hyperbolic two-temperature model [1, 11, 15, 16] determining
the temporal and spatial evolution of the lattice and electrons temperatures and this approach is
here used. The thermal interactions between electrons temperature Te and phonons temperature Tl

are determined by the parameter G called a coupling factor [8]. The assumption that the values of
Te and Tl are not big allows one to treat the parameter G as a constant value and a such situation
is considered below. The laser heating is taken into account by the introduction of internal heat
source appearing in the equation determining the course of electrons temperature.
The additional information necessary to solve the inverse problem is the knowledge of transient

measurements of the variation of reflectivity which is proportional to the variation of the electrons
temperature [1]. So, at the stage of inverse problem formulation , the knowledge of electrons tem-
perature on the irradiated surface of the system (x = 0) can be assumed. To solve the identification
problem the gradient method basing on the least squares criterion and sensitivity coefficients has
been applied [7, 13]. The basic problem and additional one connected with the sensitivity analysis
are solved using the explicit scheme of finite difference method. In the final part of the paper the
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results of identification are shown both in the case when the real measurements quoted in literature
have been used and also when the direct problem solution has been applied.

2. DIRECT PROBLEM

The 1D problem is analyzed, this means that the heat transfer in the direction perpendicular to
the external surfaces of metal film is considered, while the front surface x = 0 is irradiated by a
laser pulse. Taking into account the geometry of the domain considered (Fig. 1) this assumption is
quite acceptable.

Fig. 1. Thin film.

Hyperbolic two-temperature model describing the temporal and spatial evolution of the lattice
and electrons temperatures (Tl and Te) in the irradiated metal can be written in a form of two
coupled nonlinear differential equations [1, 11]

Ce(Te)
∂Te(x, t)

∂t
= −∂qe(x, t)

∂x
−G(Te) [Te(x, t)− Tl(x, t)] +Q(x, t), (1)

Cl(Tl)
∂Tl(x, t)

∂t
= −∂ql(x, t)

∂x
+G(Te) [Te(x, t)− Tl(x, t)] , (2)

where Ce(Te), Cl(Tl) are the volumetric specific heats of the electrons and lattice, respectively, G is
the electron-phonon coupling factor related to the rate of energy exchange between electrons and
lattice, qe(x, t), ql(x, t) are the heat fluxes and Q(x, t) is the source term connected with the laser
action.
In a place of classical Fourier law the following formulas are introduced

qe(x, t+ τe) = −λe(Te, Tl)
∂Te(x, t)

∂x
, (3)

ql(x, t+ τl) = −λl(Tl)
∂Tl(x, t)

∂x
, (4)

where λe(Te, Tl), λl(Tl) are the thermal conductivities of the electrons and lattice, respectively,
τe is the relaxation time of free electrons in metals (the mean time for electrons to change their
states), τl is the relaxation time in phonon collisions.
The internal heat source Q(x, t) connected with the laser action is given in the form [1]

Q(x, t) =

√
β

π

1−R

tpδ
I0 exp

[
−x

δ
− β

(t− 2tp)
2

t2p

]
, (5)

where I0 is the laser intensity, tp is the characteristic time of laser pulse, δ is the optical penetration
depth, R is the reflectivity of the irradiated surface and β = 4 ln 2 [2].
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Taking into account the short period of laser heating, the heat losses from the front and back
surfaces of thin film can be neglected [1], this means

qe(0, t) = qe(L, t) = ql(0, t) = ql(L, t) = 0, (6)

where L is the film thickness.
The initial conditions are assumed to be the constant ones

t = 0: Te(x, 0) = Tl(x, 0) = Tp. (7)

To define the thermal conductivity λe and heat capacity Ce of electrons the following formulas
are widely used [1, 8, 11, 15]

λe(Te, Tl) = λ0
Te

Tl

, (8)

Ce(Te) = γTe, (9)

where λ0, γ are the material constants.
It should be pointed out that the simple form of dependences (8), (9) is only suitable for tem-

peratures Te much smaller than the Fermi temperature TF = EF/kB , at the same time EF , kB are
the Fermi energy and Boltzmann constant, respectively [8].
Taking into account the dependences (8), (9) and assuming the constant values of the others

thermophysical parameters the Eqs. (1) and (2) can be written in the form

Ce(Te)
∂Te(x, t)

∂t
= −∂qe(x, t)

∂x
−G [Te(x, t)− Tl(x, t)] +Q(x, t), (10)

Cl

∂Tl(x, t)

∂t
= −∂ql(x, t)

∂x
+G [Te(x, t)− Tl(x, t)] . (11)

Using the Taylor series expansion the following first-order approximation of Eqs. (3), (4) is intro-
duced

qe(x, t) + τe
∂qe(x, t)

∂t
= −λe(Te, Tl)

∂Te(x, t)

∂x
, (12)

ql(x, t) + τl
∂ql(x, t)

∂t
= −λl

∂Tl(x, t)

∂x
. (13)

Solving the direct problem one assumes that the thermophysical parameters appearing in Eqs. (10)–
(13) are known and the electrons and lattice temperature can be found on the basis of boundary-
initial problem above formulated.

