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A mathematical model describing coupled heat, moisture and salt transport in porous materials is pre-
sented. Salt dissolved in water can be transported due to various mechanisms: dispersion caused by the
salt concentration gradient, and advection resulting from the capillary pressure gradient. The influence
of salt on the physical properties of water such as density and dynamic viscosity is also considered. The
isotherms of water sorption are modified to take into account both osmosis and effects of the salt presence
on the surface tension and contact angle. Salt precipitation in the state of thermodynamic equilibrium
between dissolved and crystallized salt is also considered. Finally, the model equations were discretized in
space by means of FEM and the HMTRA-SALT software was developed. An example concerning a wall
drying process was numerically solved to show the robustness of the code.
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1. INTRODUCTION

The study of mass and energy transport in porous media is very important in many industrial
and environmental disciplines. Abundance of applications can be found in the fields of building
physics (thermal and hygric performance of buildings), petroleum production (oil flow in reser-
voirs), geotechnics (migration of hazardous wastes in soil or saltwater flow), concrete (prediction
of a service life for concrete structures, corrosion of steel bars initiated by compounds dissolved in
porous liquid), conservation of historical monuments (efflorescence on historic surfaces: frescos and
paintings, deterioration of sandstone, etc.).

In this paper the modelling of salt transport in non-isothermal, partially or fully saturated,
porous materials is described. It is assumed that only one salt may be dissolved in water which
fills pores. Salt strongly affects the liquid moisture behaviour. Water properties (density, dynamic
viscosity) depend on the salt concentration. Salt influences hygroscopic sorption and water retention
characteristics by changing the surface tension and contact angle. The hysteresis in the moisture
retention function is excluded here. Salt precipitation and its influence on moisture transport are
considered. Precipitation of a salt may cause crystallisation pressure in interface layer and block
pores, which prevents moisture from moving. During the crystallisation process additional heat is
released. The formulation presented in this paper is applicable in building physics, and after same
minor modifications, in other scientific fields as well.

The derivation of mathematical model describing coupled energy, moisture and salt transport in
deformable porous material and the numerical solution of the governing equations are presented in
this paper. The model, formulated by Gawin and Schrefler [3], Gawin [4], and Lewis and Schrefler [9],
has been extended with the salt mass balance equation. The other equations have been modified
appropriately. This paper focuses on the salt influence upon the transport phenomena in porous
materials. The averaging theory by Hassanizadeh and Gray [5-7] is applied to formulate macroscopic
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balance equations. This is the scale where all physical properties of the medium are experimentally
measured to obtain the constitutive relations.

2. MATHEMATICAL MODEL

Porous material is modelled as a multi-phase medium, which is assumed to be locally in a thermo-
dynamic equilibrium state. The voids of skeleton are filled partly with a liquid phase consisting of
water and dissolved salt, partly with a gaseous phase consisting of dry air and vapour and partly
with precipitated salt. The liquid phase consists of bound water, which is present in the whole
range of water content, and capillary water, which appears when water content exceeds the upper
limit of hygroscopic region — Sssp. The liquid content is described by the degree of saturation —
Sw . Salt appears in two phases: one is the salt dissolved in the liquid phase, described by the mass
concentration — w, the other is precipitated salt, described by the degree of pore saturation with
the precipitated salt — Sj, . The gas is assumed to be an ideal gas. The chosen primary variables of
the model are: gas pressure p®, capillary pressure p° = p& — p%, where p" denotes water pressure,
temperature T', salt mass concentration in the solution w, displacement vector of the solid matrix u,
for two-dimensional problem u = [u;, u,]. The model consists of five balance equations: water mass
balance, dry air mass balance, salt mass balance, energy balance and linear momentum balance.

Using the Volume Averaging Theorem also called hybrid mixture theory formulated by Gray and
Hassanizadeh [5-7] five macroscopic balance equations will be derived. At the macroscopic scale one
can measure all necessary coefficients and materials properties (density of materials, water dynamic
viscosity, permeability, diffusivity factors, characteristic lengths of dispersion) experimentally. There
will be presented only the final form of the balance equations and all appearing coefficients will be
discussed in the article.

