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Frost heave in soils is a common phenomenon in cold regions, yet the previous efforts toward its math-
ematical description did not result into a generally accepted model. The model described in this paper
is based on the concept of porosity rate function, which characterizes well the heaving phenomenon in
variety of soils. The concept is simple enough so that it can be easily incorporated in numerical methods.
The description of the model is followed by brief considerations of energy transfer and phase change.
Calibration results are shown, and the model is implemented to solve a practical boundary value problem.
The influence of thermal insulation on the performance of a retaining wall with frost-susceptible backfill
is discussed.
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1. INTRODUCTION

Frost heaving and thawing contributes to significant damage of transportation infrastructure ev-
ery freezing season. First systematic research focused on frost heaving of soils was published by
Taber [19, 20], and Beskow [1]. However, intensive efforts to rigorously describe the process of soil
freezing and the related frost heave did not start until the 1980’s. These efforts were preceded by
the capillary theory of frost heaving, based on the Laplace surface tension equation. While the
simplicity of the capillary theory was appealing, the experimental tests did not confirm its validity:
heaving pressures during freezing tests were found to be significantly larger than those predicted
by the theory. There was also evidence that ice lenses can form within frozen soil at some distance
from the freezing front, which could not be explained by the capillary theory.

The secondary frost heaving mechanism was proposed by Miller in 1978 [13]. This frost heave
theory is based on a regelation mechanism, which causes the movement of particles embedded in
ice subjected to a temperature gradient. A key experiment presenting the migration of particles in
ice up the temperature gradient was shown by Romkens and Miller [16]. Pore ice and ice lenses are
treated as one body in the secondary heave mechanism. Due to kinematical constraints, the mineral
(solid) particles do not move up the temperature gradient, and thus it is the ice which moves down
the temperature gradient, the relative particle-ice motion being the same. This mechanism gives
rise to secondary frost heave, and its mathematical description is often called the rigid ice model.
Attempts at practical calculations of frost heave using the rigid ice model can be found in papers
by O’Neil and Miller [14, 15], Holden [6], and Holden et al. [7].

The rigid ice model received the most attention in the literature, though other useful models can
be found (e.g., Konrad and Morgenstern [8], Guymon et al. [5], Shen and Ladanyi [18]). A common
characteristic of the aforementioned models is that they consider the process of freezing at the
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microscopic level (i.e., they consider formation of a single ice lens). The Clausius-Clapeyron equation
is utilized to relate pressure to temperature at the water-ice interface. Little attention has been paid
to constitutive modelling of soils, where frost susceptibility is defined as a property of the mineral-
ice-water mixture. Such a macroscopic-level approach to modelling of frost susceptible soils was
suggested by Blanchard and Frémond (2], and Michalowski [10, 11]. The same concept is used
in this paper, though with a modified function representing the rate of porosity increase during
freezing, in order to obtain a more realistic response of the soil to freezing. This model is described
in more detail in a recent paper by Michalowski and Zhu [12], and here some aspects of application
of this model to solving an engineering problem are shown.

As the macroscopic approach to modelling frost heave in soils is not widely accepted, the phi-
losophy behind this approach is presented in the next section. The following section presents the
porosity rate function and the unfrozen water content in frozen soil. Fundamental equations of the
model are then presented in Sections 4 and 5, followed by calibration of the model, its validation,
and simulation of freezing of a frost-susceptible backfill behind a retaining wall. The influence of
thermal insulation on the performance of the retaining wall is also discussed.

2. PHILOSOPHY OF APPROACH

Of all frost heave models, it is the rigid ice model that received most attention. However, the cur-
rent stage of development of this model allows only one-dimensional freezing simulations. Like the
model based on capillary action, the secondary frost heave model is based on considering the mi-
cromechanical processes, and the heaving effect is obtained as an integral of the growth of all ice
lenses in a frozen column (one-dimensional process). The term "micromechanical" here pertains to
processes taking place among the constituents of the skeleton-ice-water mixture. Macromechani-
cal (or global) effects are those seen as the response of the entire mixture (e.g., average porosity
increase).

