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The focus of this paper is the application of two nonlinear regression models in the context of Bayesian
inference to the problem of failure prediction of concrete specimen under repeated loads based on exper-
imental data. These two models are compared with an empirical formulae. Results on testing data show
that both models give better point predictions than empirical formulae. Moreover, Bayesian regression
approach makes it possible to calculate prediction intervals (error bars) describing the reliability of the
models predictions.
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1. INTRODUCTION

Fatigue of concrete is a process of progressive and permanent damage in concrete subjected to
repeated loading. Evolution of this process is influenced by several factors, for example the concrete
composition, the mechanical properties and the loading conditions [7].

In many cases, a prediction problem can be posed as a regression problem. The task is to
infer a relationship between the input vector of variables and the output variable, based on a set
of examples (experimental data). Feed-forward neural networks (FFNNs) and Gaussian process
regression (GPR) are both nonlinear, very flexible regression models which are commonly used to
approximate the unknown relationship in data.

GPR and FFNN models with Bayesian inference were used in similar problems of materials design
and optimisation. Bailer-Jones et al. [1] used these two models for the prediction of the deformed
and annealed microstructures of an aluminium alloy. Lampinen and Vehtari [9] used FFNNs and
GPR for the prediction of the concrete quality properties.

Various feed-forward neural network models with classical, least-squares learning were used to the
problem of predicting fatigue failure [15]. For example, Waszczyszyn et al. used a back propagation
neural network (BPNN) [8]. Jakubek applied a fuzzy weights neural network (FWNN) [6]. This
paper is an extension of the earlier work published in [13] where we compared 4-10-1 Bayesian
FFNN model with Hybrid Monte Carlo approximation of Bayesian learning and prediction and
an early-stopped committee of FFNN models trained based on maximum likelihood approach and
scaled conjugate gradient optimization algorithm and using 10-fold cross validation for estimation
of the predictive accuracy.

The problem addressed in this paper is the prediction of the concrete fatigue failure based on
GPR model and FFNN models with simple, deterministic approximations of Bayesian learning and
prediction. These models are defined and fitted to the experimental data using Bayesian inference
and then applied to the prediction of fatigue failure. The paper has the following structure: in Sec. 2,
classical and Bayesian approaches to learning and prediction are presented, in Sec. 3. two Bayesian
regression models are described,.in Sec. 4, the problem of the concrete fatigue failure prediction is



656 M. Stonski

defined and in Sec. 5, the numerical experiments and results are presented. In the last section the
final conclusions are stated.

2. BAYESIAN REGRESSION

In this section, we introduce parametric and nonparametric models for regression. We also describe
two approaches to learning and predictions following the description of Bayesian inference for para-
metric models given by Bishop and Tipping in [4, 14]. In the parametric approach to regression,
we represent the underlying relationship with some function y(x; w) which is parameterised by a
finite number of parameters w. A feed-forward neural network model is an example of a para-
metric regression model. A Gaussian process model is a nonparametric model. The nonparametric
regression models y(x) are defined without an explicit parameterisation. They are defined using the
set of hyperparameters. One well known nonparametric regression method is the spline smoothing
method.

2.1. Classical approach to learning

For regression problems it is generally assumed that a target variable ¢ is the sum of an underlying
deterministic function y(x) and a random variable e,

tn = yY(Xn; W) + €5, (1)

where t, is the target value for the corresponding input vector x,, y(xXn;w) is the model
output value and €, is the noise component. Based on the training data set D =
{(x1,1), (x2,%2),- -+, (Xnstn,),- .-, (XN, N, )} the model is trained, i.e. the unknown parameters are
estimated by minimising some error (loss) function, for example a sum of squared errors function

1 N
ED(W) £ 5 Z [tn = y(xn; W)]2 ’ (2)
n=1

giving a point estimate of the unknown parameter vector called a ‘least squares’ estimate (LS),
ws . The well-known problem with this error function minimisation is that the complex models
can ‘over-fit’ the training data giving unsatisfactory prediction on the testing data. One common
approach to this problem is adding a regularization (penalty) term to the error function which
controls the complexity (smoothness) of the trained model

