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In enterprise environments, the products may come from a variety of categories or do-
mains. Users may engage with entities in one domain, but not in the others when they
are presented with multiple domains. Such users are referred to as “cold-starters” in other
domains. The primary difficulty in cross-domain recommendation systems is to efficiently
transfer user’s latent information based on their engagements in one domain into the
other domains. The advancements in recommendation systems have inspired us to de-
velop review-driven recommendation models that utilize cross-domain knowledge transfer
and deep learning models. This work proposes a sentiment transfer network specifically
designed for providing recommendation in cross-domain (STN-CDRS). The novelty of the
work lies in the user rating enrichment mechanism, which is done by extracting latent
information from user review data to fill sparse rating matrix. This enrichment uses pre-
viously developed RNN-Core method for efficiently learning user reviews. The reviews
provided by the users are used to enrich sparse data across domains. This enrichment
allows two things: alleviates the cold start problem and allows more intersecting users
across domains to bridge the gap while learning. This work empirically demonstrates its
efficiency by iteratively updating over the baseline recommendation models in terms of
MAE (mean absolute error), RMSD (root mean squared deviation), precision and recall
measures with other state-of-the-art-review-aided cross-domain recommendation systems.
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1. Introduction

In real-world contexts, recommender systems [1, 2] are increasingly con-
fronted with data sparsity [3]. Because of insufficient knowledge, recommender
systems might struggle to provide recommendations for new goods or users. This



2 N. Taneja, H.K. Thakur

is called the cold start problem [4]. Without enough data, the underlying rec-
ommender model cannot be accurately calculated, and users’ preferences cannot
be accurately predicted. Transferring information from other domains or activi-
ties [5] and incorporating heterogeneous external knowledge [6] have been found
to reduce the data sparsity problem in recommender systems.

To deal with sparsity, several collaborative filtering-based recommender sys-
tems have been developed, including transfer learning. Transfer learning extracts
common information from a domain with sparse data [7] and applies it to the
target domain to enhance recommendations. This strategy can greatly improve
the performance of the underlying recommender system [8]. Cross-domain rec-
ommender systems are those that employ transfer learning techniques. These
systems are created with the goal of making suggestions in the target domain
based on data from the source domain. However, with cross-domain recommender
systems, the most pressing challenge is how to identify the common information
shared across the two different domains. The following are some of the issues
that cross-domain recommendation systems face:

• Data sparsity caused by inconsistent domain features: There are
usually no explicit features, just extracted latent characteristics. Further-
more, because the observed sparse ratings may not completely reflect
a user’s preferences, characteristics retrieved from the same person in two
different domains could be inconsistent. As a result, creating a suitable
feature space is quite difficult.

• Data sparsity caused by domain heterogeneity: Domain adaptation
strategies can align extracted hidden domain features from overlapping
entities. However, there is no direct association between recovered latent
characteristics from non-overlapping entities, and their features are diverse.

• Data sparsity caused by partially overlapping entities: Various par-
tially overlapping entities can constitute a relatively small percentage of
the overall entities under the target domain.

To illustrate these problems, as shown in Fig. 1, consider two domains: do-
main A and domain B, each containing user and item features along with user–
item interactions. In real business practices, common users in domain A very
seldom overlap with domain B, as shown in Fig. 1. This means that there are
very few users who engage with items shared across the domains, as there is little
or even zero overlap between the entities of the two domains, i.e., each entity
belongs to one domain only.

It becomes very difficult for a recommender system to predict user preferences
from domain A in domain B due to the lack of connected users or items across
the domain, which a recommender system may use to transfer knowledge regard-
ing the user into the other domain. There are various methods for transferring
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Common users 

Fig. 1. Illustration of challenges faced by cross-domain recommendation systems due
to sparsity, inconsistency and partially overlapping entities.

knowledge across the domains as indicated by our literature review presented
in the next sections. Nevertheless, based on whether and how the entities for
every domain overlap, the strategies for extracting knowledge and transfer it
differ significantly. Prior cross-domain recommender systems often presume that
no elements are common to both domains and that all elements are one-to-one
mapped. Non-overlapping approaches are more likely to derive common infor-
mation from group-level user behavior. Even though many of these strategies
were created to address specific scenarios, they are unable to integrate knowl-
edge from several entities when new information becomes available. The source
domain and the target rating matrices are often factorized together in completely
overlapping techniques, and then the entities’ characteristics are retrieved. Con-
straints placed on each entity guarantee that these traits are identical in the
target domain, thus allowing them to serve as a bridge for knowledge transfer.

