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In the paper presented is an application of the physically based global method (PBGM) to a posteriori
estimation of experimental data error. It is proposed here to build data error measures by spanning
a high quality physically reasonable smoothing fit to data and treat it as a reference field for error
estimation in a very similar way it is done in the postprocessing type error estimates used widely in
FE or meshless methods, where the higher order (superconvergent) solutions are used for building error
estimates (post-processing type of error estimators). The new technique is different from classical methods
of experimental data error estimation as it provides non-statistical estimates of the data error and as such
it may be applied to a wider range of problems, including cases when only a single data set is available (e.g.,
destructive testing). And because the new approach builds the estimates while performing its standard
physically based global-type approximation, it fully integrates other features of the PBGM approach like
data interpolation, extrapolation or differentiation. In the paper the whole PBGM approach is presented,
including the concept of the method formulated for the case of analysis of residual stress in railroad rails,
discretisation with MFDM, then several PBGM a posteriori error estimates are introduced and results for
test problems (benchmark and actual data) are shown.

Keywords: hybrid methods, physically based approximation, meshless finite differences method, smooth-
ing of experimental data, error estimation techniques

1. INTRODUCTION

Present-day experimental testing requires not only sophisticated instruments or qualified personnel
but advanced data analysis techniques as well. Such data analysis techniques are expected to provide
high quality results and guarantee speed and reliability. Their successful application requires that
such techniques offer not only simple data manipulation capabilities, but also have power for data
enhancement and enrichment like smoothing, interpolation and/or extrapolation, differentiation,
mapping, contour lines plotting, automatic quality assessment, error analysis and self-controllability.
Unfortunately, the methods applied classically for analysis and enhancement of the experimental
data are usually oriented on performing one particular task (e.g., there are methods for building
data statistics, but they do not offer interpolating or differentiating capabilities), in majority of
cases they require several (or more) independent data series and if there is a need for performing
several of the tasks listed above (e.g. if one wants to smoothen the data first, then differentiate
it and extrapolate to a region where there were no measurements taken), they are performed as
a sequence of independent actions and with use of independent tools. Those tools are usually not
coordinated with each other and might offer different level of accuracy. In such cases, the quality of
the final results might be questioned.

To meet the challenge and requirements imposed by the modern experimental data processing,
a new methodology was proposed and developed into a stand-alone approach called as the physically
based approximation of experimental data by the global method (PBGM) [7, 10]. It was devised in
such a way that it has all the features required for data enhancement and analysis, offering high
quality, physically based smoothing capabilities and being able at the same time to perform data
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mapping, interpolation, extrapolation, differentiation or integration. Thanks to such a potential it
also lends itself well for providing a posteriori estimates of actual experimental data error [11, 12].
To its credit, all these capabilities are possible without any sort of statistical analysis.

2. PHYSICALLY BASED APPROXIMATION

The term “physically based” (PB) approximation [7] is understood here as a method of building fits
to data that takes into account — in a weighted manner — all information available for the considered
problem. The relations that can contribute valuable information may have theoretical, experimental,
statistical and/or heuristic roots and they may come in the form of either global or local, algebraic,
integral or differential types. Moreover, they may be formed as equalities or inequalities.

There is no one definite way to build physically based approximation so its very concept may
lead to many formulations. In general, all of them may be divided into local or global ones. Local
formulations are those that offer fits only at one point at a time (a step-by-step procedure; see e.g.,
global-local method (GLM) by Karmowski [5, 7]). If a formulation makes it possible to build a fit at
all points of interests in a considered domain at the same time, such a procedure will be called as the
physically based global method (PBGM). The global formulation has an advantage over the local
formulation as it permits easy incorporation of almost any type of theoretical relations, including
boundary conditions of any type — both local and global, as well as all kinds of differential and/or
integral relations.

2.1. The global method

The implementation of the global method is based on a variational stress-type formulation proposed
in [7]. It was posed as a nonlinear constrained minimization problem. The general concept is as
follows.

