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Large deflection analysis of laminated composite plates is considered. The Galerkin method along with
Newton-Raphson method is applied to large deflection analysis of laminated composite plates with various
edge conditions. First order shear deformation theory and von Karmén type nonlinearity are utilized and
the governing differential equations are solved by choosing suitable polynomials as trial functions to ap-
proximate the plate displacement functions. The solutions are compared to that of Chebyshev polynomials
and finite elements. A very close agreement has been observed with these approximating methods. In the
solution process, analytical computation has been done wherever it is possible, and analytical-numerical
type approach has been made for all problems.
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1. INTRODUCTION

Different numerical techniques were employed to investigate the geometrically nonlinear behavior
of thick plates. Pica et al. solved the large deflection problem of isotropic plates using finite element
technique [8]. Reddy and Chao applied the finite element method (FEM) to large deflection and
large amplitude free vibration problems of laminates [9]. Turvey and Osman performed the large
deflection analysis of isotropic plates using Dynamic Relaxation technique [14]. Liu et al. solved the
large deflection problem of elliptical plates using Galerkin method [6]. Shukla and Nath presented
a Chebyshev polynomials (CP) solution for geometrically nonlinear problem of moderately thick
laminates [12]. Liew et al. proposed a mesh-free kp-Ritz method for the large deflection flexural
analysis of laminated composite plates [5]. First order shear deformation theory (FSDT) based on
Mindlin’s hypothesis and von Karman type geometric nonlinearity were utilized in the aforemen-
tioned works. ‘

Among the methods of weighted residuals, the Galerkin method (GM) is a powerful numerical
solution technique to differential equations. The Galerkin technique has found a research area for
a particular case of boundary conditions and trial functions for the large deflection analysis [4, 6,
11, 13]. ’

This paper concerns the effect of shear deformations in the large deflection analysis of composite
plates. The FSDT based on Mindlin’s hypothesis is imposed using von Kérmén type geometric
nonlinearity. Governing nonlinear equations are solved by employing GM with the Newton-Raphson
technique. In the solution process, computations have been carried out analytically wherever it is
possible and analytical-numerical type approach has been made for all cases.

2. GOVERNING EQUATIONS

Consider a rectangular laminated plate with dimensions a, b and uniform thickness h. The origin
of the coordinate system is chosen to coincide with the center of the midplane of the undeformed



684 H. Tanriéver, E. Senocak

(al2,b/2)
A e
b 4
2
0.0) 5 -
Y ”
a q,
- 2

Fig. 1. Plate geometry and loading

plate (see Fig. 1). The plate is assumed to be subjected to a uniform transverse pressure Qo, and it
is constructed of finite number of homogeneous orthotropic layers perfectly bonded together.
Under the assumptions of first order shear deformation theory based on Mindlin’s hypothesis;
let u, v, w denote the displacements at an arbitrary point of the plate in the z, vy, z directions and
ud(z, y) O(z,y), w(z,y) are the displacements at a corresponding point of the midplane of the
plate in the z, y and z directions respectively. Then the displacement field of the first order theory
is of the form [7],

u(@,y,2,1) = u’(2,9,1) + ¢(2,9,t)z,

v(z,y,2,t) =0"(z,y,1) + dy(z,9,1)z, (1)

w(z,y, z,t) = w(z,y,1),
where ¢, and ¢, are the rotations of a transverse normal about the y and z axes respectively. The
corresponding total strains could be expressed as follows,

€z = sg + K2,

Ey = 52 + Kyz,
iy (2)
Yoy = 7zy e Kzy2,

0

Yzz = 7:(c)z77yz = Yyz

Considering von Karmén type geometric nonlinearity [2], the strain displacement relations can
be written as

0 0 1 S
E, = ’LL 5 )
1
0 2
€y = v + 2w,y,

0 _

7:1:;1/ B U‘,y L v,:z: # WaWy ,
| RESl

Yoz = Wz + Pz,
0 -

7yz =Wy + ¢y )

where differentiations are denoted by comma. Midplane curvatures and twist of the plate are the
following,

x = ¢(L‘,1’a Ky = ¢y,y, Kgy = (bz,y b5 ¢y,z- (4)
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For a plate with an arbitrary number of layers, the constitutive relations are
N A B €0
{m}-lz )%} ®
Qy } [ Ay Ags ] { 7 }
=K Y2ios 6
{ Qz Ays  Ass A (6)
where N and M are the resultant forces and moments conjugate to €? and , respectively. @, and

