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The paper is concerned with a class of generalized structural optimization problems, in which geometrical
nonlinearities play an important role in a response of dynamically loaded structure. Forced, steady-state
periodic vibrations of linear elastic frame and beam structures are considered. Both, viscous and complex
modulus damping models are used. Using the adjoint variable method, sensitivity operators with respect
to variation of stiffness, damping and mass parameters, as well as loading and support conditions are
derived. The loading corresponds to an excitation induced by a rotational machine founded on vibro-
isolation. The forms of response functionals expressed in displacements are discussed. Numerical examples
of frame structures illustrate the theory and demonstrate the accuracy of the derived sensitivity operators.
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brations

1. INTRODUCTION

Structural sensitivity analysis has focused much attention in the last two decades. Sensitivity gradi-
ents find applications in gradient optimization algorithms and directly in engineering practice. They
are useful in the practice because they provide information on the sensitivity of structural response
due to design and constructional tolerances. Most studies reported in the literature take up the
theoretical issues of sensitivity analysis. Therefore it seems worthwhile to consider an engineering
problem, when the machine of rotational type is founded on a base structure by means of elastic
connectors with damping. Hence, the extended problem of optimization appears, where the damping
mass and visco-elastic joint parameters can be considered as control variables. Thus, displacements
of the machine and all displacements of the base structure can be minimized.

The problem of optimal design of supports in structures was first formulated in [11]. The study
of minimum stiffness of supports maximizing the eigenfrequencies of vibrating beams was presented
in [1]. Optimal location of supports in vibrating structures with complex damping was discussed
in [9]. Sensitivity with respect to dynamic load parameters allowing for viscous and complex damp-
ing model was taken up in [4]. Extension to dynamic problems with excitation induced by rotational
machine and viscous damping models was presented in [6]. The problem of optimal design of support
conditions was generalized by extension to optimization of joints within the structure. Sensitivity
of frames to variation of hinges in dynamic and stability problem was discussed in [5]. In [3] the
effect of joint flexibility on the behavior of frames loaded statically was presented. The formulation
of optimization problems due to joint position and stiffness distribution in frames with damping
constraints was presented in [12]. Considerations of the sensitivity of dynamic systems to variations
of parameters describing visco-elastic joint allowing the deflection and slope line discontinuity was
taken up in [7]. Mréz and Haftka [10] presented an adjoint structure approach to the calculation of
vibration frequency and buckling loads variations for geometrically nonlinear plates. This formula-
tion was extended in [8]. The approach was developed and used for beam and frame structures in [2].
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The present paper is concerned with the sensitivity analysis and optimal design of frame struc-
tures allowing for damping. The influence of rotational machine location, the manner of load trans-
mission from the machine to the structure and specifying passive dampers and joints in the structure
are analyzed in detail. The analysis is carried out involving second order geometric effects on the
behavior of the frame structure.

2. PROBLEM FORMULATION

Consider a linear elastic frame structure subjected to dynamic loading by a rotational machine.
A practical engineering problem is studied, when the machine is founded on a frame structure by
means of visco-elastic connectors playing the role of dampers. The structure is illustrated schemat-
ically in Fig. 1. Viscous or complex damping in the structure and the connectors are allowed for.
The case of small, forced and periodic vibrations is analyzed. The second order geometric effects
are also taken into account.
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Fig. 1. Concept model - visco-elastic frame structure Fig. 2. Model of a machine

The task is to find optimal parameters of connectors and damping mass as well as optimal
position of the machine modelled as a rigid body with the center of gravity at height A,, . A model
of the machine is presented in Fig. 2.

Assume the response functional as a function of horizontal, vertical and angular displacements
of the machine wy, , Wy, , ¢m , respectively, and integrated displacements of the base structure u(z),
w(z),

t1
G(s) =/ {fl[Um(t)]+f2[’lum(t)]+f3[(,0m(t)]+/Lf4[u(:c,t),w(z,t)] dm} dt. (1)

to

Functions f1, f2, f3 and fy are arbitrary, differentiable. The integration [ 1 -+ dz is carried out over
the length of all beams and columns of the frame with the extraction of the singular point z = z,
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of machine position. Effects of action of the machine will be considered separately. The vector of
design parameters consists of: position of the machine, mass and moment of mass inertia of the
machine and six parameters describing the connection, bending stiffness, axial stiffness, damping
and mass of the frame structure. Hence, the control vector is represented by