Find such a distribution of o in the examined domain A which minimises the following hybrid
theoretical-experimental functional & (o, \)!,

min #(o,\) = A7 (o) + (1 - A) #5(0), A€ [0,1], (1)

o

satisfying certain equality

and inequality constraints
B(o) < Af(o), (3)

where Af (o) are admissible error tolerances? and X is a scalar weighting parameter.

The theoretical part ®T(o) of the hybrid functional in Eq. (1), expresses certain varia-
tional /integral demands that the approximated field is required to obey. They might be known
from the physics of the investigated phenomenon or might be a demand of heuristic roots, like for
instance, smoothness of the approximated field. In the considered here case oriented on analysis of

'a typical multi-criteria optimisation formulation is used here
%usually, they are treated as estimates of an average error of the experimental technique applied; they may have
different meaning (local or global) depending on the particular inequality type used
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residual stress in railroad rails [13], the average Karmowski’s curvature of the stress field as [6] was
chosen as the 7 (o),

K%(o)

iy / dA. @)

A

In the Cartesian coordinate system it is expressed as
21 52 2

Pyl o Sy

W om fy  Ov? B2

d¢, (5)

in which a product of the directional second derivatives 68—; of the stress tensor o;;, differenti-
ated along a given vector v inclined under angle ¢ to the axis OX, is integrated over all possible
directions ¢ from [0, 27].3

The experimental part of the functional (o) is chosen as

K k =
By _ 1= o flogg) — f(a3) Tt
?%(0) = E;“ <—Af(ag;.) ,  hi=123, (6)

where f (Uz’-“j) is the approximated stress field to be found at the point &, f (5‘{‘]) is the experimentally

determined stress field at that point and Af (01’-“]-) is a local weighting factor ascribed to that data
point (which reflects a local credibility of the data). The function = is the probability distribution
function that describes statistics of the measurements while the function fis a function mapping
the stress subspace into the subspace of the originally recorded quantities?.

The influence of the theoretical #* (o) and experimental #(e) parts of the hybrid functional
&(o,A) on the final results is weighted out by a scalar parameter A\ which optimal value is not
known a priori and has to be found iteratively.

The equality constraints A(o) = 0 usually express certain physical laws that have to be satisfied
exactly while the inequality constraints B(o) < Af(o) usually come from the experimental area
and in general express data uncertainty (admissible experimental error tolerances). In the considered
here case of residual stress in rails, the equality constraints were chosen as

e internal equilibrium equations (self-equilibrated)

0ijj =0 in A, (7)
e local boundary conditions (residual stress, no loading at the boundary)

oijnj =0  on 0A, (8)

¢ global boundary conditions (total forces and momentum for a self-equilibrated stress field)

/ Ozz dA =0, / oy dA =0, / (02 + Oyz)y — (Oyy + Oy)z] dA = 0. (9)
A A A

In the current implementation the inequality constraints B(o) < Af(o) were imposed as

e local tolerances of experimental error

|#(o5) - £GH)| < AFk), =12 k=LK, (10)
3thanks to this definition the Karmowski’s curvature is invariant with respect to the rotation of the coordinate
system
“stress field is directly immeasurable; in experimental studies, there are other quantities (displacements, strains,
etc.) that are determined so for the stress type formulation developed here a mapping functions between the stress
and the other subspaces is required
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e global tolerance of experimental error

[f(a%) L f(ggj)] < Ao )giobal 1 oy
fg=t = [Af(o’fj)]

where A f(o)global is bound to an average non-dimensional estimate of the accuracy of the experi-
mental method applied during testing. In Eq. (11) the probability distribution function 5 of Eq. (6)
has been substituted by its second-order polynomial approximation, which leads to a least square
type formulation of the experimental part.

