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Nonlinear electroelasticity is not a new problem, its theory involving nonlinear deformation and nonlinear
material behavior has been well established. However, the numerical simulation of nonlinear electroelas-
ticity is until now still far from satisfactory, especially when the interaction between electric fields and
matter cannot be considered as confined in the finite space occupied by the matter. It is understood that
under the application of an electric field, the deformation of an elastic body is governed not always by
what happens inside the material body but in many cases also by the environment surrounding it. This is
notably true in the case of electronic electroactive polymers, the materials that emerge today as a lead-
ing candidate in developing artificial muscles. In this work, we present a numerical analysis of nonlinear
electroelasticity by assuming large deformation, nonlinear polarization and by paying attention to the
contribution of the free space surrounding the bodies of interest.
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1. INTRODUCTION

In nonlinear electroelasticity we study the interaction between polarizable bodies and electric fields.
This coupled electro-mechanical phenomenon can be viewed in a simple way as follows: when being
immersed in an electric field a polarizable body deforms because of the electric forces acting on
electric dipoles that appear together with the application of the electric field or exist already inside
the body. The polarization and deformation of the body lead to changes in the electric field and
correspondingly to the electric forces, whose changes in turn affect the polarization and deformation.
The process continues to take place until a stable state is established. When the body of interest
and the electric field can be considered as a close system and the total energy is considered as stored
inside the space occupied by the body, a stored energy function can be assumed to be a function of
the electric field and the deformation at every point, which helps construct a variational equation
for the coupled problem. This variational equation can be discretized by using the finite element
method and the system of nonlinear equations obtained from the discretization can be linearized
and solved numerically, see for example [7] or [11]. In the case the energy is stored not only inside
the body of interest but also in the free space surrounding it (normally air or, as we can in this
context consider equivalently, vacuum), the simulation becomes more cumbersome. In this case,
as it is well known in the numerical simulation of electric fields, a large finite element mesh can
be used to simulate a sufficiently large part of the surrounding space (see for example [3]) or the
boundary element method can be employed. When dealing with large deformation, the difficulty
in using a large finite element mesh does not lie entirely in the amount of effort that needs to be
spent on the computation of the electric field inside this mesh, but also in the effort to remesh
the surrounding space after every few iterations. Besides, the construction of such a finite element
mesh is not-user friendly since tests must be realized to determine a suitable shape and size for the
part of the surrounding space that needs to be taken into account. An alternative method is the
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use of a coupled boundary finite element method discussed recently in [8], [9] and [10], in which
the finite element method is used to simulate the material body and the boundary element method
is used to simulate the finite or infinite free space surrounding the body of interest. In using the
boundary element method, the electric field in the free space can be simulated in a very efficient
manner. In this work, we use the method proposed in [8] and [9] to investigate the influence of the
free space on the electric field and on the deformation field of the body. In what follows, we recall
the governing equations of nonlinear electroelasticity, in which the effect of the surrounding space
is taken into account with the help of the electric tractions and electric fluxes at the boundary of
the material body. These tractions and fluxes will be computed with the help of some boundary
integral equations. For the sake of simplicity, we restrict ourselves to the case of static electric
loading with no body charge, no current and no magnetic field. No dynamic effect is considered
here.

2. GOVERNING EQUATIONS

Let us consider a body made of elastic material. The undeformed configuration of the body is
denoted by B0. In this configuration the position vector of each point is denoted by X. Corre-
sponding to B0, the deformed configuration of the body under the application of mechanical and
electrical forces is denoted by Bt. The position vector of each point in the deformed configuration
Bt is denoted by x: x = ϕ(X). The deformation of the body at every point inside the body is

characterized by the deformation gradient F = F (X) =
∂ϕ(X)

∂X
. In addition, we suppose that the

free space V t surrounding Bt has two parts (Fig. 1), a finite part Vf
t (cavity) and an infinite part V i

t

such that ∂Bt = ∂Vf
t ∪∂V i

t . Correspondingly, the two parts of the free space V0 surrounding B0 are

denoted by Vf
0 and V i

0 with ∂B0 = ∂Vf
0 ∪ ∂V i

0. For later use, we define two coordinate systems with
basis vectors {EI , I = 1, 2, 3} in the undeformed configuration B0 and {ei, i = 1, 2, 3} in the de-
formed configuration Bt. By using these coordinate systems and Einstein’s summation convention,
the position vectors X and x are expressed as X = XIEI and x = xiei, while the deformation

gradient is presented in the format F = FiJ(X)ei ⊗EJ with the coordinates FiJ(X) =
∂ϕi(X)

∂XJ
.