S = {xr,mmaIm,kzr, kyrakzpr, Czr,cyr,cgorakM(x)akN(x)ac(m)am(x)} . (2)

Subscript r denotes that the symbol refers to the machine parameters, subscript m refers to the
point mass. Our aim is to find the variation of functional (1) with respect to small variations of
design parameters (the components of the control vector s)

t1

0G = {fl,s+f2,s+f3,s+/Lf4ysd.'L‘}(SSdt. (3)

to

3. SENSITIVITY OPERATORS

Variations of machine and the base structure displacements are implicit functions of design parame-
ters. In order to transform Eq. (3) to an explicit form we use adjoint variable method. The primary
structure is described by the following geometrical equations,

1
e=€e+y=uz+ iw,xw,z i (4)

K= —Wgy, (5)

where comma denotes partial differentiation and u and w denote axial and transversal displacements,
respectively. Generalized strains e are nonlinear with respect to the derivative of w. The constitutive,
linear equations for the primary structure have the form

N = kNE, (6)
M = k‘MIﬁ, (7)

where e, k, N, M, ky and kjs; denote elongation, curvature, normal force, bending moment, axial
stiffness and bending stiffness.

The adjoint structure is described by similar equations, but now geometrical equations are linear
and the derivative of w of the primary structure plays the role of a multiplier. The equations (8)-
(11) may be thought of as the “tangent” structure to the primary one. For the adjoint structure,
the second term in Eq. (8) can be considered as an initial strain.

A .
A (9)
iy (10)
M = kyr”. ol

There are two differences more if we compare primary and adjoint structure, namely loadings and
damping coefficients. The adjoint structure should be loaded by the following forces,

df1 pa dfo pa _ Of3 i o_ Ofs

Pa=—a s ) ey R R iy 12
o DM el O, T < Dipm DUt o oBum 12)
The damping coefficients for the adjoint structure have the form

Cor = —Car c(ylr = —Cyr, czr = —Cor ¢ =-c (13)

An alternative approach to assuming negative damping is an integration in of the adjoint problem
in time domain, in the inverse direction of time.
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Using the concepts of primary and adjoint structure, the virtual work equation for adjoint forces
and variation of primary kinematic fields can be written as follows

/tt1 {/L [N%(e* — &) + M*(x* — K) + N*(v* — ) + Nw (w} —wz)]dx}dt

0

= t {[ 168 = mit)a =0+ (¢* - mis® ~ ety — )

o+ RS, (45— ur) + REp (0] = wy) + Ry (0 son} d. (14

Conversely, using variation of primary forces and adjoint kinematics, we obtain

0

t1
= /to {A [((p* _ m*u*) L (p . m’i],))ua + ((q* — it — c*u';*) = (q il C’li]))wa] 1

+ Ryptiry — Rerup + Ry wp, — Ryrwy + Ry, 07, — Rwrwﬁ} dt. (15)

All quantities denoted by star refer to the structure with perturbed components of design vector
s. In particular, in the symbol wy, the superscript star denotes perturbed displacement field w,
whereas the subscript 7* denotes that this displacement is measured in perturbed position of the
machine z; = z, + dz, . The forces R specify reactions transferred from the machine to the base
structure. Note that the rotation ¢, is equal to w, ; in the case of Bernoulli beam.

Developing the perturbations of displacements in Taylor series and retaining only linear terms
we arrive at

ur, — Uy = Ou, (def.), Uy = Up = Uy — Uy 0T, , Up — Up = uptiz, (16)
wk, — wy = dw, (def.), wy — Wy = dwy — Wy 0T, wp, = wf = witdz, (17)
(P:* —Yr = 6()07‘ (def) ’ (P: —Pr= 6(107“ - w'r_::t:z(sxr ) (pr* 907' = Wy, :ca:émT (18)

Please note that we distinguished between left-side ()~ and right-side (-)* derivatives in Eqs. (16)-
(18). In fact, only the second derivative w 4 is not continuous.