The general formulation (1)-(11) given above lacks, at the moment, any sort of procedure for de-
termining a proper value of the weighting factor A. Several solutions to this problem were considered
in [7], in the current implementation adopted was a two-stage optimization procedure:

Stage I: For a given value of the parameter A, find the stationary point o(\) of the functional (1)

min &(, X) = AT (o) + (1 = N)®%(0), = Xxefo,1], (12)

satisfying exactly all equality constraints A(e) = 0, Egs. (7)—(9).
Stage II: Find

min), A€ [o,1], (13)

for which the A-dependent solution family for o () fulfils one (or more) of the constraints B(o) <
Af(o) in the form of equality, and none of the rest is violated at any other experimental points k
of the considered domain A.

From the numerical point of view, the process of arriving at the final solution is iterative. Pa-
rameter ) is being searched in the interval (0,1)° in such a way that it is initially assumed to be
equal to a starting value A\pand then the Stage I minimization problem (1) is solved. If for this value
inequalities (10)—(11) are not violated, it is increased by an assumed value of AX. Otherwise, A is
reduced by Aland the iteration is carried out again®. The procedure breaks off when one (or more)
of the inequality constraints (10)—(11) is satisfied in the form of equality at a point or a set points
simultaneously with an assumed violation tolerance 7.7

2.2. Discretisation of the global method

Discrete formulation of the global method was obtained by application of the meshless finite differ-
ence method (MFDM) [10, 14]. This choice was driven by the fact that it was considered to be the
best approach to suit the needs of transformation of the variational formulation, Egs. (1)-(13) into
a numerical procedure. The following considerations list competitive advantages of a meshless finite
difference method over other methods:

Sthe interval is open as A = 0 or A = 1 would deprive the hybrid functional (1) of one of its mutually counter
playing parts, either theoretical (A = 0) or experimental (A = 1)

Sof course, after each increase or decrease, the new value of ) is checked whether it still belongs to the admissible
interval (0, 1); if so, the step AX would be automatically diminished by a half. It would be also diminished by a half
if after performing the Stage I calculations and examining the constraints (10)-(11) there was a change in constraints
violation status (i.e. if none of them was violated for a previous value of the A, but after increase by Alone or
more has been violated or, in opposite case, if the parameter A has been decreased due to a former violation of a
constraint(-s) and this decrease has changed the violation status into the non-violation state)

"a small number, usually set to 0.001 in actual computations
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1. from the computational point of view the global method requires a non-standard treatment as
it involves operation on two separate grids of points, i.e., experimental, at which measurements
were collected and over which there is little control®, and computational, at which approximation
process is being performed. Those grids are usually spatially not related to each other, have
different densities, certain points that belongs to one of those grid may fall very close to locations
of points of the second grid, but there might be areas in the computational grid where no
experimental data was collected. The finite element approximation with its stiff topological
requirements and difficulty in covering the area with a second, often topologically impaired,
mesh does not seem to be compatible with the PBGM formulation;

2. the MFDM is very flexible in discretising both local (strong) and global (weak) formulations
and different kind of theoretical relations can be easily incorporated into the final set; again,
the way in which the FE approximation is built may limit the freedom of mixing various rela-
tions/requirements that may seem to be valuable for analysis of data;

3. the MFDM is very flexible in providing derivatives of the analysed fields of almost any order and
with respect to this, it again has a clear advantage over the FE approach;

4. the MFDM approach employs the MWLS-type approximation for building the FD operators
which is in a natural way compatible with the least squares approach for building the experi-
mental part of the hybrid functional (1) and the global constraints (11).

Of course, similar flexibility as the MEDM have other meshless methods but their algorithms are
often more elaborate and CPU-intensive so in the case of iterative procedure solving many times
possibly large problems such formulations did not seem to be the best.