The mass balance equation of dry air includes both diffusive (the third term in the L.h.s.) and
advective (the last term in the L.h.s.) components of the mass fluxes, influence of precipitated salt
is also considered,

n %(Sgpa) — BsSgp®*(1 — n) %—f +div (Jg) + Sgp® div (aat) + div (nSgp®ve) = 0, (1)

where ¢ — time, 5 — cubic thermal expansion coefficient of the solid skeleton, v& — gas velocity
relative to the solid skeleton, J ¢ — diffusive flux of dry air, p — density of the phase marked by the
appropriate subscript: w — liquid phase, a - dry air, v — vapour, s — solid skeleton, p — precipitated
salt, g — gas phase; Sy — pores saturation with the gaseous phase characterized by Sg =1-=Sy—5p.

The mass balance of liquid water and vapour, summed together to eliminate the source term
related to evaporation-concentration or adsorption-desorption, form the mass balance equation of
water species,

Gissiior i bowih T
2 (Sw8") + o (556") — Bo(1 — ) (Sgo” + Sup) O
+ (Swp™ + Sgp”) div <2 ) + div (nSwp"v™) + div (nSgp" v&®) + div (Jy) = (2)

where v** — fluid phase velocity relative to the solid skeleton, Jy — diffusive flux of water vapour.

It is assumed in the formulation, that salt influences the water density, dynamic viscosity and
water retention characteristic. The sources or sinks of dissolved salt due to the precipitation process
are also considered (the third term in the 1.h.s.). The mass balance of the salt dissolved in the fluid
phase is expressed as

n %(pwwsw) — Swwp"Bs(1 —n) = + npP —

+ Swwp" div (8

Bt) + div (nSywp“v*®) + div (J) = 0, (3)
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where J — dispersive flux described in the next section.

The enthalpy conservation equation of the multiphase medium, obtained by summing the ap-
propriate balance equations of the constituents includes the heat effects due to phase change of
water and heat released during the salt precipitation process (the terms in the r.h.s.), as well as the
convectional and latent heat transfer,

(PCp)et 68—1; + (prCyv™ + ps CEv®) - grad T — div (At grad T)

= "mvap AI'Ivap = mprec AI"Iprec ) (4)

where (pCjp)ef — effective thermal capacity of the multiphase domain, C}, — isobaric specific heat,
Xet — effective thermal conductivity, AHy,p — specific enthalpy of phase change of the water, AHprec —
specific enthalpy of crystallization process, 7ivap — mass source or sink of vapour related to the
evaporation or condensation process, Thprec — sink of dissolved salt due to precipitation process.

Introducing Bishop’s stress tensor o” [9], called also effective stress tensor responsible for the
main deformation (in soil rearrangement of soil particles), the linear momentum conservation equa-
tion of the whole medium is given by [4, 9],

div (6" — aIp®) + g [(1 — n)p® + nSwp" + nSgp® + nSypP] =0, (5)

where I — unit second order tensor, @ — Biot’s coefficient, g — acceleration of gravity. Pressure in
the solid phase p® is given by the following formula [9],

pS e pg = x:’spc’ (6)
where z7'® means the solid surface fraction in contact with the wetting film, depending on the water
saturation degree Sy of the pores.

3. CONSTITUTIVE RELATIONS

There are many coefficients and expressions describing materials’ properties in Egs. (1)-(5), which
must be defined in order to solve the equations. One can obtain them from constitutive and state
equations as well as from thermodynamic relationships. These properties should be determined at
the macroscopic level from experiments.

The constitutive relationship for the solid skeleton is assumed in the following incremental
form [10] '

do” = D (de — de — dey) (7)

where D is the tangent matrix, € = Bu is the relation between the strain tensor € and the dis-
placement vector u, dep = I3;/3dT is the strain caused by thermo-elastic expansion, deg is the
autogeneous strain increment.