Subtracting Eq. (14) from Eq. (15), introducing Egs. (16)—(18) and (4)-(11), assuming limits of
integration in time ¢; = 0, ¢t = T, where T is a period of vibrations, and integrating partially the
terms with 04, dw, dw, we arrive at

a1’
0 L

= /OT {(R;r Up g + R r Wy g + R rWr gq + U?:er + w, zRyr + wrme) dxy
+ upd Ry + wrdRyr + wy ,0R,,
- /L (k"K0knr + e®edky + u®idm + widm + widc] dx} dt. (19)
All terms in Eq. (19) express the work. For complex damping model, where the quantities have com-

plex form, the work should be formulated in terms of scalar product. The scalar product (f(z),g(z))
of the functions f and g, which are generally complex and which belong to the L2 space, is defined

as o
(f(2),g(z)) = /0 T@(z) dz, (20)
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where the symbol 7~ denotes complex conjugate. The scalar product has the following property,

(f(2),9(2)) = (9(=), f(x)). (21)

Therefore, the order of functions of Eq. (19) and henceforth in each term is very important. First
place in all terms should by occupied by values from the adjoint system and the second place — by
the values from the primary structure. The opposite, but consistent order, is also correct.

To transform implicit variations 6 R, du, , dw, and dp, to explicit form, we use balance equations
and virtual work equations for the concentrated mass (compare [6]). The balance equations for the
mass (Fig. 2) are

Py — mup iy, — Rar =8 (22)

Pyr = Mty — Ry =0, (23)

(Prr — Mmutim )b + Por — Iy — Rpr = 0. (24)
The forces and the moment in visco-elastic spring can be expressed as

Rer = kgr(um — ur) + Cor(tm — Uy) (25)

Ry, = kyr (wm — wy) + cy,-('li)m — ), (26)

Ry = k'npr(‘Pm - ) + ccpr(‘»bm 20k (27)

The work equation of adjoint forces on variations of primary displacements has the form
o
/ {(P8, = Miyi%,) Bt — B2, 814y + (P2 — s, )5ty — RS, S0,
0
+ (Pg'r - Im(;bgn)&pm - R&r&pr} dt

T
= [ {hsrlut, = u2) + iy, = 8} (B — 1)
+ [kyr (W, — w®) + et gi— we)] (6w — dwy)
+ [pr (9 — @) + Cor (1 — ¢1)] (Opm — 0pr) } dt . (28)
Conversely, using variations of primary forces and adjoint displacements we obtain
T
/0 {=(0mmiim 4+ Myt )up, — Rgrtty — (0MpmWm + My 0ty )wpy, — 6 Ryrwy
= (JIm¢m =5 Imd‘pm)‘P;}n - 5R<PT‘P$} dt
o &

+ [chpr(SOm — ) + knpr(&Pm — dpr) + 5ctpr(¢m - ¢r) + cgor(&»bm o 5‘»57)] (‘Pgn - ‘P?)} dt.
(29)

Subtracting Eq. (29) from Eq. (28) and integrating by parts the terms with 64, du, 6, 6w, 6¢, d¢,
we arrive at

7 i
/ (498 Rar — B2, Sy + wiGRyy — R% 6w, + p26Ry — RE,6,) dt
0

1 .
& / {—P;T(Sum a u;‘nﬂmémm & (ufn " ug) [6k1T(um = Ur) + 6C:cr (um wE ur)]
B
& P177‘6wm — Wiy WynMmm — (W, — wy) [Jkyr (wm — wy) + dcyr (W — wy)]

= chr(s‘pm — OmPmOlm — (‘Pgn = ‘P‘;) [5k<pr(‘Pm ~4py) + 5C<pr (Om — ‘Pr)]} di. (30)
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Introducing Egs. (30) and (12) into Eq. (19), we finally arrive at the sensitivity operators

E
0G = / {P;T(Sum + Py 0w + Pg.00m + / (p*ou + qadw)daz} dt
0 0

T
B
= / { (urg Ror + RGyup, + Wik Ryr + Ropwiy + it Ry + RE Wi, ) 02,
0

— (U tim + Wiy W )0my — Qg Gmdln
— (upy — uy) [0kor (Um — ur) + 8Car (Tim — tiy)]
— (wl, — w) [6kyr (wWm — wr) + Scyr (W — 1iy)]
~ (om = ©7) [0kor (Pm — ©r) + 0cor(Pm — ¢r)]