The starting point for the discretisation process is formulation of the physically reasonably finite
difference (FD) operators?. In order to do that the stress function (2D elastic case considered) was
assumed as a polynomial of an appropriate order!?,

F(z,y) = a+ bz +cy +dz? + exy + fy> + - +py* (14)
and then the in-plane stress components oy , Oyy , 04y are classically expressed as
0’F 5 0’F B 0’F
Uzzzgy?’ Uyy—Wa Uzy——am—aya (15)

which leads to the following approximations for the stress components,
Ozw = 2f + 2iz + 65y + 2ma? + 6nzy + 12py?,
oyy = 2d + 69z + 2hy + 2my® + 6lzyz + 12kz”, (16)
Ozy = —€ —2hz'— 24y — 3lz2y — dmay — 3nzy?.
Now, let us build an error functional ¥(d, e, f,...,p) which will evaluate, in the moving weighted

least squares sense [9], the error of approximation at the consecutive nodes of the star for all stress
components at those nodes,

Nstar

Ude,o..,p) = Y whlpr) [(oh, — 55)? + (o, — 55,)7 + 200k, - 78,)?) (17)
k=1

8as it is delivered by the experimental team and the data analyst may have no chance to interact with them
when this grid is created (or particular features of experimental technique used may limit flexibility in creating the
experimental grid)

by physically reasonable FD operator it is understood here that the operator being built is to obey part or all
of the physical laws valid for the considered problem; the demonstrated here FD operator will satisfy the internal
equilibrium equations in the plane stress case

10here the case of 4th order stress function approximations will be shown but the PBGM code implements even
higher order polynomials



598 J. Magiera

where Ngtar is the total number of nodes in the considered star, w is a weighting function dependent
on the distance py between the central node and the k-th node in the star, 5%, is the value of a stress
component measured experimentally at that node k and of; is the value of a stress component
evaluated at that node by approximation spanned from the central node. The weighting function
was chosen as an inverse distance function,

i e
w?(pr) = (p—2> = [(zx — 20)® + (yx — 0)?] " (18)
k
Minimization of the functional (20) with respect to the unknown parameters u” = (d,e, f,...,p)
leads to a set of linear equations
Au=B (19)

where A is a matrix depending only on the relative — with respect to the central node — coordinates
of the consecutive nodes of the star and B is a matrix depending also on the values of the nodal
stresses afj . It is worth emphasizing that the nodal values are not known yet and that in fact they
are the basic unknowns for the whole problem. Solving formally the set (19) we obtain

u=A-iB (20)

where the matrix A~!B is the FD operator for the considered central node. It makes it possible
to express locally the value of a stress component and its derivatives (up to the 2nd order) by the
elements of the vector B, thus by the nodal values of the stress tensor afj .

For instance, the 2nd derivatives of the stresses at a Gaussian point G, required for performing
integration of the curvature (5), will be expressed as

G _ G _

Ozzzz = 4M, Ogz,zy = 67, el yy = 24p,
G S G 5 G B

Oyy,zz = 24K, Oyy,zy = 61, Tyyyy = 4M, (21)
Gl GF wcais G = 15

Ogyax = —61, Ogyoy = —4m, Ogyyy = —67.

The next step performed is discretisation of the hybrid functional, Eq. (1). After building the
physically based approximation at all points of interest of the considered domain, it is possible to
express the hybrid functional in its discrete form. To simplify further formulae let us denote

21=2f, z20=2, z23=6j, z4=2m, z3=3n, 2z =12p,

(22)
2p=2d, 23=06g9, 29=2h, 20=12k, z11=3l, ziz=e.

The curvature functional, Eq. (5), may be then expressed as

1 il
T G &; Gi 4
%, = pzzw [_( Tijwa mm+auyy fyyy) +4afym uyy"' zamwy mzy] det Je
e =1
1 Yo 1 2 2
- 2SS s[5+ (49) ¢ ()]
P e=1 =1