In realistic scenarios, on the other hand, these entities seldom conform to
the “full” or “nothing” overlap assumption; instead, many lie somewhere in the
middle, as illustrated in Fig. 1. Also, in fully overlapping methods, large-scale
factorization is computationally expensive, potentially increasing exponentially
with the size of the data [33], as discussed in earlier works.

Constraints across the source and target domains are established using in-
formation about overlapping items. These constraints are frequently related to
the characteristics of the items in the domain. Domain divergence occurs when
there are slight changes in rating patterns across the two domains, even when the
user is still the same. Knowledge transfer will struggle to yield good results and
prediction accuracy will suffer, if item restrictions or constraints are not care-
fully managed. Thus, to this end, this work tries to solve this issue by utilizing
external knowledge from reviews given by users to reduce data sparsity across
the domain. Reviews given by users in domain A can also be used to identify
user preferences in domain B.
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This paper proposes a sentiment transfer network specifically designed for
providing recommendation in a cross-domain (STN-CDRS). This model enriches
sparse recommendations by utilizing user review data across domains from re-
views. This enrichment uses previously developed RNN-Core method, which ef-
ficiently learns user reviews. The reviews provided by users are used to enrich
sparse data across domains. This enrichment addresses two challenges: it allevi-
ates the cold start problem and allows the bridging of gaps between intersecting
users across domains during the learning process. Furthermore, a novel transfer
learning-based approach for generating cross-domain recommendations through
an improved deep neural network architecture is developed. In contrast to ma-
trix factorization, which is quite slow [33] and cannot learn complex relationships
between users, items and ratings, deep learning combined with transfer learning
methods can achieve this. STN-CDRS enables smooth cross-domain knowledge
transfer by establishing cross connections between base networks. STN-CDRS
has a cross-connected multi-layer deep neural network and a loss function shared
across domains. The STN-CDRS model is trained using the M-SGD optimizer.
The approach improves recommendation performance in both domains simulta-
neously and outperforms all baseline models. The suggested model provides the
following advantages over earlier approaches:

1. It enriches the data from word embeddings of user reviews instead of relying
on explicit information from user–item interactions present in the dataset.
This allows to capture complex user–item relationships more effectively.

2. The enrichment helps in solving cold start problems and data sparsity
issues. With more data available for learning, the model can improve its
performance, providing better learning.

3. It iteratively updates on the recommendation model using deep transfer
learning model, facilitating the transfer of user interests across domains.
This knowledge transfer method can enhance performance in both do-
mains simultaneously if trained properly.

4. The method uses an implicit preference transfer function for transferring
user preferences across domains, and this transfer function can be applied
across any domain for transferring knowledge across different domains.

Our contributions in this paper are as follows:
1. This work proposes the application of data enrichment methods to resolve

sparsity and cold start problems. This includes efficient deep learning ar-
chitecture and knowledge transfer function to improve recommendation
performance across domains.

2. This work also provides a novel knowledge transfer method that iteratively
updates the recommendation model to facilitate the cross-domain transfer
of user preferences using user review embedding.
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3. This work also develops a novel deep neural network architecture capable of
learning from review embedding and providing recommendations in a cross-
domain context.

4. We demonstrate that the proposed STN-CDRS can outperform existing
baseline techniques and improves recommendation accuracy across a vari-
ety of domains and experimental scenarios.

The rest of the paper is organized as follows: Sec. 2 provides a review of ex-
isting methods in recommender systems, covering knowledge transfer methods,
deep learning-based recommender systems, and approaches using review/text
data for deep learning and knowledge transfer, and Sec. 3 provides the method-
ology used to build the STN-transfer network. In Sec. 4, the paper presents exper-
iments and their results to demonstrate the benefits of knowledge transfer-based
recommender systems. Section 5 concludes the paper and discusses interesting
research directions for the future.

2. Related works

This section primarily summarizes three types of research related to our work.
These cross-domain recommendation systems employ knowledge transfer tech-
niques, deep learning-based algorithms and deep learning-based recommender
systems using review data.

2.1. Knowledge transfer methods

The advantages of information transfer-based strategies are twofold: 1) to
capture user interests, knowledge transfer tasks uses user–item interaction data,
and 2) knowledge transfer can assist in the integration of knowledge from various
tasks and domains into a global user–item repository, which can then be tailored
to different scenarios in recommendation system. This includes mitigating the
cold start problem and performing cross-domain knowledge transfer.