Fig. 1. Infinite (Vi
t) and finite (V

f
t ) free space.

Governing equations for the electric field in reference to the deformed configuration. When the
body is immersed in an electric field, besides normal mechanical forces, as mentioned above, there
are electric forces acting on the electric dipoles that are distributed inside the material body.
As the electric body force and the electric traction must be taken into account in the governing
equations of the motion problem, the electric field inside and outside the material body must
be determined. In reference to the deformed configuration Bt, at every point inside the material
body, the electric field is governed by four Maxwell’s equations: (1) Gauss’ law for electricity that
describes how electric charges produce electric fields; (2) Gauss’ law for magnetism that describes
the experimental absence of magnetic monopoles; (3) Ampere’s law that describes how currents
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produce magnetic fields; (4) Faraday’s law of induction that describes how changing magnetic fields
produce electric fields. For the case considered here we assume that there exist no magnetic field, no
current and no body charges. By bypassing Gauss’s law for magnetism and Ampere’s law because of
vanishing current and vanishing magnetic field, the spatial electric field vector e = e(x) = ei(x)ei
is determined by Faraday’s law of induction

∇x × e = 0 (1)

and by electric Gauss’s law

∇x · d = 0, (2)

where the spatial electric displacement d = d(x) = di(x)ei is computed as a function of the spatial
electric field vector e and the spatial electric polarization p = p(x) = pi(x)eid = ǫ0e+ p, (3)

where ǫ0 is the electric permittivity of vacuum. It should be emphasized that no special assumption
about the relationship between the spatial electric polarization p and the spatial electric field
vector e is made here. For the case of an isotropic material, the spatial electric polarization p is a
nonlinear function of the spatial electric field vector e and the deformation gradient F or in other
words p = p(e,F ). As consequence, the spatial electric displacement is also a nonlinear function of
the electric field and the deformation gradient d = d(e,F ). For a point lying outside the material
body, i.e., in Vt, Faraday’s law of induction, electric Gauss’s law and the constitutive equation for
the spatial electric displacement become

∇x × eǫ0 = 0, ∇x · dǫ0 = 0 and dǫ0 = ǫ0eǫ0 , (4)

where we use the notation (•)ǫ0 to denote electric quantities at a point lying in Vt.
For simplicity we assume that inside the material body there is no surface of discontinuity and

the jump conditions for mechanical as well as electrical quantities only apply at the boundary of
the body. At the boundary of the body ∂Bt, the jump condition for the spatial electric field vectore and the spatial electric displacement d are

[[e]]× n = 0 and [[d]] · n = −̺̂ fre
t , (5)

where n = niei is the unit outward pointing normal to the boundary Bt and ̺̂ fre
t is the surface

charge density applied on ∂Bt. In the above conditions, the jump [[(•)]] is defined as the change in
the value (•) when going from inside the material body to the free space outside [[(•)]] = (•)inside−
(•)outside. The jump conditions (5) can be also written in the formate× n = eǫ0 ×n and d · n = qt − ̺̂ fre

t , (6)

where the electric flux qt is defined as qt = dǫ0 · n.
In order to solve the problem of finding the electric field, a scalar electric potential ψ = ψ(x)

(called here spatial electric potential) is defined in such a way that the spatial electric field vector
can be computed by the spatial gradient of this potentiale = −∇xψ. (7)

By using the spatial electric potential ψ, Faraday’s law of induction is satisfied automatically
due to the fact that ∇x×∇xψ = 0. Furthermore, the jump condition (5)1, i.e., (6)1, is also satisfied
if ψ is continuous across the boundary of the material body Bt.
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Governing equations for the electric field in reference to the undeformed configuration. Correspond-
ing to the above governing equations written in reference to the deformed configuration, in reference
to the undeformed configuration, the governing equations for the electric field can be written in
terms of the pull-back versions of the spatial electric field vector, spatial electric displacement, spa-
tial electric polarization and spatial electric potential. The pull-back version of the spatial electric
field vector e in B0 is called the material electric field vector and is denoted by E, which is defined
as E = F t · e (8)

