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Possible yielding of the cross-section of a structure, which may arise as a result of external actions or the
(micro)defects, might significantly decrease the safety margin of the considered structure [2]. Since the
cross-section yielding affects the structure stiffness, the dynamic characteristics (eigenvalues and eigen-
vectors) might be significantly different then the ones of the original structure. The measurement of the
changes of the dynamic parameters may provide the information necessary to identify the load causing
the yielding of the cross-section and further the yielding index (which may be calculated when the load
causing the yielding is know) enables the evaluation of the structure safety margin. This paper presents
the application of Artificial Neural Networks (ANN) [4, 9] in the identification of the load casing partial
yielding of simply-supported beam and one- or two-column frames.
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1. INTRODUCTION

Plastic deformation of a structure may arise as a result of external actions and/or as a result of
section defects (microdefects) [1]. Determination of section yielding index (possible when the load
affecting the structure is known) enables the evaluation of the safety margin of the structure [10].
The identification of the yielding load can be performed by modal analysis of the object dynamic
response and by structure dynamic characteristics estimation.

The term dynamic characteristics of a structure refers in this paper to the eigenfrequencies and
eigenvectors of a mathematical model, both of them represent modal parameters of the structure (3]
The structure state changes, e.g. yielding zones development, lead to the structure stiffness changes
and further to modal parameters changes. Information on dynamic characteristics changes during
the yielding process may be used for the structure state evaluation [6]. By measuring the dynamic
response changes the structure state might be assessed and load causing the partial yielding may
be identified.

This paper presents some new results of application of ANN in load identification based on
modal properties changes [5]. The assessed problem is of the Load Simulation type in which the
response and features of a Mechanical Structure (MS) are given and the identification of the
load is the expected result. Simply-supported beam and one- or two-column frames with loads
exceeding the yielding load have been analysed. The load location and resultant have been ob-
tained on the basis of the structure eigenfrequencies and eigenvectors changes. ANNs recognis-
ing load parameters have been constructed. The minimum number of eigenfrequencies and ele-
ments of eigenvector for proper network operation and the optimum network architecture have
been found. All neural network calculation were performed in Matlab environment, using the NNet
toolbox.
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2. PROBLEM DESCRIPTION

The measurable quantities adopted herein are up to the first 10 eigenfrequencies fi,..., fip and the
selected elements of the first 10 eigenvectors ¢, ... ,vj-, where 4 is the number of the appropriate
eigenvector and j is the number of the elements in one selected eigenvector (j equals 61, 482 or 662,
depending of the structure investigated — see Fig. 1). Those data were obtained from numerical
simulations (forward analyses) involving finite element commercial code ADINA.

Let the vector x = {Af1, ..., Afn, v}, vk, ..., v}, v }T gather the measurable quantities
involved in the identification process (for simplicity the assumption was made herein, that for each
considered eigenfrequency — 1st, 2nd, ..., nth — only two elements of the corresponding eigenvector
were taken into account), where Af; is the relative change of the ith eigenfrequency in comparison
to the same eigenfrequency calculated for the structure without yielding, v} is the kth element of
nth eigenform. Let vector y = {l,r,w} gather the location [ of the center, the resultant r and the
width w of the load causing partial yielding in the cross-section.

The dependence of the measurable quantities gathered in vector x on the parameters of the load
(gathered in vector y) causing partial yielding will be referred to as forward operator x = H(y).
The task of the ANNs is to perform the inverse operation y = H~!(x), namely to identify the
elements of vector y on the basis of known vector x. The Backpropagation ANNs trained using
Resilient Backpropagation (Rprop, see [4]) algorithm were used. The decision on application of such
networks has been based on authors experience and on publications on ANNs in civil engineering,
especially in structure mechanics [7, 8.

3. INVESTIGATED STRUCTURES

Three structures were investigated: simply supported beam (see Fig. la), one-column frame (see
Fig. 1b) and two-column, portal frame (see Fig. 1c). The load causing partial yielding was applied
to the upper, horizontal surface of each structure. The load had constant quantity and was spread
over either one selected finite element or consequent two, four, six, eight, ten or twelve elements.
In case of both frames an additional, small horizontal load was applied to columns in order to
obtain the yielding of a horizontal beam cross-section instead of the yielding of a beam-to-column
connection. The investigated structures were modelled using 4-node 2-dimensional elements, each
beam and column was modelled using 10 layers of elements.
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Fig. 1. FE models of investigated structures: a) beam, b) one-column frame, c) two-column, portal frame
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4. THE IDENTIFICATION OF THE LOAD

In order to find the optimal input vector a variety of its definitions have been tried out. There
were tested the input vectors consisting of the changes of two, three, four or five eigenfrequencies
as well as of the elements of corresponding eigenvectors (two, three, four or five selected values).
Some results of preliminary calculations for simply supported beam are shown in Figs 2a,b. The
identified values were the location of the load and its resultant (the output vector was as follows:
y = {l,r}), the ANN architecture was 6-h-2, where h was the number of hidden neurones, the
number of learning and testing patterns (the same in all investigated examples) was 803 and 802
respectively. The inputs were the first two eigenfrequencies and two elements of the first and the
second eigenvectors.