Recently, methods employing knowledge transfer models have achieved re-
markable success across a wide range of works in the field of natural language pro-
cessing (NLP) [9]. Such algorithms are often developed on unstructured massive
data to acquire universal language understandings. Next, these representations
are fine-tuned on downstream tasks to enable knowledge transfer. Knowledge
transfer models may be trained to acquire deep context-aware language repre-
sentations using word-vectors [10]. The resulting language models have shown
to be quite effective in a variety of applications, including but not limited to
natural language inference, question answering, as well as recommendations [11]
and context adaptation [12].

One may divide studies that use knowledge transfer methods to improve rec-
ommendation accuracy into two groups in the domain of recommender systems:
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1) feature-driven models and 2) fine-tunable models. Knowledge transfer models
often employ feature-driven models to acquire features for users and entities from
the meta information (for example, item content and knowledge sources) [13].
The fine-tunable methods, on the other hand, employ data from user–item
interactions to train a deep transferable neural model, which is then further
fine-tuned for subsequent recommendation tasks [14]. For instance, in [15], an
attentional adversarial transfer learning network for cross-domain recommenda-
tion (ATLRec) used adversarial learning (AL) models to gain an understanding
of user–item engagements in both the source and the much-needed target do-
main. This technique used attention mechanism to learn user–item engagements
by leveraging shared users with an engagement history, with the goal of better
connecting item entities in other domains and capturing cross-domain item–item
relationship to enable domain-shared knowledge learning.

2.2. Deep learning methods

In past few years, with the resurgence of deep learning methods, many
deep learning-based systems have been introduced to further improve knowledge
transfer in recommender systems.

Numerous studies [16–18] used deep machine learning algorithms to create
user–item profiles using a rating matrix, such as de-noising auto-encoders or
Boltzmann machines. In [19], the authors introduced a novel word embedding
approach based on neural networks. They started by creating a rating matrix
using explicit ratings and latent quasi-responses. This matrix was then used to
train a deep neural network (DNN) to learn a low-dimensional space for incorpo-
rating user–item entities. Furthermore, the authors introduced a new cost func-
tion based on binary cross-entropy for effective training. In another study, [20],
by incorporating the latest items among temporal and semantic spaces, the au-
thors proposed a deep neural word-embedding mechanism providing a top-N
cross-domain recommendation system.

Autoencoder with attention mechanism (AAM) [21] provides a recommen-
dation model that uses an autoencoder with an attention layer to transmit and
merge knowledge between multiple domains for learning the cross-domain rat-
ings. Embedding and mapping cross domain recommendation (EMCDR) [22]
clearly maps user representations using linear mapping and multi-layer percep-
tron to map the source to the target domain. Deep cross-domain cross-system
recommendation (DCDCSR) [23] further expands EMCDR [22] using a multi-
layer fully connected neural network to directly transfer user interpretations from
multiple domains. Different from the existing CDR and CSR approaches, a novel
DCDCSR [23] framework generates benchmark factors that address challenges
spanning multiple domains and systems. Using knowledge solely from user–item
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matrices, domain adaptation recommendation (DARec) [24] can discover and
transmit conceptual rating patterns of user’s representations in multiple domains
using a shared domain classifier. The user–item engagement matrix is used in
preference propagation graph network PPGN [25] to record the mechanism of
user interest propagation. Employing an attention-based method, many features
for every user and each item from the user reviews are collected, enabling un-
derstanding of aspect connections across domains. Furthermore, cross-domain
recommendation for cold-start users via aspect transfer network (CATN) [26]
uses supplementary opinions from similar users to improve a user’s aspect latent
information. A parallel information-sharing network for shared-account cross-
domain sequential recommendations π Net [27] is a model developed to provide
mutual cross-domain consecutive recommendations.

In [44], a method is proposed to generate a generalized user representation in-
corporating user information across domains in sequential recommendation, even
with few to no common users across domains. For each domain, an autoencoder
was used to predict the origin domain of a generated user representation. Au-
thors in [45] created a recommendation method for giving suggestions designed
for flash-sales, which can accommodate user predilections for specific time peri-
ods based on item variations in the availability for sale in e-commerce. However,
where consumer preferences are relatively consistent, this technique loses its ad-
vantages. In [46], authors evaluate the weaknesses and merits of graph-embedding
models compared with conventional models for various recommendation tasks,
this study concludes conventional methods outperform existing graph-embedding
method for predicting user recommendations, they further suggested considering
the trade-off between the two before final deployment to users.