E(w) = Ep(w) + AEw (w), (3)

where the regularization term is commonly assumed as the sum of squared-weight penalty term,

g R
Ew(w) =35> wh, (4)-

where M is the number of parameters and ) is a hyperparameter which controls the trade-off
between the fit of the model to the training data and the smoothness of the estimated relationship.
In non-Bayesian approach, this hyperparameter is set to the value for which the error calculated
on the validation data set (i.e. data not used to estimate w) is minimal. Finally, we obtain a point
estimate which is known as a ‘penalised least squares’ estimate (PLSE), wppsg .
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2.2. Bayesian learning

In Bayesian approach to regression, we start with definition of a probabilistic model of noise term e,
and a prior distribution over unknown parameters of the model w. Here we assumed the additive
noise model to be a Gaussian distribution defined by two parameters: mean p and variance o?, ie.
p(e|lp, 0%) = N(e|u, 0?). Moreover, we assume that the noise has zero mean and is independent and
identically distributed. Finally, the Gaussian noise model can be written as 4]

22
N(e|u,0?) = N(€|0,0?) = (2ma?) "1/ exp [_ﬁﬁ] . (5)

Based on this noise model and the assumed relation between the target value and the model output
value represented in (1), the conditional distribution of the target variable given the input variable
and the parameters w is also a Gaussian distribution

Lt

202

pltx, w, ) = (2ro”) 2 exp | )
The joint probability of the data set t is given by the product over all data points of the distribu-

tion (6) evaluated at the observed data points (since the data points are independent)

2 o 2 o 2y—1/2 {tn — y(za; w)}?
p(t|x,w,a ) = Hp(tnlxnv‘”,a ) == H(27T0 ) €Xp | — 202 . (7)
n=1 n=1

This joint probability distribution is called the likelihood function (when treated as a function of
the parameters vector w). The inverse of variance parameter is called precision and is defined by
RSN o

The prior distribution is also assumed to be a spherical Gaussian distribution with zero mean
and inverse variance (precision) hyperparameter o, given by

pioto) = TT (&) exp{ - Sz} ®)

m=1

This prior distribution describes our a priori preferences for smoother models (such models should
have smaller parameters values). Parameters such as o and 8 are often called hyperparameters since
they control parameters of probability distributions over model parameters.

After defining the likelihood (7) and the prior distribution (8), we apply the Bayes’ theorem and
compute the posterior distribution over parameters

likelihood X prior p(t|w, B)p(w|a)

p(tla, B)

The normalising factor in (9) is called evidence. It ensures that the posterior distribution integrates
to one and is given by an integral over the parameter space

posterior = p(wlt,a, B) =

(9)

normalising factor’

p(tles B) = / p(tw, ) p(wla) dw. (10)

The Bayes’ rule allowed us to combine two sources of information about the estimated relationship
and instead of the point estimate, we have obtained the updated distribution (in the light of the
training data) over all possible values of parameters.

Finally, we can notice that the two non-Bayesian approaches to parameters estimation described
above, (2), (3), can be regarded as the approximations to the full Bayesian approach, (9). The
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standard, ‘least-square’ point estimate (LS) for wys can be obtained equivalently by minimising
the negative logarithm of the likelihood function, (7) with respect to weights w, given by

N e
Epr(w) = —logp(tlx, w, f) = = log(2f) + 5 > {tn — y(zn; w)}>. (11)
n=i1

This point estimate is called in classical statistics a ‘maximum likelihood’ estimate (ML) and is
denoted by wasz, . We can also minimise (7) with respect to 8 and obtain the following estimate of
the noise level

ol pdatyiag so (12)
Bur N =

Similarly, the regularised ‘least-square’ estimate (PLS) for the parameters wpps can be derived
by minimising the negative logarithm of the numerator in the Bayes’ rule, (9) given by

N M
Bnar(w) = ~logp(tlw, ) ~ logp(wla) = & 3 ftn ~ylamsw))? + £ 3" w2, (13)

where X in Eq. (3) is given by A = «/f. This point estimate is known as a ‘maximum a posteriori’
(MAP) estimate and is denoted by wap .