Constructing a model for predictions of frost heave based on the summation of the actual mi-
cromechanical processes will lead to realistic qualitative results. As to the quantitative results, the
micromechanical approach may not necessarily be the most reliable one. This has certainly been
true in the mechanics of solids, where phenomenological models based on introducing material pa-
rameters at the macroscopic level were far more successful than micromechanics-based models in
predicting such global quantities as displacements or limit loads. The simplest examples of consti-
tutive (of phenomenological) models are linear elasticity (Hook’s model), and the model of perfect
plasticity. As opposed to micromechanics-based models, they cannot explain why the deformation
is elastic (or plastic), but they can be quite accurate in determining the magnitudes of strain or the
stress state, given material properties defined at the macroscopic level (Young’s modulus, Poisson’s
ratio, or the yield condition and the flow rule). Micromechanical models can explain the nature
of the deformation, but the quantitative predictions are often orders of magnitude apart from the
experimental results.

There is no reason to doubt that a phenomenological model formulated at the macroscopic
level can be constructed for frost susceptible soils so that the increase of porosity due to ice lens
formation can be modelled. While the material functions defined at the macroscopic level do not have
to be derived from microscopic processes, their mathematical form must reflect the experimentally
observed effects. For a frost susceptible soil model this effect is the increase in volume which will be
modelled by a porosity rate function, n, as suggested earlier (Frémond [3] and Michalowski [10, 11]).
Thus the ice growth will be described as the average increase in porosity (or volume) of the soil
element, rather than as separate ice lenses growth.

The frost heave itself is a process which occurs when the frost susceptible soil is placed under
certain conditions. Thus, frost heave can be calculated as the solution to a boundary value problem
in which the soil is subjected to specific initial and thermal boundary conditions. While frost sus-
ceptibility is a material property, frost heave is a process related to soil mass and specific boundary
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conditions rather than to a soil element. In this sense, frost heave itself is not a property of the
material, but frost susceptibility is.

To formulate and solve the problem of frost heave for specific thermal and hydraulic conditions,
constitutive functions in addition to porosity rate function n need to be adopted: the unfrozen water
content in frozen soil, the heat transfer and mass flow laws, and the rule describing deformation
(and/or yielding) of the soil skeleton and the frozen composite. These equations, along with the
fundamental principles of energy, mass, and momentum conservation, form the set of equations to
be solved for given initial and boundary conditions.

Related to the approach proposed is the interpretation of the freezing soil as a heat engine.
Heaving soil performs mechanical work against external loads (gravity and boundary forces), and
also performs work which is either dissipated (e.g., during irreversible deformation of the mixture)
or stored as elastic energy (in the mineral skeleton). Thus it can be argued that part of the latent
heat released when water freezes is transformed into mechanical work by means of a heat engine
of a very low efficiency. While the temperature gradients at the macroscopic level are considered
finite within the freezing soil, the specific conditions for the heat engine (thermal discontinuity)
must exist at the microscopic level.

As all functions are formulated at the macroscopic level, this approach does not utilize the
Clausius-Clapeyron equation which is used in the micromechanics-based approach (analysis of a sin-
gle ice lens formation).

3. FUNDAMENTAL FUNCTIONS

The formation of a single ice lens is not considered here; rather, the ice growth is modelled as
an increase in porosity in a finite volume of the soil. Consequently, the fundamental function that
describes the ice growth is selected in a form of a porosity rate relation. This function captures
the fundamental features of the process; it describes an intense growth of porosity at temperatures
slightly below freezing, and decaying growth with the further drop in the temperature. The core of
the porosity rate function, n, has been selected in the following form,

S P T\ T-T\’

n = Nm (Tm——> exp 1—( T )
where 7, is the maximum porosity rate, and T), is the temperature at which this maximum occurs;
To is the freezing point of water. This function has all the necessary characteristics of a heaving
soil, and its graphical representation is shown in Fig. 1.

The function with the higher peak (Fig. 1) is typical of silts, which heave very intensely at a
temperature slightly below freezing, but quickly taper off as the temperature drops down. Clays, on
the other hand, can heave at lower temperatures, but the intensity of heaving is not as high (the
dashed line in Fig. 1).