3. INVERSE PROBLEM

If the parameters appearing in governing equations are known then the direct problem is analyzed,
while if part of them is unknown then the inverse problem should be considered [7, 9, 13, 14]. In the
case of microscale heat transfer the additional information necessary to solve the inverse problem
corresponds to the knowledge of transient measurements of the variation of reflectivity which is
proportional to the variation of the electron temperature [1]. So, at the stage of identification
problem solution one can assume the knowledge of electrons temperature Te (0, t) at the irradiated
surface of the domain, this means

T f
ed = Ted(0, t

f ), f = 1, 2, . . . , F. (14)
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In this paper the problem concerning the identification of electron-phonon coupling factor using
gradient method [7, 13] is discussed. To solve the task, the least squares criterion is applied

S(G) =
1

F

F∑

f=1

[
T f
e0(G)− T f

ed

]2
, (15)

where T f
e0(G) = Te(G, 0, tf ) are the calculated electrons temperatures at the irradiated surface. This

temperature is obtained from the solution of the direct problem (cf., chapter 2) with an estimate
for the unknown parameter G.
The criterion (15) is differentiated with respect to the parameter considered and next the nec-

essary condition of optimum is used

dS

dG
=

2

F

F∑

f=1

[
T f
e0(G) − T f

ed

] (
Uf
e0

)k
= 0, (16)

where

(
Uf
e0

)k
=

dT f
e0(G)

dG

∣∣∣∣∣
G=Gk

(17)

are the sensitivity coefficients, k is the number of iteration, G0 is the arbitrary assumed value of
coupling factor, while Gk for k > 0 results from the previous iteration.

Function T f
e0(G) is expanded in the Taylor series about known value of Gk taking into account

the first derivative, this means

T f
e0(G) =

(
T f
e0(G)

)k
+
(
Uf
e0

)k
(Gk+1 −Gk). (18)

Introducing (18) into (16) one obtains

F∑

f=1

(
Uf
e0

)k (
Gk+1 −Gk

)(
Uf
e0

)k
=

F∑

f=1

[
T f
ed −

(
T f
e0(G)

)k](
Uf
e0

)k
(19)

or

Gk+1 = Gk +

F∑
f=1

[
T f
ed −

(
T f
e0(G)

)k](
Uf
e0

)k

F∑
f=1

[(
Uf
e0

)k]2 , k = 0, 1, 2, . . . ,K, (20)

where K is the assumed number of iterations.

4. SENSITIVITY ANALYSIS

To determine the sensitivity coefficients (17) the direct approach of sensitivity analysis [4, 6, 7] can
be applied. So, the Eqs. (10)–(13) are differentiated with respect to the coupling factor G and then
one obtains the following sensitivity model

dCe(Te)

dTe
Ue

∂Te

∂t
+ Ce(Te)

∂Ue

∂t
= −∂we

∂x
− (Te − Tl)−G(Ue − Ul), (21)

Cl
∂Ul

∂t
= −∂wl

∂x
+ (Te − Tl) +G(Ue − Ul), (22)
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we + τe
∂we

∂t
= −

[
∂λe(Te, Tl)

∂Te
Ue +

∂λe(Te, Tl)

∂Tl

Ul

]
∂Te

∂x
− λe(Te, Tl)

∂Ue

∂x
, (23)

wl + τl
∂wl

∂t
= −λl

∂Ul

∂x
, (24)

where

Ue =
∂Te

∂G
, Ul =

∂Tl

∂G
,

we =
∂qe
∂ G

, wl =
∂ql
∂G

.

(25)

Additionally, the differentiation of Eqs. (6), (7) gives

we(0, t) = we(L, t) = wl(0, t) = wl(L, t) = 0 (26)

and

t = 0: Ue(x, 0) = Ul(x, 0) = 0. (27)

Summing up, the Eqs. (21)–(24) supplemented by the boundary conditions (26) and initial
ones (7) create the additional problem connected with the sensitivity analysis of temperature fields
Te and Tl with respect to the coupling factor G.
The solution of the problem formulated allows one to determine, among others, the sensitivity

coefficients Ue0 = Ue(0, t) at the irradiated surface x = 0. This information is necessary in order to
solve the task using the gradient method (cf., Eq. (20)).