2.3. Making predictions

After learning, we can make a prediction for the value of t, given the new input vector x, . The
key distinction between classical approach to prediction and Bayesian one is using marginalisation.
In Bayesian approach, instead of using the single estimate of model parameters, we integrate them
out. In the non-Bayesian approach with regularization, the point prediction is given by y(x.; wprs).
In the MAP Bayesian settings, instead of a point prediction, we have a predictive distribution
p(t«|Wpmap, B), taking into account the MAP point estimate for weights wps4p . Finally, in the
fully Bayesian approach, we obtain a predictive distribution by integrating out parameters w, i.e.
averaging the model probability for ¢, over all possible values of w. The predictive distribution given
a new input vector is given by

p(tat, @, ) = / plta|w, B) p(wlt, o, B) dw. (14)

This distribution incorporates uncertainty over parameters in the light of training data.

So far we have treated the hyperparameters o and 8 as we have known them. But in the fully
Bayesian framework, we should take into account also uncertainty over the hyperparameters inte-
grate them out. We first define the prior distributions over the hyperparameters p(a) and p(8),
which are called hyperprior. Having defined these priors we obtain the full posterior distribution
over weights

p(tlw, B) p(w|a) p(a) p(B)

plw, , flt) = s , (15)
where the denominator (normalising term) in (15) is
p(6) = [ p(tiw, ) p(wle) p(@) p(6) dw (16)

Finally, we can make a fully Bayesian prediction based on the posterior distribution (15), taking
into account all possible values of model parameters and the hyperparameters

p(talt) = / p(ta[w, B) p(w, a, BIt) dw derdB. (17)
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Nevertheless, this integral can not be computed analytically and we must approximate the in-
tegrations using one of the methods developed so far [14]. These methods can be divided into
two groups: deterministic (type 2 maximum likelihood, Laplace’s method, variational techniques)
and stochastic (Monte Carlo methods). The detailed description of these methods can be found in
Bishop’s book [3] or MacKay’s book [10].

2.4. The evidence approximation

In this paper we use the deterministic approach based on type 2 maximum likelihood which is
called also evidence approximation (EA) for o and f [2|. This approach starts with rewriting the
full posterior distribution (15), using the product rule of probability as:

p(w,a, B|t) = p(wlt, o, B) p(a, Blt). (18)

The first term is the posterior distribution defined in Eq. (9). The second term is the posterior
distribution for hyperparameters

p(tla, B) p(a) p(B)
p(t)
This posterior distribution can be approximated by a J-function at its mode. This approximation is

valid if we assume that this distribution is sharply peaked around their most probable values o pp
and fByp . Then the predictive distribution in Eq. (17) can be given by

p(a, Blt) = (19)

p(t|t) ~ p(t|t, amp, Bup) = /p(t*lW, Bup) p(W(t, anmp, Bup) dw. (20)

In order to find these values, we need to compute values of the hyperparameters which maximise
the posterior (19). If we have no idea of suitable values for a and 3 then we can use relatively flat
prior distributions p(a) and p(B). In this case, the most probable values of the hyperparameters are
obtained by maximising p(t|a, 3) term which in Eq. (9) is called evidence (also known as marginal
likelihood function) and is given in Eq. (10) by

p(tle, B) = / p(tlw, B) p(w|e) dw. (21)

The maximisation of the evidence function can only be done using another approximation. An
approach called evidence approximation, uses the posterior distribution over weights approximated
by a spherical Gaussian distribution around a mode of the posterior distribution. Then we can find
values of the hyperparameters which maximise the evidence by differentiating the log of the evidence
given by

1 M N N
Inp(t|e, B) ~ —E(wpyap) — 5 In|A|+ 5 Ina+ 5 Ing — 5 In(27) (22)

with respect to @ and f and setting the derivatives to zero. The matrix A is the matrix of second
derivatives of the negative log posterior distribution and is given by

A=-VVinp(wlt,a,p) =al + BH (23)

where H is the Hessian matrix with values of the second derivatives of the error function (2),
evaluated at w = wyp . This procedure leads to the following formulae for finding the optimal
values of the hyperparameters given by

new _ _ 7Y
o = T (24)
prev — Fadsadis, , (25)
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where + is the number of well-determined parameters given by

. f: Ai (26)
v rmct )\i + «

where )\; is the eigenvalue of the Hessian H matrix, evaluated at w = wyp . Similarly, the error
terms Fy and Ep are evaluated, setting weights to the most probable values wysp . The details of
the evidence approximation approach can be found in Bishop’s book [3].