The function in Eq. (1) is not sensitive to the temperature gradient, and is not affected by the
stress state. Therefore, two multipliers are now included with this function to account for both the
temperature gradient and the stress state,

(1)

Lir T\ T-To\*| |% 5
h=hm< T 0) expll—( T 0) Igaql’lexp<—@). (2)

The quotient Iaa—ﬂ /gr represents linear dependency of the porosity rate on the temperature gradient
in the direction of the heat flow (direction ). g7 is a temperature gradient at which n,, is evaluated
("m/gr is a constant material property for a given soil). The last factor in Eq. (2) includes the
influence of the stress state on frost heave. Experimental data on the influence of the stress state
on frost heave are scarce. However, it is intuitively understood that the retardation of frost heave
is caused predominantly by the normal stress in the direction of heat flow within the freezing
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Fig. 2. The influence of the stress state on the porosity rate in freezing soils

zone (frozen fringe), with some contribution of the normal stresses in the other two perpendicular
directions. Consequently, it was decided to choose a function of the first invariant of the Cauchy
stress tensor. This retardation coefficient is graphically represented in Fig. 2.

The second constitutive function important in modelling of freezing of soils is the unfrozen water
content in frozen soil. When the freezing front moves into soils such as clay or silt, not all water
changes phase. While the amount of unfrozen water drops down with the decrease in temperature,
its presence plays an important role in the energy balance as the latent heat is released from freezing
soil even at temperatures well below freezing point of water. The function adopted for describing
the unfrozen water content is given as

w=w"+ (0 —w")

ea(T—TO)

3)
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Fig. 3. Unfrozen water content in frozen soil

and it is presented graphically in Fig. 3. Not all water in soil freezes at the freezing point of water Tp;
rather there is a discontinuity at Tp, and the liquid water content drops down to some amount of w,
and it then decays to a small content of w* at some reference low temperature. This relation is
graphically represented in Fig. 3.

The functions in Egs. (2) and (3) are the fundamental functions for simulating freezing in frost
susceptible soils.

4. POROSITY GROWTH TENSOR

The porosity rate function in Eq. (2) yields a scalar quantity. However, during freezing the soil does
not grow in an isotropic manner. In fact, there is ample experimental evidence that ice lenses grow
predominantly in the direction of heat flow lines. Therefore, the porosity rate needs to be given
a tensorial character.

We introduce here a unit growth tensor (see [11]) defined as

@l 012 13 4 0 0
ij=| an ap oxp|=|0 (1-£)/2 0 . (4)
s Q32 Q33 0 0 (1-¢)/2

The principal direction £ of the unit growth tensor a;; (associated with the major growth) coincides
with the heat flow lines.

Coefficient ¢ indicates the directional characteristic of the growth; it can vary in the range of
0.33 to 1. The porosity growth tensor is then defined as

Mlij = N (5)

where 7;; is a tensor that is analogous to the strain rate tensor, and it can be included directly in the
continuum model of the freezing soil. When ¢ = 1, the growth occurs unidirectionally, whereas the
growth becomes isotropic when ¢ = 0.33. Different “patterns” of anisotropic growth can be modelled
by assuming ¢ anywhere between 0.33 and 1.

The porosity growth tensor can be used directly to determine the strain increments, provided
the account is taken for associated deformation of the soil. One-dimensional simulation was used
first to calibrate the model and then, in order to validate the model, a process with different
initial/boundary conditions was predicted and compared to experimental results. In one-dimensional
process, the relation of the porosity increase and the non-zero normal strain increment in elastic
continuum is

de; = ’-‘if(i—;@ A dt _ (6)
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where p is the Poisson’s ratio. Hence, only when the porosity growth is one-dimensional, £ = 1,
does the entire growth translate into the strain increment. If the soil is elastic and plain strain is
considered, the increments of strain due to growth of porosity appear to be

deny E+p(l-8)/2
deze p =4 (L+p)(1-£)/2 }ndt. (7)
dyi2 0

5. BALANCE EQUATIONS

For convenience, we introduce the unfrozen water concentration v in frozen soil (volumetric fraction)