The expression describing dispersive flux in Eq. (3) is needed. This flux results from both me-
chanical dispersion and molecular diffusion [1, 2]. Mechanical dispersion expresses the effect of the
microscopic variation of velocity (direction and value) in the vicinity of the considered point. Molec-
ular diffusion is caused by the random motion of molecules in the fluid from regions of higher tracer
concentration to regions with a lower one. The hydrodynamic dispersion is modelled using extended
linear Fick’s law expressed as [1, 2]

J = —p"D4. grad (w) (8)

where D9 — tensor of hydrodynamic dispersion which may be in indicial notation described as

ng = (alel + nSwD’"°1> dij + (oL — or) Jidj 5

ll
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where D™! — coefficient of molecular diffusion, j — advective flux of liquid phase, ay, — longitudinal
dispersivity, ar — transverse dispersivity, d;; = 1 when 4 = j and §;; = 0 when 4 # j. Longitudinal
and transversal dispersivity may be determined in an experiment or by solving an appropriate
inverse problem.

As a constitutive equation for the capillary water flow and advectional gas flow, the modified
Darcy’s law is applied,

b k Irw 7

v = e [grad (p©) — grad (p®) + p"g], (10)
, Kk

3 = = lerad () + o], (11)

where k - intrinsic permeability tensor, u% — dynamic viscosity of the liquid phase, u® — dynamic
viscosity of the gaseous phase, k™ — relative permeability of the liquid phase, k™ — relative perme-
ability of the gaseous phase. The concept of relative permeability extends the validity of Darcy’s
law to the partially saturated state. Relative permeability may be defined with a sufficient accuracy
as a function of the degree of saturation of pores with an appropriate phase.

For the physically adsorbed water diffusion, the Fick’s law is applied [8],

§"4 = Dy grad (Sw), (12)

where Dy, — bound water diffusion tensor.
The diffusion process in the binary gas mixture consisting of the dry air and water vapour is
described by the Fick’s law [4],

M, M, pY
a_ _JV_, 82" Ve £
Jg Je=p Mg2 D¢ grad (pg> , (13)
where D$ - effective diffusivity tensor of vapour in the air, M, — molar mass of dry air, My, — molar
mass of water, My — molar mass of the gas phase.
Salt dissolved in the liquid phase influences its density and dynamic viscosity, which appear in the
macroscopic balance equations as well as in some constitutive equations. It is assumed that liquid

density depends on temperature, pressure and salt concentration, according to the expression [8]

p¥ = py exp [1 — By (T — To) + Bp(p" — p*™) + Y] (14)

where py — density of the pure water at atmospheric pressure and temperature ' = 273.15 K,
Bw , Bp — material coefficients, y = 0.69 [8]. The liquid dynamic viscosity is described by [10]

p= po(l + 1.85w — 4.1w? + 44.5w3) (15)

where po — dynamic viscosity of pure water, depending on temperature.

3.1. Boundary and initial condition

To solve the model differential equations (4)—(8) together with constitutive relations presented in
this section one must formulate initial and boundary conditions.

The initial conditions specify entire fields of gas pressure, capillary pressure, salt concentra-
tion, temperature and displacements over the analysed domain {2 together with its boundary I’
(I =TIy UI{, m=g,c,w,T,u) at the beginning of the process, t = 0,

Pg=pg, p"=py, w=wy, T=Tp, u=nuy, xef, t=0. (16)
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The boundary conditions can be of Dirichlet’s type on I,

pE(t) =p® only;
po(t) =p° onlg;
w(t) = on I}, ; (17)
T@t) =T on I'r;
u(t) =1 on [y

or of Neumann’s type on I},

(nSgp*v® +J3) -n =¢* on I
(nSwp wv*® +J) -n=g" on I'Y;
(nSwp" V™ +nSgp'vE + J3) -n=q" +¢" + Be(p’ —ps)  onTE; (18)
(nSwp™ V" AHyp — Aes gradT) - n = g% + (T - Teo) anls:
o-n=t on.kd,

where n — unit vector normal to the boundary surface, ¢, ¢%, ¢, ¢*, g’ — fluxes of dry air, water,
vapour, salt and heat, t — imposed traction, a. — convective heat transfer coefficient, 8. — convective
mass transfer coefﬁc1ent pY, — mass concentration of water vapour in the far ﬁeld of undisturbed
gas phase, Tw, — temperature in the far field of undisturbed gas phase.