3. NONLINEAR MODELS FOR REGRESSION

In this section we briefly describe two nonlinear regression models: feed-forward neural network
known as a multilayer perceptron (MLP) and Gaussian process regression (GPR). More details on
these models can be found in two recently published textbooks by Bishop [3] and by Rasmussen
and Williams [12].

We start by considering a broad class of functions called linear regression models. These models
are linear functions in parameters w and nonlinear functions of the input vector x. In general, linear
models are defined as linear combinations of fixed, nonlinear basis functions of the input variables,
of the form

M-1
y(x; w) = Z Wi $m (X) + wo (27)
m=1

where ¢, (x) are called basis functions. Equation (27) is often written by using an additional dummy
‘basis function’ ¢p(x) =1

M-1
Y W) = Y wmndm(x) = w P(x). (28)
m=0

There are many possible choices for the basis functions, for example, we can choose polynomial
basis functions ¢, (z) = z™.

Linear regression models have some limitations as models for regression and we can overcome
these limitations by allowing the basis functions to be adaptive. This approach leads, for example,
to multilayer perceptron (MLP) neural network model.

Another class of models known as kernel methods can be obtained by reformulation of linear
models in terms of dual representation. In this approach, linear regression models are trained by
minimising a regularised error function (3), described in terms of the Gram matrix K = ®®7. The
Gram matrix is an N x N symmetric matrix with elements

Knm = ¢(XH)T¢(xm) = k(x’mxm) (29)

where k(x,x') = ¢(x)T¢p(x') is a kernel function. The design matrix is an N x M matrix with
elements @pny = ¢m(zn). The vector k(x) is defined with elements &y, (x) = k(xp,x).
The prediction for a new input x is obtained from

y(x) = k(x)T(K + Ay) "'t | (30)
where t = (t1,...,t5)7 is a vector of training target values, K = ®®7 is the Gram matrix and
@ is the design matrix. From the Bayesian viewpoint of linear regression models, dual representa-
tion approach leads to the Gaussian process regression (GPR) model, where the kernel function is
interpreted as a covariance function of the Gaussian process.
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3.1. Bayesian neural networks

A feed-forward neural network model can be treated as a parametric model parameterised by a vector
of adaptive weights. The MLP neural network model with d inputs z;, one hidden layer of H
nonlinear units and a single, linear output can be expressed as a following equation

H d
y(x;w) = ijg (Z w;jT; + wjo) + wp . (31)

Nonlinear function g() is an activation function of the hidden units and w is the parameters vector
with: wj; being the first layer weights from the ith input to the jth hidden unit and w; being the
second layer weights from jth hidden unit to the output. wjo and wo are the bias parameters for
the hidden and output unit respectively. In this paper we use ‘tanh’ activation function

__exp(a) — exp(a)
()= xp(@) + exp(@) o

In the Bayesian approach to neural networks learning, all weights are treated as random variables.
As described in Sec. 2, we first define prior distribution p(w|a) over weights which expresses our
beliefs about the parameters before the data is observed. We also define noise model p(en|o?),
describing how the dependent variable may be corrupted by the noise, and finally we obtain the
likelihood p(t|x, w,0?). Once we observe the data, Bayes’ theorem is used to update our beliefs and
we obtain the posterior distribution over weights p(w|t, o, 0?) which we use to make the prediction
for a new input vector. The full description of the Bayesian techniques for neural networks can be
found in Bishop’s book [2].

3.2. Gaussian processes

In the introduction to this section we ended with a statement that the Gaussian process model can
be derived from the Bayesian viewpoint of linear regression models. Here we concentrate on the
key result allowing direct application of Gaussian process regression model for prediction. This is
the predictive distribution of the target variable ty41 for a new input vector xy1 . This requires
evaluation of conditional distribution p(ty41|tn), where ty is a vector of training target values.
This conditional distribution for the Gaussian processes is a Gaussian distribution with mean and
covariance given by

m(xyt1) = kT Cy't, (33)
o(xn41) = c — k" CR'k, (34)

where the Cy is the N x N covariance matrix with elements given by a sum of two terms: the
covariance function k(x,,X,,) and the Gaussian noise component represented by a precision j

C(Xn,Xm) = k(xnaxm) + ,B—lanm . (35)

The vector k has elements k(xn,xn41) and the scalar ¢ is k(xy41,Xn+1) + 871 From Eqgs. (33)
and (34) we see that the Gaussian process regression model is completely defined by the covariance
function k(xy, X ). This function allows us to define the situation that for the nearby points x, and
X,, in the input space, the corresponding values y(x,) and y(x,,) will be more strongly correlated
than for dissimilar points [3].