3 \ 2 : . ; ;
+§ l:(ngz) Es (sz) ] +zZ’G*z§G’ +z§G’zflG1 -f—zflg 2 }detJ (23)

and the experimental functional (6) as

2
k =k
o° — 22: 1 i [f(aij) - f(aij)] Czy tu @ w r-niu (26) nie powinien byé minus?
53 e O (e '

k
L& D) - @I £ - £GP R + £5E))
B Z{ AfEE T AJGE? T ATWR?
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In the subsequent steps, in Eqs. (23)—(24) the z; parameters at the Gaussian stations G; are
expressed by the nodal values of the stresses derived from the FD operator (20),

szi i A;le (O.;Gi) (25)

and the discrete form of the hybrid functional is obtained as

Npo 1
1 N2 6\ 2 e . 87 emys
P(o,A\) = A EZZW [S(zZG’) +5(Z5G’) +5<z1101> +§(z6G1>
e=1.i=1
+ ; (szGi)Q + zZGingi + zgc"zflci + zZGizfoci} det Je} (26)
LS - 1@ | [ - 1G] [Fh) + £
4 A)Kkzl{ AFGEE T AGL? T AFGE?

Imposing the necessary condition of the minimum of the functional (26) with respect to the
unknown nodal values of the stress tensor o, a linear set of equations is obtained

e =T, (27)

As far as the local and global boundary conditions are concerned, Egs. (7)-(9), they have been
already partially satisfied by selection of the physically reasonable FD operators (equilibrium equa-
tions, Eq. (7)) and the rest of them, i.e., local boundary conditions, Eq. (8), and global equilibrium
equations, Eq. (9), will be imposed by selection and elimination of a suitable number of the depend-
ing variables. A standard procedure of static condensation, performed after regrouping the vector o
to separate dependent and independent variables, will lead to the final set of linear equations ex-
pressed as

0

TTHTo;q + H [ =

] +rf'T=0 (28)

where T is a transformation matrix expressed as

- (29)
—DgelpDind '

T=

Solution to the set (29) will provide the A-dependent stress vector ojnq that fulfills all requirements
imposed by internal and external equilibrium equations (7)-(9) while the two stage procedure,
Egs. (12)—(13), will guarantee that the approximated field is smooth and close to the experimentally
measured values.

2.3. Estimation of a posteriori error of experimental data

The methods for a posteriori analysis of error are in particular focus in the field of the computational
mechanics for more than twenty years [15] and provided a broad range of techniques suitable for
this purpose. Estimates they provide are based on various mathematical foundations that mainly
come from functional analysis and theory of approximation. Many different approaches emerged like
e.g., implicit and explicit type residual methods, interpolation methods, post-processing methods
and many other [1, 8]. They were successfully applied in the area of the FE, FD, BE and meshless
methods leading to formulation and development of adaptive approaches. In opposite, in the area of
experimental data analysis methods there is no matching wealth of such techniques. In fact, there
are almost no such methods at all. The only methods used for years are of statistical nature [2] but
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they deliver estimates of rather probability of an error than the value of the actual error. Moreover,
the average estimates they deliver are often valid only for an experimental technique or the analyzed
data series on the whole but on the local (point) level their analyses might be not valid.

Seemingly, there are two sources of difficulties that cause such a scarcity of a posteriori error
analysis techniques for experimental data:

e error may reach almost any arbitrary level;
e it is unrelated to any rational factors or is related to random factors that are uncontrollable.

Those two sources of difficulties prohibit a simple porting of a posteriori error analysis techniques
developed within the field of computational mechanics. In the case of experimental data the error
estimates cannot be related e.g., to the characteristic size of an element h, approximation order p,
jumps of certain derivatives j along cross-element boundaries, there are no superconvergent points
present, there are no denser and coarser grids available for reference and even if they were, errors
on a dense grids would not necessarily be lower than on the coarse grid.

It also very important to notice that application of the statistical methods is limited to cases
when it is possible to repeat experiments for a reasonable number of times so as to collect many
independent data series to build data statistics. But if either time/cost factors restrict such an
approach or experiments are destructive and the sample is completely destroyed during examinations
- this methodology simply cannot be applied. Also, classic least square or polynomial regression
techniques [2] have their limits as they are usually formulated in such a way that the approximation
base is chosen globally in the whole considered domain. This works perfectly if the investigated field
conforms to the assumed base function class but might lead to significant errors if there is no such
a conformance.