VW
il e 2

where V¥ and V' are volumes of water and ice, respectively. The volumetric fractions of the frozen
composite are then expressed as

s
0° =VV=1—n,

Vv
HWZV:yn, (9)
S i
0 =%=n(1—u)

where n is the porosity (ratio of the pore volume to the volume of the mixture), and superscripts
s, w, and i denote the solid, water and ice fractions, respectively. Consequently, the average density

p is

p=06%°"+6%p" +0p' = (1 -n)p®+vnp™ +n(l - v)p' (10)
and the specific heat capacity C' (per unit volume) can be expressed as

C = (1-n)p°c +vnp“c" +n(l —v)p'c (11)

where ¢®, ¢%, and ¢! are the mass capacities of the mineral (solid), water, and ice, respectively.
Adopting now the Fourier heat conduction law, the energy balance becomes

o2

= o p'—V(AVT) =0 (12)

where the effective heat conductivity in the Fourier law was taken as
X =D A AL (13)
The mass balance, based on the Darcy law of the water transfer, takes the following form

") 2 _ ey kv = 0 (14)

; on
(0" =0") 5, + (o

where h is the hydraulic head, and k is the hydraulic conductivity in Darcy law.



Modelling of freezing in frost-susceptible soils 619

6. CALIBRATION

A set of experimental test results was identified to calibrate the model [4]. First the unfrozen
water content was calibrated for the clay used in the experiments, and this calibration is shown in
Fig. 4. This particular set of data was approximated with the function in Eq. (3), but without the
discontinuity at the freezing point (w* = 5.8%, w = 28.5%, a = 0.16).

Nine tests with ramping boundary temperatures were given by Fukuda et al. [4], for variety of
temperature gradients and different overburden pressure. A step freezing process was then simulated
and compared to experimental results in order to validate the model.

The calibration process was performed by simulating the one-dimensional process using a column
of 30 finite elements. The system ABAQUS was used to perform the calculations. Figure 5 illustrates
the calibration process where the parameters of the model were selected such, so that the calculated
frost heave matched the experimental results. The frost heaving curve indicates the increase of
the specimen height during freezing with ramped temperatures at the cold and warm side of the
specimen. The freezing front propagation associated with the ramping process appears to match
the measured propagation well.
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Fig. 4. Calibration of unfrozen water content in frozen Fig. 5. Calibration of the model (after [12])

soil (after [12])

As the porosity rate model is a unique model with little application experience, it is of interest to
indicate what are the reasonable values of the parameters in the porosity rate function in Eq. (2).
For the clays tested by Fukuda et al. [4], the calibration process led to the following quantities:
maximum porosity rate n, = 6.02-107°s~! (or 5.2 - 1/24h) at gr = 100°C/m, or fi,,/gr =
6.02-10~"m°C~1s7!, T;, = —0.87°C, and ¢ = 0.6 MPa.

7. SIMULATION OF A STEP-FREEZING PROCESS

Once the model parameters for clay were evaluated, a step-freezing process was simulated. This
step-freezing process was tested in a laboratory experiment by Fukuda et al. [4], and the re-
sults of this process were not used to calibrate the model. Cylindrical specimen size was 70 mm
in height and 100 mm in diameter. The initial temperature of the specimen was uniform at 5°C,
and, at time ¢ = 0, the bottom plate temperature was dropped to —5°C and kept at —5°C for
115 hours.

The distribution of the increase in porosity is illustrated in Fig. 6. It is evident that once the
freezing front moves through the soil quickly at the initial stage of the frost penetration, the in-
situ freezing leaves an insignificant increase in porosity behind the freezing front. Once the freezing



620 R.L. Michatowski, M. Zhu

20
_— 7 -E‘- :
§67 =151
@ E i s, 082
® 5 t= 115 houfy £ 3
s o s
[<3] \NE) R ®
g )L g 10 :
8 9 \\ / // f. '.‘
© 8 Py ® Ramped freezing (Experiment)
-_g 2 L 5 A S e Ramped freezing (Calibration)
Q T ,‘ * Step frezing (Experiment)
>3 C o Step freezing (Prediction)
0 0‘vv‘ﬁ‘f.::""i""i““i“"i' :
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0 20 40 60 80 100 120
Porosity Time (hours)
Fig. 6. Distribution of porosity during a step-freezing Fig. 7. Freezing processes: calibration and validation
process curves

front stabilizes at the level of about 4.5cm in the specimen, the porosity increase becomes quite
significant, indicative of ice lenses formation.