The covariance function can be any function that will generate a non-negative definite covariance
matrix for any ordered set of (input) vectors (x1, . . .,Xp). It is usual to choose the covariance function
to be stationary, i.e. such that the condition

k(x,x') = k(x — x') (36)
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holds. This means that the location of the points x and x’ does not affect their covariance, just the
vector joining them. In this paper we use squared exponential (SE) covariance function

d
k(X Xm) = 0 xp [ =2 S 1:(ni — zmi)? | + 6 (37)
. i=1
which is the exponential of a weighted squared distance between points in R?. The SE covariance
function has some free parameters which are called hyperparameters to emphasise that they are
parameters of a nonparametric model. The term 6y controls the vertical offset of the GPR. model,
while 6y controls the vertical scale of the process. The 7; hyperparameters allow a different distance
measure for each dimension.

After defining the covariance function we can make predictions for the new input vectors but
it is often necessary to learn the hyperparameters before making reliable prediction. The simplest
approach is similar to the evidence approximation discussed above. For Gaussian process regres-
sion, we find the most probable hyperparameters of the covariance function by maximising the log
likelihood function given by

1 1 N
Inp(t|d) = o In|Cy| - itTCI_Vlt e In(27), (38)

using gradient-based optimisation algorithms such as conjugate gradients. More details on Gaussian
process regression models can be found in Bishop’s book [3] and in the book by Rasmussen and
Williams [12].

4. CONCRETE FATIGUE FAILURE

Concrete fatigue failure can be defined as a number of loading cycles N causing fatigue damage
of plain concrete specimens. The problem of predicting concrete fatigue failure was formulated
as a Bayesian regression problem. We assumed that the fatigue failure is a sum of an underlying
deterministic function y(x) and a random variable e. The input vector x consists of four explanatory
variables, namely concrete static uniaxial compressive strength (f.), ratio of minimal and maximal
stress level in compressive cycle of loading (R = Omin/Omax), ratio of compressive fatigue and static
strength of concrete, also called maximal compressive stress level (x = f.y/f.) and frequency of
the loading cycle (f). The target variable is the scalar output y = log N.

4.1. Data set

In Ref. [5] a wide experimental evidence was described and compiled, corresponding to more than 400
tests performed in 14 laboratories. The concrete specimens were subjected to cycles of compressive
loadings and the numbers of cycles N which caused the specimens fatigue damage were measured.
In this paper we used only P = 218 results (examples) of tests from 8 laboratories mentioned in [6]
and [8]. For example, in Fig. 1 the results of two various fatigue tests on concrete samples are
presented. In Table 1 the statistical parameters, namely minimal and maximal values, mean values
and standard deviations for inputs and output variables are shown.

Table 1. Statistical parameters of input and output variables

Variable Min | Max | Mean | St. Dev.
fe [MPa] | 20.70 | 45.20 | 34.68 8.84

R[] 000 088 014 018
f[Hz] ]0.025 [ 150.0 | 21.30 | 39.38
x [ 049 | 094 | 074 | o011

logN [-] | 1.86 | 7.34| 456 | 1.41
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Fig. 1. Results of fatigue tests on concrete samples given by: (left) Artim and McLaughlin (1959),
(right) Gray et al. (1961) taken from [5]

5. NUMERICAL EXPERIMENTS AND RESULTS

In this section we present numerical experiments using neural network and Gaussian process models
which we applied to the fatigue tests data. The learning was performed using L = 118 learning
examples (patterns). The generalisation capability of the models in predicting concrete fatigue
failure was estimated using T' = 100 testing examples.

In the analysis both the inputs and output variables were first standardised to zero mean and
unit standard deviation by transformation

e -, (39)

where Z; is an average value and s; is the standard deviation

N
: 1 ¢
T Z i ATMNTT 112—:1(3:? = )2, (40)

This data transformation can be viewed as a form of preconditioning technique which remove the
possible source of ill-conditioning of learning.