For these reasons a dedicated approach to estimation of experimental data a posterior:i error is
required. The basic idea that lies at the foundations of the proposed here technique is to resign
from statistical modeling in favour of building high quality, physically reasonable fits to the data.
Obtained in such a way enhanced field will serve as reference solution for estimation of error in
a similar way that the postprocessing type methods [8, 15] use higher order solutions for error
estimation.

The a posteriori estimates of experimental data error might be required for two purposes:

e to find direct local error estimates at consecutive data points that will give a measure of error
present at those points, expressed preferably in the physical units valid for the considered field!!,

e to establish relative credibility of the data within a data set (called also here as internal data
credibility profile).

The first of the purposes is clear and does not require explanation but the latter might not
be straightforward at the first look. To explain it, let us go back to Eq. (6) and examine the
meaning of the denominator Af (afj) It was called then as a local weighting factor expressing
relative credibility of the data at an experimental data point k£ and was introduced to the PBGM
formulation for discrimination of “better” or “worse” data points. The more credible data points
should have bigger impact on the resulting fit to the data than those less credible and the way to
enforce this stipulation is simple — by introduction of local weighting factor ascribed to each data
point — but it requires a relative measure of data quality, not necessarily expressed in physical units
like in the case of direct local estimates of error but serving for measuring relative data credibility.

As for the first type, the simplest and most natural way of deriving such a direct local estimate
is to use the GM smoothened field as a reference solution for measuring error and performing the
operation on the point-by-point basis as

ASBCCU’ij = |Gij g a-:ljl ) 1= 1,27 .7 = 17 2) (30)

HMPa for the case of residual stress in rails presented in the paper
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where 55,1 =1,2,5 = 1,21s experimentally measured stress field, and oy is its respective physically
based fit, and the upper index SBCC in ASBCCUU is an acronym for stress based, component-by-
component error indicator.

The second type of error estimates required for building relative data credibility within a data
set are proposed here as

e the relative local curvature error indicator ARLC &

2 T
ric,, _ |F(@) & ()|
Ao = ) (31)
where x2 is Karmowski’s curvature of the tensor field [7], or
e the relative local gradient error indicator ARLGUU
ARLG g — lgrad (i) —grad (i)l _ 15 ;19 (32)

|grad (0i;)|

Both the indicators (31) and (32) are devised to reveal the areas/points where the most mtensive
physically based smoothing took place. Because first and second order derivatives of the stress field
are used in those definitions, but not the values of the stresses themselves, the estimates built with
their help with ease separate areas of rapidly changing stress components (i.e. where smoothing is
intensive) and make it possible to built the internal data credibility profile without finding the final
value of the parameter A\'2. The ARLC 5 indicator provides a combined estimate for all three stress
components at a point while the ARLGaij indicator works in a more subtle way, discerning the
differences between the stress components. It is perhaps worth pointing out here that, theoretically,
the SBCC derived error estimates might also serve for this purpose but one must be aware of the
fact that the values of the stress components are strongly dependent on the current value of the
parameter ), so to find a good estimate of the internal data credibility profile it would be required
that the final fit to the data is known, which in return calls for a proper internal data credibility
profile.

3. EXEMPLARY RESULTS

The PBGM approach was under development for the last several years and many tests and bench-
marks were performed for its validation and tuning. Here only exemplary results will be recalled for
illustration of the performance of the data smoothing/enhancement technique. A benchmark case
for generated pseudo-experimental data will be shown first and then error analysis of the nowa-
days classic in the field J.J. Groom [4] strain gauge data for residual stress in railroad rails will be
performed.

3.1. Tests for elliptic plate
Firstly, let us consider an elliptic plate with a stress field generated by the stress function approach.