The predicted frost heave of the specimen is illustrated in Fig. 7 along with the calibration
curve. The calibration frost heave process was the one with ramped temperatures, with the specimen
subjected to freezing for 47 hours. The rate of frost heave is small at the beginning of the process, and
it significantly increases after about 10 hours as a larger portion of the specimen starts contributing
to the frost heave. The step freezing process used to validate the model has opposite characteristic:
the rate of heave is large at the beginning, and it decays later in the process. The model prediction
appears to coincide with the experimental measurements remarkably well.

8. APPLICATION OF THE MODEL — FREEZING OF FROST-SUSCEPTIBLE BACKFILL
BEHIND A RETAINING WALL

The usefulness of the model is demonstrated in simulation of displacements of a retaining wall with
the frost-susceptible backfill subjected to freezing. Figure 8 illustrates the initial and boundary
conditions.

The commercially available system ABAQUS was used to generate the finite element grid and
perform the calculations. The soil and the wall were divided into 750 elements. The elements used
were 4-node plane-strain thermally coupled quadrilateral elements.

The vertical boundaries on both sides of the model are adiabatic, and the initial temperature is
set to be uniform and equal to 3°C. At time ¢t = 0 the external temperature drops down to —3°C,
and it is kept at that level for the next 60 days.

The distribution of temperature and displacements after 60 days are illustrated in Fig. 9. The
displacements are exaggerated by a factor of about 3.5. It is evident that the frost-susceptible soil
heaved significantly. As the freezing front did not penetrate deep underneath the footing of the
wall, the vertical displacement of the wall is small compared to the heave of the adjacent soil to the
left of the wall footing. However, the wall tilted counter clockwise due to a considerable horizontal
heave of the backfill immediately behind the wall. As the wall inhibits the horizontal displacement
of the backfill, the upper surface of the fill “buckled out” as the moderate tilt of the wall could not
accommodate the entire increase in the soil volume.



Modelling of freezing in frost-susceptible soils 621

| | |

06n+— 7.4m =+
0.6m 0.6m (C)

3.4m ————=1=—q
b H :
So Frost -susceptible soil g 30 60 Days
-3
12m

Fig. 8. Retaining wall: (a) geometry, and (b) thermal initial and boundary conditions

NT11
000e+
J500e+
JD00e+
.500e+
000e+
10
.00

Retaining wall

UL IRLI 5 o st s 2

WIS U RN W

coocorRerRoocDD

= step freezing
ODB: wall_step.odb ABAQUS /Standard §.4-4 Mon Jan 10 12:05:36 EST 20405

StLp: Step-1

Increment 302; Step Time = 5.1840E+06

Primary Var: NT11

Deformed Var: U Deformation Scale Factor: +3.580e+00

Fig. 9. Retaining wall displacement caused by frost heave



622 R.L. Michatowski, M. Zhu

9. INFLUENCE OF INSULATION ON PERFORMANCE OF RETAINING WALLS WITH
FROST-SUSCEPTIBLE BACKFILL

Since heaving requires the freezing front to move into the frost susceptible soil, it is expected that
thermal insulation along the wall will inhibit the frost heave to some extent. To demonstrate the
influence of the insulation on the performance of retaining walls, simulations were carried out of
a freezing process for the retaining wall system illustrated in Fig. 10. First, a wall without insulation
was simulated, and then simulations were performed for the walls with two different insulations.
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Fig. 10. Geometry of the retaining wall system with insulation (dimensions in meters)

The initial temperature distribution is shown in Fig. 11(a). The thermal boundary conditions
are as follows: at time ¢ = 0, the temperature along the external boundary suddenly drops from
1°C to —5°C, and it is kept at this level for 3 months (92 days), whereas the temperature at the
base is kept steady at 3°C.