or in index notation E = EIEI , in which the coordinates EI are computed by EI = FIjej and ej
are the coordinates of the spatial electric field vector e as defined above. The pull-back version of
the spatial electric field vector d in B0 is called the material electric displacement vector and is
denoted by D. This vector is defined byD = JF−1 · d (9)

or in index notation D = DIEI , where DI = JF−1
Ij dj and dj are the coordinates of the spatial

electric displacement vector d. By using the above definitions of the material electric field vectorE and the material electric displacement vector D, Faraday’s law of induction is now written in
reference to the undeformed configuration B0 as

∇
X

×E = 0 (10)

and electric Gauss’s law becomes

∇
X

·D = 0. (11)

Also by using the above definitions of the material electric field vector E and the material electric
displacement vector D, the relationship (3) can be rewritten in the formatD = ǫ0JC

−1 ·E+ JF−1 · p, (12)

which motivates the definition of the material polarization P asP = JF−1 · p (13)

or in index notation P = PIEI , where PI = JF−1
Ij pj. It should be noted that this definition of the

material polarization is not unique and other versions are possible.
In reference to the undeformed configuration B0, the jump conditions for the material electric

field vector E and the material electric displacement D at the boundary ∂B0 are written in the
format

[[E]] ×N = 0 and [[D]] ·N = −̺̂ fre
0 (14)

or in the formatE×N = Eǫ0 ×N and D ·N = q0 − ̺̂ fre
0 , (15)

where q0 = Dǫ0 ·N , N = NIEI is the unit outward pointing normal to the boundary B0 and ̺̂ fre
0

is the surface charge density applied on ∂B0.
Corresponding to the spatial electric potential ψ = ψ(x), in reference to the undeformed configu-

ration B0 we define the material electric potential Ψ = Ψ(X) such that Ψ(X) = ψ(x)◦ϕ(X). With
this definition of the material electric potential, the material electric field vector is computed asE = −∇

X
Ψ. (16)
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By using the material electric potential Ψ, Faraday’s law of induction (10) is satisfied automat-
ically due to the fact that ∇

X
×∇

X
Ψ = 0 and the jump condition (14)1, or equivalently (15)1, is

also satisfied if Ψ is continuous across the boundary of the material body B0. Furthermore, the use
of the relationship Ψ(X) = ψ(x) ◦ ϕ(X) is compatible with the pull-back formulation (8) since
∇
X

Ψ = ∇xψ·F . For further details on the governing equations of electric fields, see for example [5].

Governing equations for the mechanical field in reference to the deformed configuration. In reference
to the spatial configuration Bt if we denote the electric body force that an electric field exerts on
material by belet = belet (x) = belecti (x)ei, the balance equation of linear momentum is written as

∇x · σt + bmec
t + belet = 0, (17)

where σ = σ(x) = σij(x)ei ⊗ ej is the Cauchy stress tensor, σ
t is the transpose of σ and

bmec
t = bmec

t (x) = bmec
ti (x)ei denotes the mechanical body force. The electric body force b

ele
t can be

computed as a function of the electric field vector e and the electric polarization vector p in the
format

belet = [∇xe] · p. (18)

Note that the balance equation of linear momentum (17) is the same as that of a normal nonlinear
elastic system, except the fact that the Cauchy stress tensor here is not symmetric. This can be
seen by considering the balance equation of angular momentum and by noting that the electric
body force belet can be written as the divergence of stress like tensor σ

ele in the format

belet = ∇x · σele,t, (19)

in which σele is called here the electric stress tensor and is defined as

σele = d⊗ e− 1

2
ǫ0 [e · e] i, (20)

where i is the second unit tensor i = δijei ⊗ ej. Note that the above definition of the electric
stress tensor σele is chosen for the sake of simplicity. This is due to the fact that the electric
stress tensor σele satisfying the Eq. (19) is only defined up to an additive constant. For the case of
linear polarization, the electric displacement vector d and the electric field vector are parallel as
the consequence of the relationship d = ǫme (where ǫm is the electric permittivity of the material
body), the electric stress tensor σele as defined by (20) is therefore symmetric. In this case the use of
the balance equation of angular momentum leads to the requirement that the Cauchy stress tensor
is symmetric. In the more general case, in which the electric displacement vector is a nonlinear
function of the electric field, the electric field vector e and the electric displacement vector d are
not parallel. The use of the balance equation of angular momentum in this case requires that not the
Cauchy stress tensor σ, but the combination of σ and σele must be symmetric. This requirement
gives us the reason to define a total stress tensor σtot in the format (see [4] or [6])