The stress function has the nonlinear form as

aiipc i 1- cosf;ib(x,y))

(33)

120, in exchange, the final fit to the stress field
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with the degree of nonlinearity controlled by the parameter ¥. The function b(z,y) in Eq. (33) is
the function describing the boundary of the ellipse,

b(z,y) = <£>2 + (1)2 =1, az =1, ay=2. (34)

Qg ay

In this benchmark, the pseudo-experimental data was generated with the use of the function
F(z,y), Eq. (33) over a random set of 50 data points and was further manually perturbed, but
only for one stress component and at only one point. In Fig. 1 an intact data is shown, in Fig. 2
after perturbation was introduced. The stress component which was perturbed was the o, , the
coordinates of the point of perturbation were P(0.116666E+01, —0.277885E—01). The original value
of o, at that point was ca. 1.0401 and it was disturbed to ca. —4.489.

A smoothened with PBGM solution is shown in Fig. 3, in Fig. 4a a map of exact error is plotted
whereas in Fig. 4b the PBGM SBCC error estimate. As it may be seen, the PBGM-derived error
estimate is excellent all over the elliptic area, even though it exhibits minor fluctuations visible in
the plot, Fig. 4b. What is important here — and was the main reason for performing so simple a test —
is the observation that the PBGM procedure, performing pretty complex constrained optimisation,
worked with very high precision in the area of error and left the rest of the filed almost intact, save
the slight fluctuations (noise) in the patterns, but they are of negligible amplitude.

Quantitative analysis of error renders absolute error as 5.53 (exact) in opposite to 5.49 esti-
mated by GM-based error estimate procedure. Relative values of error are 531.79% vs. 527.85%,
respectively, thus the GM procedure estimate missed the exact value by 0.74%.

1.00 L 1 L Il | | | 1.00 |

0.50+ r 050—/ -
0.004 0.00+
-0.501 -050—\
-1.00 T -1.00
2,00 -1.50 -1.00

2.00 -1.50 050 000 050 1.00 1.0 2.00

Fig. 4. Exact (a) and PBGM (b) error estimates for o, stress component

3.2. Tests for triangular plate

The first test was simplistic, it demonstrated that the PBGM smoothing may constitute a base
for building the reference fields and further post-processing type, non-statistical experimental data
error estimates, but the assumed simplifications made this test afar from usual experimental data
quality and its error distributions. Now let us consider a more “standard” data behaviour, where all
stress components over a triangular domain was subject to randomisation with amplitude of 20%.
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Considered is a triangular plate for each distribution of the stress function was assumed as
a fourth order polynomial,

F(z,y) =3z* +y* - z2y? — 3z (35)
The stress components are thus defined as
Ope = 12y° — 212, Oyy = 3622 — 2y — 6y, Ozy = 61 — dzy. (36)

In Fig. 5 the patterns of the o, stress component are shown!?, after randomization they are
portrayed in Fig. 6, PBGM smoothing renders them back as shown in Fig. 7. In Fig. 8 distributions
of the exact error (Fig. 8a) and its PBGM estimate (Fig. 8b) are shown. The PBGM error estimate
shows a very good agreement with the exact error distribution in the internal parts of the domain
(they differ by 3-5%), suffering only at the boundaries, where it misses the exact error measure by
10-12%.

)

7%
1%

SN S
XU XN22R
v\
:o'ell,'o"o‘({{"l\\\\\ >
QU<
R

Fig. 8. Triangular plate. Exact (a) and PBGM (b) error estimates for oz. stress component

3.3. Tests for a railroad rail data

The J.J. Groom’s [4] data for rails has been considered over many years as the most accurate and
credible source data for distribution of residual stress in railroad rails. Results were obtained by the
strain gauge technique in the course of destructive testing performed by removal of two samples out
of each rail specimen:

e a thin slice called as Yasojima—Machii samples ,

e a ca. 0.5m long Meier section, Fig. 9.
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Fig. 9. J.J. Groom’s experimental setup [4]

The presentation of the results will be done for the 2D data collected while dicing the Yasojima-—
Machii slice for specimen denoted as S1 [4].