4. NUMERICAL SOLUTION

In order to solve the formulated equations a computer program has been developed. Discretization
of the model equations in space is carried out using the Finite Element Method [14]. The unknown
variables are expressed by their nodal values and appropriate shape functions,

pB(x,t) = Ng(x) p&(2),
T(x,t) = Nr(x) T(?),
p°(x,t) = Ne(x) pe(t), (19)
u(x,t) = Ny(x)a(t),
w(x,t) = Ny (x)w(t).

In the formulation C!) continuity of the interpolating functions is required.

The variational or weak form of the heat and mass transfer equations, applying also state and
conservation relations required to complete the model, was obtained by means of Galerkin’s method
(weighted residual method), and can be expressed in a matrix form as

C%§+Kx—f (20)

where

Coge Cgc Cguw Cgt Cgu
0 Ccc ch Cct Ccu
0 ch wa th Cwu ’
0 Ci Cuw Cu Cu
0 0 0 0 0
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Kug Kuc 0 K’U,t K'Ltu
X = {I_)gf)C(:JTI—].}T

The coefficients appearing in matrices K;j, Ci;, f; depend on primary variables so that Egs. (20)
are non-linear. They are given in detail in [4, 9].

The time discretization is done by means of the fully implicit Finite Difference Method (backward
Euler algorithm),

5 o = X
P (Xn+1) = Cij(Xn+1) % + Kij(Xn+1) Xnt1 — £i(xn41) = 0, (21)

where i, j = g,c,w,T,u,n — time step number and At - time step length.
The set of differential, non-linear equations (21) is solved by means of a monolithic Newton—
Raphson type iterative procedure [11],

, 0w’
x£L+1

l Bp1 l
Axpyr, Xntl = Xnp1 +BXp 4, (22)
where [ — iteration index.

5. VERIFICATION OF THE MODEL

To verify the formulated mathematical model and to test the developed computer code two bench-
mark problems were simulated. The former is the well-known Henry’s problem, which describes the
advance of the saltwater front in a confined aquifer. Initially the aquifer is fully saturated with
the pure water. Then the transport process is driven by the gradient of water density due to salt
presence on one edge of the aquifer. The latter describes the capillary suction of salt in a water
solution in the sandstone specimen. The experiment was performed in the Fraunhofer Institute for
Building Physics and is described by Rucker et al. [12].

The first one is a two-dimensional problem, commonly used for benchmarking the density-driven
models [13]. Henry’s problem is unique because an analytical solution exists: however, Henry’s
analytical solution is rather controversial [13]. Therefore, in this paper the modified Henry’s problem
is used as the standard benchmark problem.

The idealized aquifer for simulation of Henry’s problem is shown in Fig. 1. The porous domain
is confined by its boundary, which on one side is subjected to a horizontal freshwater recharge.
The freshwater exits toward a sea boundary composed of freshwater overlaying heavier seawater.
All model parameters which are used to simulate the Henry’s problem are: coefficient of molecular
diffusion D™°! = 1.886- 1075 [m2s~!|, intrinsic permeability of porous material k£ = 1.019-10~? [m?],
recharge rate ¢ = 6.6 - 107° [ms™1], porosity n = 0.35 and water properties as described in the
previous section.

After carrying out numerical simulations, when the density field is stationary, the results in
Fig. 2. are obtained. The figure shows the 0.25, 0.50, 0.75 isolines of relative salt concentrations.
The results seem to be satisfactory when compared with the ones obtained by other authors [13].

The second benchmark test concerns suction experiment. The correctness of the presented model
and software was proved by the comparison of the calculated results with experimental data [12].
Bottom surface of an initially almost dry sample, made of sandstone, was put into saturated salt
(NaCl) in water solution. The parameters describing the materials are as follows: sandstone density
p® = 2120kg/m?, porosity n = 17%, intrinsic permeability £ = 1.5-1071° m?, salt diffusion coefficient
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Fig. 1. Boundary conditions applied for solving Henry’s salt-water intrusion problem
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Fig. 2. Relative concentration field for Henry’s problem