5.1. Neural network

A feed-forward neural network with a single hidden layer of hyperbolic tangent units (neurons)
and linear output unit was used to model the relationship between the inputs and the output
variables. On the basis of the preliminary analysis, we decided to use 15 hidden units. This number
of units should give the neural model sufficient flexibility in approximating the relationship. The
total number of parameters of 4-15-1 neural network is 91 which is smaller than the number of
learning patterns L = 118. This model can be expressed by the following equation

15 4
y(x;w) = Z wj tanh (Z WjT; + wj0> + wp . (41)

=1 i=1
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Having defined the model, we used various approaches to learning, described in Sec. 2. The
experiments were performed using Netlab toolbox [11]. The initial network weights were sampled
from a zero mean spherical Gaussian distribution with variance one.

We started with a classical learning based on minimisation of a sum of squared error function
given in (2). We used the scaled conjugate gradient optimisation method. To avoid the over-fitting
phenomenon, we applied the early stopping method. On the basis of the validation errors using
2-fold cross-validation, we decided to stop learning after 13 epochs. We also used regularised error
function (3). In this approach, we estimated the value of the regularization parameter A using the
cross-validation to be A = 0.35 and stopped learning after 50 epochs of conjugate gradient based
learning.

In the Bayesian approach to neural network, we used the evidence approximation approach
to Bayesian learning and prediction described in Sec 2.3. We first chose the initial values of the
hyperparameters o and B. We used two settings. The first one is based on the previous results for
classical approaches to learning. The estimated value of the noise level (precision of the Gaussian
noise model) was computed from Eq. (12), 8 = 2.1217. The value of the hyperparameter o was
computed knowing that A = a/f, which gives a = 0.7426. On the base of the cross-validation, we
decided to stop the re-estimation procedure for hyperparameters given by Eqs. (24)-(26) after only
one iteration. The final values of hyperparameters in the first case are 8 = 2.8665, a = 2.7554 and
v = 42.1395 gives the number of well-determined parameters. In the second settings, we used the
commonly assumed initial values for hyperparameters a = 0.01 and B = 100. After one iteration of
the re-estimation procedure, the final values of hyperparameters are f = 2.2162, o = 2.6358 and
v = 60.9431

5.2. Gaussian process

A Gaussian process regression model with a squared exponential covariance function was applied to
model the data set. The hyperparameters of the covariance function were estimated using maximum
likelihood approach described in Sec. 3 and the conjugate gradient optimisation method with only
6 iteration (trying to avoid over-fitting as stated based on 2-fold cross-validation). The Netlab
toolbox [11] implementation of GPR model was used to perform the experiments.

5.3. Empirical formula

In ref. [5] an empirical formula was derived by Furtak as the following implicit relation between
variables:

log N = %[log(l.lG-Cf/X) + log(1 +B-R-logN)] (42)

where: x = fen/fe 1 R = Omin/0max and the parameters according to ref. [5] have the following
values,

A = 0.008 —0.118 - log(o/fe),
B =0.118 - (o7 /o1 — 1),
Cf=1+0.07-(1-R)-logf,

or and oy are critical strengths.



Bayesian regression approaches in concrete failure prediction 665

5.4. Results
We compared both models and empirical formula on the base of the following prediction errors:

— root-mean-squared (RMS) error given by

%
1
Erms = |y > (tn —wn)?, (43)

n=1

— and average percentage (AP) error given by

1 &t Y
i b0t .
Eap =73 > = (44)
n=1
Also the coefficient of correlation r was computed
1% N

s T St 1 e

where t and 7 are mean values of targets t, and predicted values y, , respectively.

The computed RMS errors for all P = 218 patterns as well as for L = 118 training and 7' = 100
testing patterns for various variants of MLP neural network training and Gaussian process regression
model are presented in Table 2. There are also shown average percentage (AP) errors as well as
coefficients of correlation r. The results for testing data indicate that the Gaussian process regression
(GPR) model has slightly better generalization properties (Egys(T) = 0.771, r(T") = 0.856) than
the MLP model with various methods of the parameters estimation.