Since most of these approaches solely employ rating information or user–
item interactions, they fall under the umbrella of collaborative filtering. More-
over, deep learning algorithms can also be used to extract text data to provide
recommendations across domains.

2.3. Methods using text/review information

As this work considers using review information to improve the cross-domain
recommender systems, there are several articles that have focused on this area.
Let us briefly review these works.

Sentiment review pattern mapping (SRPM) [28] uses a multilayer perceptron
(MLP) to capture the nonlinear mapping function across domains to describe
the user sentiment pattern. Furthermore, the authors employ smoothed latent
Dirichlet allocation (SLDA) on these sentiment-tagged datasets to model the
sentiment review patterns of users. SLDA and MLP based mapping method are
used to model user’s SRP and map it to the target domain to make recommen-
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dations for cold-start users. Sentiment analysis-based review feature mapping
(SARFM) [29] uses the semantic orientation CALculator (SO-CAL) – a lexicon-
based sentiment analysis approach to establish relationships across domains us-
ing an MLP-based mapping approach. To provide suggestions for cold-start users,
this technique analyzes user’s lexical alignments and translates them to the tar-
get domain.

By merging the sentiment information inherent in user evaluations in diverse
areas, CDR-SAFM [30] is founded on sentiment classification and implicit fea-
ture mapping. Using sentiment analysis on customer review data, the method
was able to generate cross-domain suggestions. To create the implicit opinion
review characteristics, latent Dirichlet allocation (LDA) is applied to charac-
terize the user’s lexical information. The cross-domain quasi translation func-
tion is obtained using a perceptron that can transmit the user’s opinion at-
tributes. It is also probable that rating errors will persist in CDR-SAFM, and it
does not give an effective way to pre-process rating data. CD-DNN [31] creates
a single low-dimensional projection for representing user features, allowing the
user model to be optimized alongside item characteristics from other domains.
It also proposes a recommendation model that incorporates opinions from tex-
tual reviews and a rating matrix to improve prediction accuracy by learning
features of users and items from multiple domains simultaneously.

DeepCGSR [32] proposes a matrix decomposition-based method for han-
dling user–item ratings and enabling cross-domain sentiment of user reviews.
However, as noted in previous research [33], matrix factorization-based meth-
ods are quite slow, which is indicated by much lower computational time taken
by neighborhood-based methods compared to matrix factorization methods. On
average, neighborhood-based methods are about six times faster, which is sig-
nificantly high. This speed difference, even when considering precision and recall,
makes it challenging to use matrix factorization methods instead of neighborhood-
based methods, as it is more difficult to scale matrix factorization methods
than neighborhood-based methods. Future works can focus on developing more
efficient matrix factorization methods that can match the time efficiency of
neighborhood-based methods. Moreover, most of the algorithms used are based
on MLP learners; however, the deep learning has progressed a lot making MLP
a bit outdated. In addition, review-based transfer solutions have outperformed
traditional interaction-based procedures. Nevertheless, researches on the latter
ones have a number of flaws that must be addressed.

In [34], collaborative cross network (CoNet) by establishing cross connec-
tions between base networks, promotes knowledge transfer across fields. CoNet
solves the data sparsity problem by using a sparse target user–item interaction
matrix that can be rebuilt using knowledge direction from a source domain.
DDTCDR [35] through a dual learning method efficiently transfers user latent
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information across domain pairings. The inner product is replaced by a deep net-
work to learn any function from input in NCF [36]. In addition, this approach
generalizes matrix factorization and replaces the inner product with a deep neu-
ral network to capture complex user–item interactions. It uses an MLP to model 9
the user–item engagement function.

3. Proposed work

This work assumes that the same user exist across both the source and target
domains. Users who are present in one domain may also exist in the other domain.
Thus, domains share the same users. One domain is distinguished as the source
domain (DA) and the other the target domain (DA), without loss of generality.
Let U =

{
User1,User2, ...,User |U |

}
represent the shared set of users between

the source (DA) and target (DB) domains, i.e., overlapping users. Also, DA ={
item1, item2, ..., item |DB |

}
and DB =

{
item1, item2, ..., item |DB |

}
are the sets

of items available in the source and target domains, respectively. Reviews given
by users in the source domain are ΓA = {rU1, rU2, ..., rDA

} from the source
domain, while ΓB = {rU1, rU2, ..., rDB

} are the reviews given by users from DB,
where rUi is a set of reviews given by User i from the respective domain. Likewise,
it is assumed that TI =

{
rI1, rI2, ..., rI|DA|

}
is the dataset of items reviewed by

users in the target domain, where each item Ij in the dataset has a corresponding
set of reviews rIj associated with it. Also, Γs and Γt are matrices of user ratings
for the source (DA) and target (DB) domains, respectively.