- / (k*K0kpr + eedkn + uddm + wbdm + widc] dx} dt. (31)
L

The operator (31) expresses the variation (3) of the response functional (1) as an explicit function
of variations of all design parameters (2). It has quite general form and can be used to many special
cases. The arbitrary functions fi, f2 and f3 in Eq. (1) represent structural response expressed by the
displacements of the machine and the function f4 represents displacements of the base structure. In
spite of formal complexity of Eq. (31), all sensitivity operators have similar structure. They consist
of two values: one from the solution of adjoint problem and another one from the solution of primary
problem. It can be schematically presented as

5@ = /0 " A0 B dt. (32)

The values A and B depend on time and in case of steady-state, harmonic vibrations they can be
expressed as a product of amplitude and cosine function

A = Acos(wt — ¢a), B = B cos(wt — ¢p), (33)

where ¢ is respective phase angle, w is circular frequency of vibrations and * denotes an amplitude.
Integrating in time we arrive at the formula expressed by amplitudes

§Gy = ABcos(¢a — ¢3), (34)

which can be applied to the solution (31), thus providing applicable form (35). For brevity we rewrite
only the first part of Eq. (31)

aly = (ﬂ‘r‘;Rm cos(¢1 — ¢2) + R;,a;,m cos(ps — da) + w;f;;z%y, cos(¢s — dg) + - - ) 0z +--- .(35)

T My Vo
o
Inbm  I/®

Fig. 3. Model of a machine on two vibro-isolators
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This form is very convenient for numerical applications using professional FEM codes, because all
quantities can be easily computed. The numerical examples demonstrating application of the derived
sensitivity operators are presented in Section 4.

The derived sensitivity operators can be adjusted in a simply way to the case of machine seated
on two or more vibro-isolators (Fig. 3). It requires to consider for each vibro-isolator these terms
which contain reactions transferred from the machine to the base structure (variation of machine
position dz,) and the terms with variations of stiffness and damping coefficients of visco-elastic
joints. In case of 7 connectors it is a simple summation

T
o= /0 {Z [(u;l:‘”Rm + Rg”ui_r,z + wg:xRiW + ngrwi_r,z * wgr—,kx:cRiW * ngwi;,a:x) &Er]
7
- (ugnﬁ‘m + w;ln"bm)émm - ‘Pgn(ﬁmélm
- Z {(U?m - Ugr)[ékiwr ('U'im = uir) + dCizr ('uim b 'L"fir)]
%

+ (i = w?r)[ékiyr(wim - wir) + dciyr (Wim — Wir)]

4 ((P?m - (pgr)[ékisor((»oim - (Pir) +$ (Scitpr((,bim - 9017")]}

- / [k*kOkp + eedky + uttidm + wbém + wwdc] dx} dé, (36)
E

4. EXAMPLES
4.1. Example 1

Consider a frame structure excited by vertical concentrated dynamic force Ry, = 1 - cos(275t) [kN]
(Fig. 4). The frequency of excitation is f = 5[Hz|, whereas the first eigenfrequency is equal to
5.9629 [Hz]. The structure is assumed as geometrically linear structure. Technical parameters of the
system are as follows: axial stiffness ky = 801550 [kN], bending stiffness kpy = 7975 [kNm?] and

-
200m |, Ox §
l 1-cos(2n57) kN
—t
ky=17975 KNm?
ky=801550 kN
m =30.7 kg/m
(c=0.1c¢r) §
o
Ve e L tte
6.00m

i
=, I

Fig. 4. Frame structure with variable position of dynamic force



648 7. Pozorski

mass m = 30.7 [kg/m]. Structures without damping and with viscous damping coefficient ¢ = 0.1¢,,
are analyzed separately.

We are interested in the variation of the horizontal and vertical displacements amplitude due to
variation of the force position dz, . The variations can be found using simplified forms of Eq. (31),

T 1
3G & / RS bu, dt = / (WSt Ry, + RS, ur,)éz, dt, (37)
0 0

T T
5G = / R%, 6w, dt = /0 (WSt Ry + RS 07,0z, dt (38)
0

To find the variation of horizontal and vertical displacement amplitudes under the force, the adjoint
structure is loaded by unitary horizontal and vertical forces. These adjoint forces start in the same
phase angles as respective displacements of the primary structure. Henceforth, we denote phase
angles in degrees. Application of the sensitivity operators expressed by amplitudes leads to the
following calculations in case of a structure without damping,