5. FINITE DIFFERENCE METHOD

To solve the basic and additional problems formulated the finite difference method is adapted.

A staggered grid [3, 11] is introduced (Fig. 2). Let us denote T f
ei = Te (ih, f∆t), T f

li = Tl (ih, f∆t),

Uf
ei = Ue (ih, f∆t), Uf

li = Ul (ih, f∆t), where h is a mesh size, ∆t is a time step, i = 0, 2, 4, . . . , N ,

f = 0, 1, 2, . . . , F , and qfej = qe (jh, f∆t), qflj = ql (jh, f∆t), wf
ej = we (jh, f∆t), wf

lj = wl (jh, f∆t),
where j = 1, 3, . . . , N−1.

Fig. 2. Discretization.

The finite difference approximation of Eqs. (12), (13) using the explicit scheme can be written
in the form

qf−1
ej + τe

qfej − qf−1
ej

∆t
= −λf−1

ej

T f−1
ej+1 − T f−1

ej−1

2h
(28)
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and

qf−1
lj + τl

qflj − qf−1
lj

∆t
= −λl

T f−1
lj+1 − T f−1

lj−1

2h
, (29)

where index j corresponds to the ’heat flux nodes’ (Fig. 1).
Equations (28), (29) can be transformed as follows

qfej =
τe −∆t

τe
qf−1
ej −

λf−1
ej ∆t

2hτe

(
T f−1
ej+1 − T f−1

ej−1

)
(30)

and

qflj =
τl −∆t

τl
qf−1
lj − λl∆t

2hτl

(
T f−1
lj+1 − T f−1

lj−1

)
. (31)

Now, the equations (10), (11) are discretized using the explicit scheme of finite difference method

Cf−1
ei

T f
ei − T f−1

ei

∆t
= −qfei+1 − qfei−1

2h
−G

(
T f−1
ei − T f−1

li

)
+Qf−1

i (32)

and

Cl

T f
li − T f−1

li

∆t
= −

qfli+1 − qfli−1

2h
+G

(
T f−1
ei − T f−1

li

)
, (33)

where index i corresponds to the ’temperature nodes’ as shown in Fig. 1.
The dependencies (30), (31) allow ones to construct the similar formulas for nodes i− 1, i + 1

and then one obtains

qfei−1 − qfei+1 =
τe −∆t

τe

(
qf−1
ei−1 − qf−1

ei+1

)

+
∆t

2hτe

[
λf−1
ei−1

(
T f−1
ei−2 − T f−1

ei

)
+ λf−1

ei+1

(
T f−1
ei+2 − T f−1

ei

)]
(34)

and

qfli−1 − qfli+1 =
τl −∆t

τl

(
qf−1
li−1 − qf−1

li+1

)
+

λl∆t

2hτl

(
T f−1
li−2 − 2T f−1

li + T f−1
li+2

)
. (35)

Putting (34) into (32) and (35) into (33) one has

Cf−1
ei

T f
ei − T f−1

ei

∆t
=

(τ e −∆t)

2hτe

(
qf−1
ei−1 − qf−1

ei+1

)

+
∆t

4h2τe

[
λf−1
ei−1

(
T f−1
ei−2 − T f−1

ei

)
+ λf−1

ei+1

(
T f−1
ei+2 − T f−1

ei

)]
−G

(
T f−1
ei − T f−1

li

)
+Qf−1

i (36)

and

Cl

T f
li − T f−1

li

∆t
=

(τ l −∆t)

2hτl

(
qf−1
li−1 − qf−1

li+1

)

+
λl∆t

4h2τl

(
T f−1
li−2 − 2T f−1

li + T f−1
li+2

)
+ G

(
T f−1
ei − T f−1

li

)
. (37)
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From Eqs. (36), (37) results that

T f
ei =

(
1−Af−1

ei −Bf−1
ei − G∆t

Cf−1
ei

)
T f−1
ei +Af−1

ei T f−1
ei−2

+ Bf−1
ei T f−1

ei+2 +
G∆t

Cf−1
ei

T f−1
li +

∆t(τe −∆t)

2hτeC
f−1
ei

(
qf−1
ei−1 − qf−1

ei+1

)
+

Qf−1
i ∆t

Cf−1
ei

(38)

and

T f
li =

(
1− 2Af−1

li − G∆t

Cl

)
T f−1
li +Af−1

li

(
T f−1
li−2 + T f−1

li+2

)