Figures 2a,b (as well as Figs 3 through 4) show the Mean Square Error (MSE) over the testing
patterns versus the number of hidden neurons in the only hidden layer. The outer lines in the figure
present the maximal and minimal MSE error from among errors obtained from 50 separate runs
of learning (with the same input definition and architecture), the central line shows the average
MSE, the remaining two lines between the average and maximal (minimal) values show the average
error increased (decreased) by the value of standard deviation. The diamonds show the value of the
median for each number of hidden neurones.
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Fig. 2. MSE error of testing of identification of the location and resultant for beam (see Fig. 1a) by 6-h-2
network on the basis of a) 10 eigenfrequencies or b) 2 eigenfrequencies and 2 elements of two eigenvectors,
c) MSE error versus the coordinates of the eigenvectors elements

The results shown in Figs 2a,b prove that it is possible to identify the load causing partial
yielding using the information obtained only from the first two eigenfrequencies and two elements
of corresponding eigenvectors. Although the best results obtained from 10-input network (with ten
first eigenfrequencies on input) are slightly better it would be very difficult or even impossible to
measure ten eigenfrequencies in a real situation.

Fig. 2c shows the MSE testing error versus the data describing two elements of the first and the
second eigenvectors taken into account during the identification. The X-axis shows the number of
the first element, the Y-axis shows the distance between the first and the second element (z = 10
and y = 4 mean that the elements number 10 and 14 — 10 + 4 — were taken into account). The
architecture of the networks applied here was 6-10-2 (the inputs are two first eigenfrequencies and
two elements of the first and the second eigenvectors). This figure enables the assessment of the
optimal location of the accelerometers during the measurements of a real structure — one of them
should be located in the point number 8 (1/8 of the beam length), the second one in the point
number 16 (1/4 of the beam length). The eigenvectors elements used in further calculation were the
ones described above (points number 8 and 16).
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Fig. 3. MSE error of testing of identification (beam, see Fig. 1a) of a) location, b) resultant, c) width of the
load
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Fig. 4. MSE error of testing of identification of location and resultant: a) beam, 6-h-3 network,
b) one-column frame, 12-h-2 network, c) two-column, portal frame, 15-h-2 network

The next figure (Fig. 3, for description of the figure see the description of Fig. 2) shows the best
results obtained from the 6-h-3 network after an analysis involving different architectures, numbers
of epochs and learning algorithms. The additional, third output was the width of the distributed load
causing the cross-section yielding (y = {l,r,w}). Each of the diagrams in Fig. 3 shows the results
separately for each parameter (location, resultant and width of load), although the identification of
all of them was done by the same network. The accuracy of the identification of the width of the
load is not as high as in case of location and resultant identification (please note the difference in
vertical axis range in Figs 3a,b and Fig. 3c). The identification of the width of the load was given up,
since using the presented procedure and the input data including eigenvalues and selected elements
of eigenvectors it was impossible to improve the accuracy of identification of this parameter.

In order to compare the results obtained from 6-h-2 networks (Fig. 2) and the results obtained
from 6-h-3 networks (Fig. 3) in the next figure, namely Fig. 4a (for description of the figure see
the description of Fig. 2), the network errors of identification of location and resultant by 6-h-3
networks are presented in the same manner as in Fig. 2 (errors of identification of location and
resultant together on one diagram). The other diagrams in Fig. 4 show the results of identification
of location and resultant of the load causing cross-section yielding in one-column frame (Fig. 4b)
and in two-column, portal frame (Fig. 4c). The identification of the load was done using as input
information the first three eigenfrequencies and three selected elements of the first three eigenvectors
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(one-column frame) or the first three eigenfrequencies and four selected elements of the first three
eigenvectors (portal frame).

5. FINAL REMARKS

The paper shows that it is possible to identify the load causing partial yielding in a cross-section
of simply supported beam on the basis of the data which may be obtained from the measurements
gathered from only two accelerometers. Two first eigenfrequencies and two elements of the first
and the second eigenvectors provide the information sufficient to precisely identify the location and
resultant of the load. It is impossible to identify the load width (the results are not presented here for
brevity), some other data would be necessary to identify this parameter. In case of both considered
frames the identification involves three eigenfrequencies and three eigenvectors.

Further studies should involve additional input data to enable the identification of the load width
and then to identify possible defects (cracks or the areas with decreased stiffness). Besides dynamic
characteristics also other sources of information should be investigated, for example the data which
could be obtained from the measurements of the propagation of elastic waves.
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