Table 2. Comparison of generalisation performance of multilayer perceptron (MLP) neural network models

with various Bayesian learning approaches (maximum likelihood — ML, maximum a posteriori — MAP, evidence

approximation — EA with two different sets (s1, s2) of initial values of the hyperparameters) and Gaussian

process regression (GPR) model with maximum likelihood — ML approach to estimation of the covariance

function parameters in predicting concrete fatigue failure. In third column the estimated standard deviation
of the Gaussian noise model is presented

Model Learning | Noise RMS(V) AP(V) r(V)

a P L T L T P L A
Formula | - = 0.931 | 0.873 | 0.991 | 17.7% | 26.3% | 0.843 | 0.843 | 0.843
MLP ML 0.69 | 0.732 | 0.686 | 0.782 | 12.8% | 20.8% | 0.864 | 0.876 | 0.849
MLP MAP 0.67 | 0.724 | 0.670 | 0.784 | 12.6% | 20.6% | 0.868 | 0.883 | 0.852

MLP EA, sl 0.59 | 0.723 | 0.675 | 0.775 | 12.7% | 20.4% | 0.868 | 0.881 | 0.853
MLP EA, s2 0.67 | 0.718 | 0.666 | 0.776 | 12.6% | 20.6% | 0.869 | 0.884 | 0.852
GPR ML 0.51 | 0.724 | 0.681 | 0.771 | 12.9% | 20.4% | 0.868 | 0.879 | 0.856

The predicted influence of maximal stress level on the fatigue failure of concrete by MLP models
and GPR model are presented in Figs. 2 and 3, as well as error bars. There are also shown the
actual measured values, for two sets of tests, namely tests performed by Artim and McLaughlin
and tests performed by Gray et al. Both models give similar predictions for the mean value of
the predictive Gaussian distribution. However, there is a significant discrepancy between MLP and
GPR predicted error bars (confidence intervals). Gaussian process model has much smaller variance
of the predictive distribution than MLP networks. In this context, it is interesting to compare the
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Fig. 2. Predicted by MLP models fatigue failure of concrete as function of maximal stress level for tests
performed by: (left) Artim and McLaughlin, (right) Gray et al.
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Fig. 3. Predicted by GPR model fatigue failure of concrete as function of maximal stress level for tests
performed by: (left) Artim and McLaughlin, (right) Gray et al.

estimated values of standard deviation o of the assumed Gaussian noise model (5) for all nonlinear
regression models, which are presented in Table 2. The standard deviation values are rather similar.
This may indicate that the Gaussian process model is more confident in predicting fatigue failure.
For MLP models with evidence approximation, the larger error bars may be caused by much more
uncertainty in estimation of parameters values (weights).

The empirical formula by Furtak is also presented in Figs. 2 and 3. It is visible that both models
are closer to the experimental data than Furtak’s formula, which significantly overestimates the
fatigue failure.

Figure 4 shows comparisons between the measured fatigue failure and that predicted by the
models for the training and the testing data. A smaller dispersion of the points around the dashed
line means a smaller prediction error. MLP and GPR models seem to have very similar predictions
for the experimental data.
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Fig. 4. Predicted vs measured fatigue failure for the training and testing patterns: (left) Bayesian neural
network with evidence approximation (MLP EA, s2), (right) Gaussian process regression (GPR)

6. CONCLUSIONS

In this paper, we presented the application of Bayesian regression approach to concrete fatigue
failure prediction. We used two nonlinear regression models, namely multilayer perceptron (MLP)
neural network and Gaussian process regression (GPR). We applied various simple approximation
approaches to full Bayesian learning and prediction.

From the results of experiments, some conclusions can be drawn. The best predictions for testing
data were obtained for Gaussian process model. In the case of MLP network, the evidence approxi-
mation approach to Bayesian learning gave the smallest testing errors. Both the best models make
it possible to obtain the predictive distributions and the error bars can easily be plotted.

In future, we plan to apply some improvements to the Bayesian regression approach used in
this paper. It is important to consider other, more appropriate noise models. Also, we plan to
use other covariance functions in GPR model. Finally, we should consider applying the stochastic
approximation to Bayesian inference based on the Monte Carlo sampling method to overcome some
problems with over-fitting (for the maximum likelihood based learning) in case of covariance function
parameters estimation in Gaussian process regression model.
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