The finite element mesh is shown in Fig 11(b). The model is discretized using 4-node plane strain
thermally coupled quadrilateral elements (ABAQUS type CPE4T). The total number of elements
is 2950 and the total number of nodes is 3076. The soil material properties pertaining to heaving
were adopted from the calibration based on the tests by Fukuda et al. [4] and presented earlier in
the paper: fiy, = 6.02:107°s71 (or 5.2:1/24h) at gr = 100°C/m, or Ay /g7 = 6.02-10~7 m°C~ 1571,
Tm = —0.87°C, and ¢ = 0.6 MPa (for details see Michalowski and Zhu [12]).

The elasticity parameters for the soil were taken as follows: Young’s modulus equal to 11.2 MPa
for unfrozen soil, temperature-dependent E = 13.75|T|!8 MPa (T in °C) for frozen soil below
—1°C (after Ladanyi and Shen [9]), and linear interpolation in the range 0 to —1°C; Poisson’s ratio
was taken as p = 0.3 for both the frozen and unfrozen soil. The remaining thermal parameters
were: thermal conductivities: 1.95, 0.56, and 2.24 Wm~'K~! for the mineral phase, water, and ice,
respectively; heat capacities: 900, 4180, and 2100 Jkg~'K~! for mineral, water, and ice, respectively;
latent heat of fusion of water: 3.33-10° Jkg ' K~!. These were extracted from the literature [17, 21].
Parameter ¢ that governs the anisotropy of the ice growth in Eq. (4) is difficult to assess, since no
laboratory measurements are available for its evaluation. It is known, however, that the ice lenses
grow predominantly in the direction of heat flow, and the value £ = 0.9 was adopted.
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Table 1. Material properties of concrete and thermal insulation

Density | Mass heat capacity | Thermal conductivity | Young’s modulus | Poisson’s ratio
p (kg/m?) C (J/kg°C) A (W/m°C) E (Pa) p
Concrete 2242 970 1.2 2-1010 0.38
oioivivmd 50 2000 0.03 or 0.2 1-107 0.3
insulation

-5°C

o

Fig. 12. Temperature distribution and deformation (exaggerated 2x) for: (a) the case with no insulation,
and (b) with insulation A = 0.03 W/m°C
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The material properties of the concrete wall and the thermal insulation are listed in Table 1.
Three cases are considered to study the effect of the thermal insulation: (a) no thermal insulation
behind the wall, (b) a 0.1m thick layer of insulation on the backfill side of the wall, with heat
conductivity of A = 0.2W/m°C, and (c) a 0.1m thick layer of insulation with a heat conductivity
of A =0.03W/m°C.

The temperature distribution in the wall and the soil at the end of the third month is shown in
Fig. 12(a) for the case of no thermal insulation behind the retaining wall. Also shown in the figure is
the deformation. The contours relate to the temperature distribution in the soil. The displacements
are exaggerated by a factor of 2. As the frost heave occurs in the direction of the heat flow, vertical
displacements are considerable along the horizontal surfaces subjected to the freezing temperature.
Along the wall, however, the isotherms are oriented vertically, thus the heaving occurs horizontally.
The retaining structure is an obstacle to heaving, and the wall tilts.

The simulated horizontal displacement at point A (the tip of the wall, Fig. 10) is 0.208 m.
With the insulation of A = 0.20 W/m°C the horizontal displacement at point A was reduced by
almost 20%, and when a more effective insulation was used with A = 0.03 W/m°C, the horizontal
displacement at the wall crown was reduced by 42%.

10. FINAL REMARKS

Although phenomenological in nature, the model presented has the characteristics necessary to
simulate the physical process of frost heaving. The model was calibrated using ramped freezing tests.
Subsequently, a step-freezing process was simulated to validate the model. The simulation resulted
in a very close prediction of the experimental results. Application of the model to solving boundary
value problems is straightforward, and the results obtained for freezing of a frost-susceptible backfill
behind a retaining wall appear to be quite realistic. As the frost heave is associated with the
penetration of the freezing front into the frost-susceptible soil, the heave can be prevented to some
extent by thermally insulating the structure.
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