In Figs. 10-12 presented are the original Groom’s measurements for the o4, 0y, , and the Ozy
stress components'4. The PBGM smoothened patterns of those stresses are presented in Figs. 13-15
while in Figs. 16-22 presented are the SBCC (Figs. 16-18), RLC (Fig. 19) and RLG (Figs. 20-22)
error estimates, respectively. .

A striking feature of the stress patterns portrayed in Figs. 10-12 is presence of separated data
points at which the patterns form bull’s-eyes, visible in the surface plots as peaks or dents. At certain
points magnitude of those effects is comparable or even greater than magnitude of the stress at the
neighbouring points, as it may be seen e.g., in the o,, patterns in Fig. 10, where in the lower right-
hand side area of the railhead the stress state is equal to ca. 8-10 [ksi| (i.e., ca. 55-70 [MPa]), while at
two data points it was rendered at ca. —63 [ksi] (—430 [MPa]). Such a sudden (more than 500 [MPal])
change of the stress magnitude registered between two data points distant only by 6.25 [mm)] [4] and,
moreover, in the area of the railhead located very afar from the running thread, is very improbable
and may be a strong indication of high experimental error (during other examinations performed
for rails in many labs — see references in [10] — such effects were not observed; another reason which
justifies the statement about errors in the Groom’s data is that usually the rail horizontal stress o
exhibits a great deal of symmetrical behaviour, which is not the case of the Groom’s data).

The PBGM smoothened patterns of the rail in-plane stresses portrayed in Figs. 5-7 present pretty
different image. The isolines are now smooth, no cusps or bull’s-eyes are present. The horizontal
stress 0, regained its symmetry, being rendered as tensile interior and compressive exterior. The
vertical stress oy, forms now a kind of triangular tensile region in the midst of the head and bands of
strong compressive stress located at the vertical sides of the head. The extreme stresses are located
on the gage side of the rail. The shear stress component o,, was rendered with its characteristic [10]
anti-symmetrical behaviour (as regards areas of tension and compression).

Analysis of error estimates data in Figs. 16-22 clearly proves that there are two subsets in the
original strain gage data: the first one of good quality that produces flat areas in the surface plots in
Figs. 16-22 and the second one, counting several data points, where errors are very high. They form
several very steep peaks in the surface plots. As it may be seen, all the proposed error estimates
(direct SBCC error norms and RLC/RLG error norms) were able to spot those data points correctly.

3for the sake of brevity, the other components were again skipped
"in order to have ability of direct comparisons with the original Groom’s work, the original units [ksi] used in [4]
were preserved; please note that 1 [ksi] = 6.9 [MPa]; all data is given both in American ans SI units
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obtained with neutron diffraction technique [3]

After the erroneous data points are found one may either remove this bad data or leave it in
the data set but ascribe weighting factors that would diminish their influence on the final results.
In case of the PBGM smoothened data presented here in Figs. 13-15 the first option was explored.
Happily, removal of those several bad data points did not create any obstacles for the data reduction
routine, which was able to restore (approximate) the stress components in a coherent with other
data points way. That this was a correct decision, it might be visible when one compares data in
Fig. 13 to the stress patterns in Fig. 23, which demonstrates the o, stress obtained for a rail in an
independent examinations performed with the neutron diffraction technique [3].

4. CONCLUSIONS

A new original approach to a posteriori analysis of experimental error was introduced and applied to
a series of data sets. Thanks to its formulation that makes use of the physically based approximation,
it provides means for estimation of error without building data statistics (no repetitive experiments
required) thus it may lend itself well — though is not limited to - for smoothing and/or error
analysis of data obtained from destructive testing. The tests for the exemplary strain gauge data
showed its potential for processing real experimental data, providing estimates that may serve in
real applications. The PBGM error estimates make it possible not only to find erroneous data points
but to build its credibility profile, which make it possible to extend further the approach into smart
smoothing procedure that employs smoothing with a localized, error controlled intensity.
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