σtot = σ + σele. (21)

Note that in the free space Vt surrounding the body of interest, the Cauchy stress tensor vanishes
and the total stress tensor σtot reduces to the well-known Maxwell stress tensor

σmax = ǫ0

[eǫ0 ⊗ eǫ0 − 1

2
[eǫ0 · eǫ0 ] i] . (22)

By using the total stress tensor σtot, the balance equation of linear momentum now has the same
format as what we have for the case of a normal nonlinear system

∇x · σtot,t + bmec
t = 0, (23)
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where σtot,t is the transpose of σtot. At the boundary ∂Bt, the total stress tensor σ
tot must satisfy

the jump condition

[[σtot]] · n = tmec
t , (24)

where tmec
t is the mechanical traction acting on ∂Bt. The above jump condition takes into account

both the contribution of the Cauchy stress tensor σ and the contribution of the electric stress
tensor σele and is therefore preferred over the jump condition for the Cauchy stress tensor. By
noting that in the free space outside the body of interest σtot = σmax, the jump condition (24) can
be written as

σtot · n = tmec
t + tmax

t , (25)

where tmax
t = σmax ·n is the electric traction or Maxwell’s traction. The importance of the electric

traction depends on the material properties of the body. In the case this traction must be taken
into account, the boundary condition for the total stress tensor makes the problem more difficult
to solve because the evaluation of tmax

t requires the knowledge about the electric field in the free
space Vt.

Governing equations for the mechanical field in reference to the undeformed configuration. In ref-
erence to the undeformed configuration B0, the balance equation of linear momentum is written in
terms of the Piola stress tensor as

∇
X

· P + bmec
0 + bele0 = 0, (26)

where the body forces bmec
0 and bele0 are defined as b

mec
0 = Jbmec

t and bele0 = Jbelect where J is the
determinant of the deformation gradient J = detF . The Piola stress tensor is considered as the
pull-back version of the Cauchy stress tensor in the undeformed configuration B0

P = Jσ · F−t (27)

or P = PiJei ⊗EJ with the coordinates PiJ = JσikF
−t
kJ . The electric body force can be written in

reference to the undeformed configuration B0 as

bele0 = ∇
X

[
F−t ·E] ·P (28)

or as the divergence of a stress like tensor bele0 = ∇
X

· P ele with

P ele = F−t ·E⊗D− 1

2
ǫ0J

[E ·C−1 ·E]F−t, (29)

where C = F t · F is the right Cauchy-Green strain tensor. Corresponding to the definition of the
total stress tensor σtot, in reference to the undeformed configuration, by using the definition of the
total stress tensor P tot

P tot = P + P ele (30)

the balance equation of linear momentum is now written as

∇
X

· P tot + bmec
0 = 0 (31)

and the jump condition that this total stress tensor must satisfy at the boundary ∂B0 reads

[[P tot]] ·N = tmec
0 (32)

or equivalently

P tot ·N = tmec
0 + tmax

0 , (33)

where tmax
0 = Pmax ·N is the electric traction acting on ∂B0. From the definitions (27) and (29),

it is easy to see that the total stress tensor P tot can also be considered as the pull-back version of
its counterpart σtot in the undeformed configuration B0

P tot = Jσtot · F−t. (34)
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3. VARIATIONAL FORMULATIONS AND BOUNDARY INTEGRAL EQUATIONS

Variational formulation in reference to the deformed configuration. In reference to the deformed
configuration Bt, the governing equations of the problem, i.e., the balance equations and boundary
conditions presented above, can be derived by considering the following variational equation written
in terms of the deformation map ϕ = ϕ(X) and the spatial electric potential ψ = ψ(x)

δ

∫

Bt

Ŵ
tF dv −

∫

Bt

bmec
t · δϕ dv −

∫

∂Bt

[tmec
t + tmax

t ] · δϕ ds+
∫

∂Bt

δψ[−qt + ̺̂ fre
t ]ds = 0. (35)