+
G∆t

Cl

T f−1
ei +

∆t(τl −∆t)

2hτlCl

(
qf−1
li−1 − qf−1

li+1

)
, (39)

where

Af−1
ei =

(∆t)2(λf−1
ei−2 + λf−1

ei )

8h2τeC
f−1
ei

, Bf−1
ei =

(∆t)2(λf−1
ei + λf−1

ei+2)

8h2τeC
f−1
ei

, (40)

Af−1
li =

λl(∆t)2

4h2τlCl

. (41)

It should be pointed out that in Eq. (30) the following approximation of thermal conductivities has
been used

λf−1
ej =

λf−1
ej−1 + λf−1

ej+1

2
. (42)

Summing up, for transition tf−1 → tf at first the Eqs. (30), (31) should be solved and next using
the Eqs. (38), (39) the temperatures Te and Tl are determined but the adequate stability criteria
for explicit scheme must be fulfilled, this means (Eqs. (30), (31))

τe −∆t

τe
≥ 0,

τl −∆t

τl
≥ 0 (43)

and (cf., Eqs. (38), (39))

1−Af−1
ei −Bf−1

ei − G∆t

Cf−1
ei

≥ 0, 1− 2Af−1
li − G∆t

Cl

≥ 0. (44)

In similar way the sensitivity problem described in chapter 4 has been solved. The details of
algorithm can be found in [12].

6. RESULTS OF COMPUTATIONS

The thin gold film of thickness L (L = 100 nm or L = 20 nm) subjected to a short-pulse laser irradi-
ation (R = 0.93, I0 = 13.4 J/m2, tp = 0.1 ps, δ = 15.3 nm – cf., Eq. (5)) [1] is considered. Thermo-
physical parameters are the following [8, 11]: thermal conductivities λl = λ0, λe = λ0Te/Tl, where
λ0 = 315 W/(mK), thermal capacities Cl = 2.5 MJ/(m3K), Ce = γTe, where γ = 70 J/(m3K2),
relaxation times τe = 0.04 ps, τl = 0.8 ps. Initial temperature Tp = 300 K.
At first, the direct problem for electron-phonon coupling factor G = 2.6·1016 W/(m3K) has been

solved using finite difference method under the assumption that ∆t = 0.0001 ps and h = 1 nm. It
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should be pointed out that the calculations have been done for different time steps fulfilling the
criteria of stability (cf., Eqs. (43), (44)) and the results have been practically the same.

In Figs. 3 and 4 the comparison of numerical results with experimental data presented in [1]
is shown. The lines and the symbols represent calculated temperatures of electrons and experi-
mental data, respectively. One can see that the agreement of the results obtained and measured
temperatures is good.

Next, the inverse problem has been considered. In the first variant of computations the simulated

measured data T f
ed = Te (0, t

f ) needed for the identification problem solution have been obtained
using the values of electrons temperatures calculated from the direct problem solution under the
assumption that G = 2.6 · 1016 W/(m3K) (full lines in Figs. 3 and 4). Next, the inverse problem
has been solved using the experimental data presented in Figs. 3 and 4 (variant 2). For all variants
of computations the iteration process described by Eq. (20) has been done for G0 = 0 and K = 10.

Fig. 3. Electron temperature (x = 0) – L = 100 nm.

Fig. 4. Electron temperature (x = 0) – L = 20 nm.
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In Figs. 5 and 6 the results of identification for 100 nm and 20 nm gold films, respectively, are
shown. It is visible, that for the assumed initial value of G the iteration process is always convergent.
It should be pointed out that in the case of experimental data application the estimated values
of electron-phonon coupling factor G are equal to 2.668 · 1016 W/(m3K) for gold film of thickness
L = 100 nm and 2.506 ·1016 W/(m3K) for film of thickness L = 20 nm, respectively. In these figures
the results of identification for data disturbed by up to ±20 K are also presented.

Fig. 5. Results of identification (L = 100 nm).

Fig. 6. Results of identification (L = 20 nm).

7. FINAL REMARKS

The thin metal film subjected to the ultrashort laser pulse has been considered. The thermal pro-
cesses proceeding in the domain considered have been described by the hyperbolic two-temperature
model in which the electron-phonon coupling factor G appears. The inverse problem connected with
the identification of the parameter G has been formulated. The problem has been solved by means of
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the gradient method using the exact and disturbed data as well as the experimental data quoted in
literature. The direct problem and the sensitivity one have been solved by means of finite difference
method. It should be pointed out that the results obtained even in the case of real measurements
application provide to the good estimation of coupling factor G.
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