D™! — 1079 m/s. The solution was sucked into pores due to capillary forces, which occur in partially
saturated porous materials. The capillary suction in the sample was observed by upwards movement
of saturation front. The salt and water content in the sample was measured using combinations of
two non-destructive techniques: nuclear magnetic resonance (NMR) and gamma ray absorption.
The NMR takes advantage of the fact that the amount of energy absorbed by the specimen depends
on the number of protons in the specimen. Because the hydrogen nuclei in building materials occur
only in the form of water, NMR can be used to measure moisture content. Gamma ray absorption
employs the fact that photons from radioactive source (241Am, 137Cs, 60Co) interact with matter.
The attenuation of gamma ray registers the absorption of photons, penetrating the sample, by water
and salt particles. By combination of these two techniques both the moisture and salt profile may be
determined. The test was performed in Fraunhofer Institute for Building Physics. Both NMR and
gamma ray absorption were used to measure moisture and salt content. This experiment was also
modelled and solved using the developed computer code. The comparison of the results calculated
using HMTRA _SAL with the results obtained in laboratory test is presented in Fig. 3.

Figure 3a shows water, and Fig. 3b salt content profile after 8, 22, 32, 46 hours. As it is visible
in the above graphs, the calculated results are in good agreement with the experimental data.
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Fig. 3. Comparison of calculated results with experimental ones, profiles of (a) water, (b) salt content in
the sample after 8, 22, 32, 46 hours

The presented benchmark problems prove that the formulated model and developed computer

program can be used to simulate the transport of salt and moisture in fully and partially saturated
porous materials.

6. SIMULATION OF DRYING WALL

A process of wall drying, which occurs usually in spring, when water evaporates from a building
element after winter, has been simulated. It will be shown that during the drying of the wall, salt
may precipitate nearby the surface. Therefore, efflorescence on the surface and additional pressure
exerted on the material skeleton can be observed. These phenomena are responsible for damage of
valuable historical surfaces as frescos and paintings.

The wall has been modelled as a 1D domain, 30 cm thick. The material is characterised by the
following properties: porosity n = 0.12, intrinsic permeability & = 3.0 - 1072! m2. Water sorption
isotherms are described by the following equation,

p°(Sw) = a(S5% — 1)171°, (23)

The balance between dissolved and precipitated salt is modelled by the Freundlich type sorption
isotherm given by

Sp = aSyw? (24)
where o and f are material parameters.

Initially, the wall is partially saturated with water, Sy, = 0.69 (relative humidity = 80%), the
concentration of dissolved salt is homogeneous along the thickness of the wall, w = 0.08 [kg/kg].
Temperature is constant during the experiment time, 7' = 20°C. The relative humidity of surround-
ing air suddenly decreases from its initial value till 20%. The water starts to evaporate, but salt
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Fig. 6. The density of precipitated salt

remains in the pores. The boundary condition for the mass exchange is of the third type (Cauchy’s
BC). Water is transported towards the wall surfaces, where it is evaporating. The profile of pores
saturation with the liquid phase is changing during the drying process — Fig. 4. Salt was transported
toward the surfaces of the wall with water. Near the surfaces both the dissolved salt concentration
and the mass of precipitated salt are rapidly increasing.

The profiles of the dissolved salt concentration and the density of precipitated salt are changing
during the drying process — Figs. 5 and 6.
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7. CONCLUSIONS

The mathematical model describing coupled heat, moisture and salt transport in porous materials
was formulated. The governing equations were solved using numerical procedures (FEM, FDM).
The software HMTRA-SALT, which allows us to simulate the transport of heat, moisture and salt
in porous materials, was also developed, tested and experimentally validated, both for full and for
partial saturation conditions.

The developed software may be used to analyze the hygro-thermal phenomena in salted building
envelopes. Salt causes the increase of moisture content, which is responsible for the decrease of
thermal resistance and faster mould growth on the surfaces. Salt dissolved in water and precipitated
in the pores causes efflorescence on the historical surfaces, subflorescence (spalling), which can be
predicted using the presented model. It may also be helpful when the damage of the structures
caused by containments (chloride ions initiate the corrosion of steel bars, leaching which degrades
the strength properties of a material) is assessed.
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