In the above equation, ŴtF = ŴtF (F ,E) is the stored energy density function per unit volume
of the deformed configuration. The first term of this equation is the first variation with respect to
a change in the motion map δϕ and a change in the spatial electric potential δψ at a fixed material
placement, i.e., at δX = 0. By requiring the above equation to hold for an arbitrary change δϕ 6= 0

and by localizing the result we get the balance equation

∇x ·
[
ŴtF i+

∂ŴtF

∂F
· F t

]
+ bmec

t = 0 in Bt (36)

and the boundary condition
[
ŴtF i+

∂ŴtF

∂F
· F t

]
· n = tmec

t + tmax
t on ∂Bt. (37)

The comparison of the above balance equation and boundary condition with the balance equation
of linear momentum (23) and the boundary condition (25) brings us to define the total stress tensor
σtot as

σtot :=

[
ŴtF i+

∂ŴtF

∂F
· F t

]t

. (38)

By requiring Eq. (35) to hold for an arbitrary change δψ 6= 0 and by localizing the result we get
the balance equation

∇x ·
[
−∂ŴtF

∂e ]
= 0 in Bt (39)

and the boundary condition

−∂ŴtF

∂e · n = qt − ̺̂ fre
t on ∂Bt, (40)

which, by comparing with the balance equation (2) and boundary condition (6.2), prompts us to
define the spatial electric displacement asd := −∂ŴtF

∂e . (41)

Variational formulation in reference to the undeformed configuration. In reference to the unde-
formed configuration B0, we consider the following variational equation written in terms of the
deformation map ϕ = ϕ(X) and the material electric potential Ψ = Ψ(X)

δ

∫

B0

Ŵ0F dV −
∫

B0

bmec
0 · δϕ dV −

∫

∂B0

[tmec
0 + tmax

0 ] · δϕ dS +

∫

∂B0

δΨ[−q0 + ̺̂ fre
0 ]dS = 0, (42)



206 P. Steinmann, D.K. Vu

where Ŵ0F = Ŵ0F (F ,E) is the stored energy density function per unit volume of the undeformed
configuration such that Ŵ0F = JŴtF . The first term of the above equation is the first variation
with respect to a change in the motion map δϕ and a change in the material electric potential δΨ
at a fixed material placement δX = 0. By requiring the above equation to hold for an arbitrary
change δϕ 6= 0 and by localizing the result we get the balance equation

∇
X

· ∂Ŵ0F

∂F
+ bmec

0 = 0 in B0 (43)

and the boundary condition

∂Ŵ0F

∂F
·N = tmec

0 + tmax
0 on ∂B0. (44)

The comparison of the above balance equation and boundary condition with the balance equation
of linear momentum (31) and the boundary condition (33) brings us to define the total stress tensor
P tot as

P tot :=
∂Ŵ0F

∂F
. (45)

Note that the definitions of the spatial and material stresses σtot and P tot in terms of the stored

energy density functions ŴtF and Ŵ0F are compatible with the pull-back formulation (34).
By requiring Eq. (35) to hold for an arbitrary change δΨ 6= 0 and by localizing the result we get

the balance equation

∇
X

·
[
−∂Ŵ0F

∂E ]
= 0 in B0 (46)

and the boundary condition

−∂Ŵ0F

∂E ·N = q0 − ̺̂ fre
0 on ∂B0, (47)

which, by comparing with the balance equation (11) and boundary condition (15)2, motivates us
to define the material electric displacement asD := −∂Ŵ0F

∂E . (48)

Again we note that, as in the case of stresses, the definitions of the spatial and material electric

displacements d and D in terms of the stored energy density functions ŴtF and Ŵ0F are fully
compatible with the pull-back formulation (13).
By using the two variational formulations (34) and (42) the problem of finding the motion map

ϕ and the electric potential ψ (or Ψ) can be solved with the help of the finite element method
provided that the electric surface tractions tmax

t , t
max
0 and the electric surface fluxes qt, q0 are

negligible or taken into account by, as mentioned above, using a sufficiently large finite element
mesh around the body of interest or by using the boundary element method. In using the boundary
element method, the electric field in the free space surrounding the material body is modeled by
the following boundary integral equations

ψ(ξ)− ψ∞ −
∫

∂Bt

[ψ(x)− ψ(ξ)]
∂G(ξ,x)