@, are transverse forces and the parameter K is shear correction factor [15]. Aji;, Bij and D;; are
symmetric matrices defined as follows,

h/2
(Aij, Bij, Dij) = /h/2(1,z,z2)Qij dz, (7)

where Q;; are the corresponding reduced stiffness coefficients.
Five governing equations of motion for the plate can be written as follows in the general form [10]:

Ry = Nyg+ Ngyy — Iouy — Lot = 0,

Ry = Ngyz + Nyy — Iovy — iy = 0,

Ry = Qzz+ Qyy + (WzNg + wyNgy) o + (W Ngy + wyNy)y + g0 — Ipw g = 0, (8)
Ry = Myg+ Myyy — Qz — o — iu%, =0,

Ry =Mzgs + Myy— Qy — Ly — Ilv?tt =0,

where Iy, I; and I, are mass moments of inertia defined as

Zi41 ;
P2 dz =3 [ )9 dz, 9)
A

h/2

(10,11 12) = |

—h/2

p¥ being the material density of the i-th layer. The equations of motion (8) in terms of displace-
ments can be obtained by making use of constitutive (5, 6), strain-displacement (3) and curvature-
displacement (4) relations (these equations are not given here; see [10] for details).

For the Galerkin approach, the normalized displacements of the plate are approximated in the
form shown below:

Zzamn mnxy)

m=0n=0

Zzbmn ) Vinn (2, ),

m=0n=0

Z Z cmn(t) Winn(2,9), (10)

m=0n=0

M N
= Z Z Ao (8] S (2, 11),

m=0n=0

Ezemn mnmy)

m=0n=0
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where amn ; bnn , Cmn » dmn and e,y are unknown functions of time, Unn , Vinn , Winn » Smn and Topn
are the trial functions, and M and N are the number of terms in z and y directions respectively.
In general, M and N may take different values for each displacement function. Herein, polynomials
are used as trial functions, which are chosen to satisfy the kinematic boundary conditions, where
as natural boundary conditions are not satisfied. In this case, simultaneous approximation is made
to the solutions of differential equations and to the boundary conditions. Since this is a static
analysis amn , bmn , Cmn , dmn and ey, are not time dependent functions (they are taken as unknown
constants) and time derivative terms in the equations of motion are all cancelled.

Substituting Eq. (10) into nonlinear plate equilibrium equations and the boundary terms yields
the residuals in the domain of the plate and at the boundaries of the plate. Forcing these residuals
to be orthogonal to each member of a set of trial functions yields the following Galerkin equations,

+b/2  p+a/2 +b/2 +a/2
/ / Uman diL'dy - / UmnNle:ia/Q dy - / UmnNzy|y=ib/2 dzx = O,
b/2 a/2 —b/2 —a/2

+b/2  p4a/2 +a/2 +b/2
/ ’ Vinn Ro dzdy — / anNylyzj:b/Q dz — /b/ anny[zzia/Q dy =0,
a/2 —b/2

—b/2 —a/2
+b/2 p+a/2
/ Wiyn Ra dady =0, (1)
-b/2 J—a/2
+b/2 pr+a/2 +b/2
/ SmnR4 dzdy — / SmnMz|z=-ta/2 dy =0,
—b/2 a/2 —b/2
+b/2  p+a/2 +a/2
/ / TmnRS d.’Edy = / TmnMyly::i:b/2 dz =-0).
b/2 a/2 —a/2

3. SOLUTION PROCEDURE

In the application of the Galerkin method the kinematic boundary conditions are satisfied by choos-
ing appropriate trial functions. In the Galerkin method used here, the evaluations of integrals are
symbolically computed by using a commercial computer math code Mathematica™ [16]. Trial
functions are weighted polynomials given as follows,

Unn = @1(z,y) z™y",
Vi = @2(z,y) z™y",
Winn = @3(z,y) z™y", (12)
Smn = P4(z,y )ﬁmyn,
Tnn = ®5(z,y) 2™y",

where ®;, (1 = 1,...,5) denote the weight functions. Substituting Eq. (10) into Eqs. (11), nonlinear
equations in terms of unknown coefficients amn, bmn, Cmn, dmn and e, are obtained. These
equations are solved by employing the Newton-Raphson methodology.

4. BOUNDARY CONDITIONS
Three different boundary conditions are considered and shown in Table 1. The Galerkin integrals in

Egs. (11) are in the general form and must be modified according to relevant boundary conditions.
Note that whole plate models are analyzed in all cases presented here.
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Table 1. Boundary conditions and corresponding weight functions

No=Nyy=w=¢,=¢, =0 at = Laf2,
CC Ny=Ngyy=w=¢, =¢, =0 at y==b/2.
®;=1(G=12), & =(2*-a?/4)(y®-b?/4) (i=3,...5).