§dy = (2.6049 - 107% - 1000 - cos(180 — 0) +1-2.0- 1078 - cos(180 — 0))dz,

= —2.607 - 10 56z, , (39)
by = (1.3550 - 1078 - 1000 - cos(0 — 0) 4 1 - 1.3550 - 10~° - cos(0 — 0))dz,
= 2.710 - 10756z, . (40)

We compare the results with the total Finite Difference Method, for the perturbations dz, =
0.05 [m]. FDM provided respectively,

8ty |ppym = —2.652-107°0z, [m], 4y |ppy = 2.672 - 10~%6z, [m]. (41)
Similarly, in case of structure with viscous damping ¢ = 0.1c., we have

8, = (2.2662 - 107% - 1000 - cos(179.96 — 0) +1-2.0- 1078 - cos(150.0 + 30.0))dz,

= —2.268 - 10756z, , (42)
Sy = (1.4664 - 107 - 1000 - cos(—8.075 — 0) + 1 - 1.4662 - 1075 - cos(—4.282 — 3.793))dz,
= 2.904 - 10750z, . (43)

We can compare the solutions with results obtained using FDM:
Sty |rpm = —2.324-107%0z, [m], 84| ppy = 2.832 - 1056z, [m]. (44)

The agreement in both cases can be considered as satisfactory. Interesting is that introduction of
damping can decrease or increase displacement amplitude variation.

4.2. Example 2

In this example almost the same structure as in example 1 is analyzed, but now there are additional
static forces 500 [kN] acting one the columns and second order geometric effects are taken into
account (Fig. 5). The static forces are lower than critical buckling force and frequency of dynamic
excitation f = 5[Hz] is lower than the first eigenvalue f; = 5.7955 [Hz]. We can find variations of
displacement amplitudes under the machine due to variation of the machine position using the same
equations (37), (38) as in example 1. In case of the structure without damping we have

i, = (3.1935 - 1078 - 1000 - cos(180 — 0) + 1-2.0- 1078 - cos(180 — 0))dz,

= —-3.196 - 10754z, , (45)
Sy = (1.2619 - 1078 - 1000 - cos(0 — 0) + 1 - 1.2619 - 1075 - cos(0 — 0))dz,

= 2.524-10"%6z, , (46)
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Fig. 5. Geometrically nonlinear frame structure
whereas FDM provides
Sty |pom = —3.374- 10750z, [m], Oty |ppy = 2.462 - 107°6z, [m]. (47)

Analogically, for structure with damping, the following results were received:

54, = (2.6452 - 1075 - 1000 - cos(180.01 — 0) 4+ 1-2.0- 1072 - cos(145.5 + 34.5))dz,

= —2.647-107%6z, , (48)
S, = (1.4381-107% - 1000 - cos(—11.224 — 0) + 1 - 1.4381 - 107° - cos(—4.994 — 6.230))dz,
= 2.820 - 10756z, . (49)

The FDM provided respectively:
Sty ppy = —2.712-107%0z, [m], &, ppm = 2.750 - 10~°6z, [m]. (50)

The relative differences between results obtained using derived sensitivity operators and FDM are
about 2.5%. Note that introduction of static forces and taking into account second order geometric
effects change the variations up to 27%. It concerns particularly horizontal displacements.

4.3. Example 3

Consider a frame structure with a rotational machine shown in Fig. 6. The machine is subjected
to concentrated harmonic loads: Py, (t) = 0.1 cos(275t) [kN] and Py, (t) = 0.1 cos(2n5t — 7/2) [kN].
Note that the horizontal dynamic force lags by m/2. The concentrated mass of the machine is
mm = 100 [kg] and parameters of the base structure are as follows: axial stiffness ky = 801550 [kN],
bending stiffness kps = 7975 [kNm?] and mass m = 30.7 [kg/m]. The structure without damping is
analyzed for two different cases: as a geometrically linear and nonlinear system. Additional static
forces 500 [kN] are applied at the top of both columns.
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Fig. 6. The frame structure with variable mass of machine

In the example we are looking for the variation of displacement amplitude (horizontal and ver-
tical) of the machine center due to variation of its mass. The variations can be computed using
simplified forms of Eq. (31),

T T
G = / Pl dé = / (—us tn, — W Wiy ) Iy, At (51)
0 0
T T
56 = / P by dt = / il P i (52)
0 0

The adjoint structure is loaded by unitary horizontal and vertical force, respectively and simultane-
ously it is subjected to initial distortions specified by the displacements and strains of the primary
structure. The initial phase angle of the adjoint excitation force depends on the phase angle of
respective displacement in the primary system.