∂n
ds−

∫

∂Bt

qt
ǫ0
G(ξ,x)ds = 0 (49)



Computational challenges in the simulation of nonlinear electroelasticity 207

and

∫

∂Bt

qtds = 0, (50)

where ψ∞ is the electric potential at infinity, x is called the field point, ξ is the source point,
∂[•]
∂n

is the directional derivative along the unit normal vector n of the boundary and G(ξ,x) is the
so-called fundamental solution. Note that the boundary integral Eq. (49) is written for the case
in which the free space outside the material body is infinite. In the case of finite free space, the
above equation should be modified accordingly, namely the first two terms of this equation should
be removed. Note also that Eq. (50) represents our assumption that the total free charge of the
system is zero.

4. NUMERICAL STUDY

For the numerical simulation, the formulations presented in the previous sections are discretized
using the finite element method and the boundary element method. Namely the finite element
method is used to discretize the variational equation (35) (or (42)) and the boundary element
method is used to discretize the boundary integral equations (49) and (50). The resulting system of
equations obtained from the discretization is then a nonlinear system of equations with unknowns
being the nodal values of the nonlinear motion map ϕ, the electric potential ψ (or Ψ) and the electric
flux qt (or q0). This nonlinear system can then be solved, for example, using the Newton-Raphson
method. For more details on the discretization using the finite element method see for example [2]
and for more details on the discretization using the boundary element method see [1] or [12]. By
using this procedure, in this section, we study the influence of the free space on the electric field as
well as the deformation field inside a C-shaped plate presented in Fig. 2. The width of the plate is
w = 60 µm, the height is h = 45 µm and the thickness is t = 15 µm. The electric loading is applied
on the structure by means of prescribed electric potentials, in the first case (ψlower and ψupper)
given on the lower and upper edges of the plate and in the second case (ψin and ψex) given on the
internal and external edges of the plate. For the purpose of demonstration, the material properties

are given through the stored energy density function Ŵ0F defined here in the following format:

Ŵ0F =
µ

2
[C : I − 3]− µ ln J +

λ

2
[ln J ]2

+ αI : [E⊗E] + βC : [E⊗E] − 1

2
ǫmJC

−1 : [E⊗E] , (51)

Fig. 2. Material body and free space.
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where µ = 0.05 MPa, λ = 0.06 MPa, α = 0.2ǫ0, β = 2ǫ0, and ǫ0 = 8.854 × 10−12 F/m. Note that
the first part of this stored energy density function is the classical neo-Hookean energy density
function, the second part with two coefficients α and β is the electro-mechanical coupling and
the last part is added to reflect the linear part of the electric polarization, which means that in
the case the nonlinear coupling part is neglected by setting both α = 0 and β = 0, the spatial
electric polarization is a linear function of the spatial electric field vector or in other words the
spatial electric displacement vector is a linear function of the spatial electric field vector d = ǫme.
By using this stored energy density function and in the absence of the electric field, the material
behaves as a neo-Hookean material in nonlinear elasticity. Under the application of an external
electric field, the electro-mechanical coupling is the function of the three parameters α, β and
ǫm. In what follows we will investigate the influence of the free space surrounding the body by
assuming that the two parameters α and β are constant as given above and by varying the electric
permittivity ǫm of the material body.
In this investigation, the simulation of the plate is carried out by using two approaches. In the

first approach, only the plate is simulated using finite elements, i.e. only the variational formulation
for the material body (35) or (42) is used and the contribution of the free space surrounding the
material body is ignored by setting the electric surface tractions tmax

t , t
max
0 and the electric surface

charges qt, q0 to zero. The first approach is called FEM approach. In the second approach both
the plate and the free space are simulated. The plate is taken into account by the discretized
versions of the variational formulations using finite elements. The free space is taken into account
by the discretized versions of the boundary integral Eqs. (49) and (50) using boundary elements.
The second approach is called here coupled BEM-FEM approach. The mesh used in the FEM
simulation is presented in Fig. 3 with 200 four-node quadrangular elements. In the coupled BEM-
FEM approach, the same FEM mesh is used for the plate but on the boundary of the FEM
mesh, 90 linear two-node boundary elements are used to simulate the contribution of the space
surrounding the plate. Note that these boundary elements are constructed automatically using the
nodal coordinates of existing finite elements.