== w0 s x=%a/2andy=+b/2
¢ =0 at = —a/2and y = £b/2, M, =0 at z = +a/2,
CS-1 M, =0 aty==%b/2, ¢, =0 atz==%a/2.
®; = (22 —a?/A)(W? -1b%/4) (i=1,...3), ®s=(z+a/2)(y?-0b%/4),
&5 = (22 — a?/4).

W= =w =g, =0 at ¥ =+a/2 and y = +b/2,
CS-2 My,=0 aty=4b/2, ¢,=0 at z==a/2.
®; = (2% —a?/4)(y*> - b?/4) (i=1,...4), ¥5= (3% -a?/4).

5. RESULTS

Large deflection of a symmetric cross-ply laminate and unsymmetric angle-ply and cross-ply lami-
nates are chosen as numerical examples for the application of the GM. Comparisons with results of
the other solution techniques such as Chebyshev polynomials and finite elements are given.

In the application of the GM the displacement (trial) functions are approximated by polynomials
expressed in Eq. (12). The proper choice of the trial functions considering symmetry of the problem
can reduce the computation time [13]. The systematic choice of the trial functions is explained in
detail for each case. The convergence study of the proposed solution technique is carried out and it
has been determined that taking M and N as five is appropriate. Hence, for all the GM applications
given here, M and N are taken as five.

5.1. Symmetric cross-ply laminate

The large deflection of a symmetric cross-ply [0°/90°/90°/0°] laminate under various boundary
conditions is analyzed. The powers m and n are taken as in the following manner for CS-1,

= 031,20 . 7D =20 152 . 555020

and for CS-2 type boundary condition,
m = odd U S m = even v T m = even W (14)
n = even mn mn n=odd mn mn n = even mn *

The material and geometry constants of the plate are taken from [12] and given as follows,

E, =175.78 GPa, Ej= E1/25,
G12/E2 = G13/E2 = 0.5, G23/E2 = 0.2,
s S0 a=b, - a/hi=10,; K =5/6.

Normalized center deflection and center moment values of the plate under CS-1 and CS-2 boundary
conditions for GM and CP (values are read from [12]) are given in Figs. 2 and 3.
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Fig. 2. Load (goa"/E>h*) versus central deflection (w/h) of [0°/90°/90°/0°] laminate
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Fig. 3. Load (goa*/E2h*) versus M,a?/Di1h (a) and Mya®/Dssh (b) at the center of [0°/90° /90° /0°]
laminate

5.2. Unsymmetric laminates

Unsymmetric angle-ply and cross-ply laminates under CC type boundary condition are considered
for the large deflection analysis. In the nonlinear analysis of the cross-ply laminate the powers m and
n are taken as in the same manner given in Eq. (14). For the nonlinear analysis of angle-ply laminate
the powers m and n are chosen in such a way that (m + n) is odd for the in-plane displacement
functions and rotations and even for the transverse displacement function.

Material and geometrical properties of the laminates are taken from [9] and given below.

E; = E1/40,
Vig = 0.25,

G12/E2 = 0.6,
a/h = 40,

G13/E2 = 0.5,
K = 5/6.

G = Gi3,
a=>b,

Dimensionless center deflection-load curves of these laminates are shown in Fig. 4. FEM [9] and
perturbation technique [3| results (they are not shown here) for these laminates are found to be in
good agreement with the present results. Results of the commercial FEM program ANSYS [1] can
be seen in Fig. 4. Shell-91 type elements including shear deformations with a 10 x 10 mesh are used
in ANSYS program.
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Fig. 4. Load (10~%goa®/E>h") versus central deflection (w/h) of cross-ply [0°/90°] (CRS) and angle-ply
[45° /—45°] (ANG) laminates

6. CONCLUSIONS

Geometrically nonlinear analysis of thick composite plates based on FSDT is performed by using
Galerkin approach along with Newton-Raphson technique. The choice of trial functions is crucial to
approximate the two dimensional displacement field. The trial functions must be chosen in a way
that essential boundary conditions are satisfied. The present solution methodology may be used to
solve large deflection analysis of the moderately thick laminates in an easy and effective way with the
help of a symbolic math package. The method is found to determine closely the displacements with
a few number of terms. The results are compared to that of known other approximating methods
(Chebyshev polynomials and finite elements), and commercial FEM code ANSYS. A very good
agreement is observed. The convergence of the Galerkin method is found to be quite fast.
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