In case of geometrically linear structure, application of the sensitivity operators (51), (52) ex-
pressed in amplitudes gives the following results,

6l = —(2.2782 - 1077 - 2.2956 - 1072 - cos(101.7 + 78.34)
+4.7011 - 1078 - 7.7352 - 1072 - cos(—78.3 — 143.1))6mym,
5.502 - 10~96my, , (53)

b = —(4.7011 - 1078 - 2.2956 - 1072 - cos(143.1 + 78.34)
+6.2710 - 1073 - 7.7352 - 1073 - cos(—36.86 — 143.14))5m,y,
1.294 - 10~ %m,y, . (54)

Il
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When second order geometric effects were taken into account, the following results were obtained,
respectively,

iy, = —(2.6902 - 1077 - 2.7095 - 1072 - cos(101.5 + 78.50)
+5.4721 - 107 - 8.3087 - 1072 - cos(—78.5 — 139.5))dmyp,
7.648 - 10™°6m,y, , (55)
Sy, = —(5.4721 - 1078 - 2.7095 - 1072 - cos(139.5 + 78.50)
+6.3974 - 107 - 8.3087 - 1072 - cos(—40.54 — 139.5))6mn,
= 1.700 - 10~%m,, . (56)

The comparison of received amplitude variations with FDM’s results confirmed the correctness of
derived sensitivity operators.

It should be noticed that taking into account second order geometric effects dramatically changes
displacement amplitudes. It is also worth mentioning that both, large displacement effects and stress
redistribution as a result of design parameters variations, are included in the derived sensitivity
operators (31). In the examined examples, the last effect did not contribute remarkably to find
results because of the type of analyzed structure.

4.4. Example 4

The last example demonstrates complexity of the problem of optimal design of dynamically loaded
structures. The system is presented in Fig. 7. Parameters of the base structure are the same as in the
previous examples. The vertical excitation force with the frequency 55 [Hz] acts on the concentrated
mass connected to the base structure by a spring with the stiffness k.

We are interested in minimizing of the vertical displacements of the mass and the base structure.
The solution — the dependence of the displacement amplitudes on the spring stiffness is presented in
Fig. 8. For a very stiff spring, displacements of the machine and the base structure are equal to each
other. Decreasing the stiffness of the spring, we can reduce vibrations of the machine simultaneously
increasing vibrations of the base structure and incidentally we approach resonance. In case of very

-
1-cos(2mS55) kN &
-t
ky=7975 KNm?
3.00m | ky=801550 kN
a m=30.7 kg/m
o
77777 777 T

6.00m

5T
i [

Fig. 7. Frame structure with a machine on the spring foundation
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Fig. 8. Vertical displacement amplitude of the machine and the base structure versus compliance of the
spring

soft spring, displacements of the base structure tend to zero, while the vibrations of the machine
are relatively high. The example shows that the problems of optimal design of dynamic systems can

be very interesting.

5. CONCLUDING REMARKS

Sensitivity derivatives accounting for variations of structural and loading parameters of a dynami-
cally loaded frame structure were derived. In the model of the structure viscous or complex damping
were allowed for. Second order geometric effects were taken into account, too. Derived sensitivity
operators have explicit form also in the case of viscous damping. In case of objective functions
representing vibration amplitudes, the sensitivity operators are expressed by amplitudes of forces
and displacements of primary and adjoint structures and phase angles. All these quantities are eas-
ily obtainable from professional FEM programs. For steady state vibrations of primary structure
the adjoint problem is a steady state type, too. Expected and yet fascinating is that the effect
of geometric nonlinearities in sensitivity analysis of forced vibrations is captured by introducing a
linear adjoint structure, which elastic response is tangent to actual response of primary structure.
Numerical examples solved with ABAQUS program illustrate the practical use of derived formulae
and the accuracy. The sensitivity operators derived in the paper can be used in optimal design or

in identification problems.
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