Fig. 3. Finite element mesh (left) and boundary element mesh (right).

In order to study the influence of the free space on the electric field inside the structure, we will
consider the first loading case. Here we will first assume that no deformation takes place inside
the structure. For this purpose, the displacement of all nodes is set to zero. The simulation results
are presented in Figs. 4–7 for different values of the electric permittivity ranging from ǫm = 5ǫ0 to
ǫm = 1000ǫ0. An electric potential difference of 200 V is placed between the upper and lower edges
of the plate by setting ψupper = 100 V and ψlower = −100 V . The simulation results show a clear
difference between the results obtained by using the coupled BEM-FEM approach and the FEM
approach: the smaller the electric permittivity the larger the difference. For very small electric
permittivity (for example in the case of electronic electroactive polymers), the large difference
between the two approaches leads to the conclusion that in order to simulate accurately the electric
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field inside the material body the influence of the free space must be taken into account. However,
for considerably higher electric permittivity (for example in the case of piezoelectric materials), the
free space can be conveniently ignored due to its small contribution.

Fig. 4. Electric potential using coupled BEM-FEM (left) and FEM (right): ǫm = 5.0ǫ0.

Fig. 5. Electric potential using coupled BEM-FEM (left) and FEM (right): ǫm = 10.0ǫ0.

Fig. 6. Electric potential using coupled BEM-FEM (left) and FEM (right): ǫm = 100.0ǫ0.
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Fig. 7. Electric potential using coupled BEM-FEM (left) and FEM (right): ǫm = 1000.0ǫ0 .

For the analysis of the influence of the free space on both the electric field and the deformation
field inside the structure, we again consider the first loading case. Here we assume that the nodal
displacement of all nodes lying on the symmetric plane of the plate is set to zero in the horizontal
direction. Furthermore, the nodal displacement of all nodes lying on the lower edges of the plate
is set to zero in the vertical direction. The numerical results obtained using the two approaches
are presented in Figs. 8–11. Note that for each value of the electric permittivity, there is a electric
potential limit at which we can apply the electric load. For the demonstration purpose, for each
value of the electric permittivity we apply a potential difference ψupper − ψlower close to this limit.

Fig. 8. Electric potential on deformed configuration using coupled BEM-FEM (left) and FEM (right):
ǫm = 5.0ǫ0.

Fig. 9. Electric potential on deformed configuration using coupled BEM-FEM (left) and FEM (right):
ǫm = 10.0ǫ0.
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Fig. 10. Electric potential on deformed configuration using coupled BEM-FEM (left) and FEM (right):
ǫm = 100.0ǫ0 .

Fig. 11. Electric potential on deformed configuration using coupled BEM-FEM (left) and FEM (right):
ǫm = 1000.0ǫ0 .

The numerical results lead us to a similar conclusion as in the case of zero deformation above: the
smaller the electric permittivity the larger the difference between the results obtained by the two
approaches. It can be observed that both electric tractions and electric fluxes play a significant role
and the ignorance of these quantities might lead to very different simulation results.
For the second loading case, where an electric potential difference is placed between the internal

and external edges of the plate, it is observed from the simulation results (Fig. 12) that the simulated
electric potential obtained by using the coupled BEM-FEM approach and the one obtained by
using the FEM approach are very similar. However, the simulated deformations (Fig. 13) give us
a completely different picture. In this case it can be seen that the role of the electric traction is
more important and is the main reason for the difference between the two simulation results.

Fig. 12. Electric potential on undeformed configuration using coupled BEM-FEM (left) and FEM (right):
ǫm = 5.0ǫ0.
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Fig. 13. Electric potential on deformed configuration using coupled BEM-FEM (left) and FEM (right):
ǫm = 5.0ǫ0.

5. CONCLUSION

The numerical modeling of nonlinear electroelasticity is clearly still a challenge today not only be-
cause of the complexity of the nonlinear coupled electro-mechanical characteristics but also because
of the dimension of the problem. Evidently it should be noted that the influence of the free space
on the electric field and the deformation field inside a material body depends on the one hand the
material properties of the body and on the other hand the geometry of the body as well as the way
an electric field is applied on to the body. However, in order to build a complete picture of what
happens inside a nonlinear electroelastic body, what happens outside deserves a due attention.
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