3.1. Problem formulation

This paper aims to analyze the sentiment information derived from users
domains (DA) and (DB). This is done using common users (|U|) as a bridge to
map underlying latent knowledge, which can then be transferred from DA to DB.
This knowledge transfer is done to resolve the estimation of cold-start users in
DB (target domain), a challenge arising from data sparsity. For this purpose,
this work introduces STN-CDRS, a cross-domain recommendation algorithm.
STN-CDRS uses sentiment information-based dataset enrichment and latent
knowledge transfer from DA to DB. The algorithm proceeds in following steps:
1) extraction of user sentiment information in both the domains about all the
items, and 2) using these reviews to enrich the dataset using a knowledge trans-
fer method to share latent information from domain A to domain B, and lastly
3) using a deep learning model to provide cross-domain recommendations.

In the first step, an improved RNNCore method, developed in our ear-
lier work [37], is combined with the word embedding model from CoreNLP-
based method [38], to identify user review embedding, and this is explained in
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Subsec. 3.2. User opinions as ratings in domain DA are denoted as Γ (A)ΨU , while
user opinions in domain DB are divided into Γ (B)ΨU , where Ψ is the sentiment
score obtained from the RNNCore-based sentiment analysis. Then, we aim to
find the sentiment embeddings of reviews using a mapping function (Ω), as ex-
plained in Subsec. 3.3. This function, mapping the user opinions, assumes that
opinions on any item are linked via shared users, and the reviews given by the
user on such an item are the outcome of a features mix of the user’s latent
preferences and sentiment score. In other words, the comments usually serve as
sentiment scores as a feature. The mapping function Ω can be used to classify
user review information given by the user’s rating of the item. Moreover, to
improve the impact of sentiment classification and further improve the overall
algorithm’s accuracy, this work employs an efficient sentiment classification al-
gorithm, namely RNNCore. When a user prefers an item, their ultimate opinions
become more favorable, resulting in a high score provided by the user for that
particular item.

In the next step, this mapping function is created to model the cross-domain
review feature embedding. It assumes an implicit link between user review char-
acteristics in DA and DB, and uses the knowledge transfer function in order to
capture this link. STN-CDRS employs this latent knowledge transfer function
to distinguish the relationships among distinct sentiments to reduce mutual inter-
ference problem among user reviews throughout the knowledge transfer process.
The knowledge transfer function is trained across distinct sentiments through
data processing and the employment of mutual users in the two domains whose
review features are available. This is done to prevent the absence of mutual latent
user features during the mapping process.

Lastly, the model is used to recommended new users (cold start) in DB. By
using STN-CDRS, we can obtain the target domain’s matching implicit features
and utilize them to influence the final recommendation outcomes. Changing the
mapping properties and features of these cold-start users can yield varying effects
on their ratings in the target domain.

3.2. RNNCore sentiment analysis

RNNCore model, shown in Fig. 2 and developed earlier in [37], is used to
provide sentiment scores for user reviews about items in any given domain, and
this model is trained over word embeddings, which are numerical representations
of the text. This model can identify its own set of features from the word embed-
ding and hence does not require a manual selection of features. Moreover, it can
utilize pre-trained word embeddings made available by CoreNLP [38]. As a re-
sult, it can use input corpus and pre-trained word vectors to generate a rating,
as depicted in the image below. Unlike polarity (−1−1), the RNNCore is pro-
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Input layer Hidden layers Output layer

Fig. 2. Sentiment analysis in RNNCore using word embedding [37].

grammed to provide a sentiment score in the range of 1 to 5. This broader range
allows the RNN output to be employed for cross-domain recommendation tasks.

The RNNCore extracts “ratings” from the “user reviews” within the review
dataset. It preprocesses the reviews using de-punctuation, lowercase, and elimi-
nating stop words. The trained RNNCore model is directly used to map a user’s
item review to a rating in the range of 1 to 5.

3.3. Domain enrichment and knowledge transfer

Domain enrichment is a process to reduce the sparsity problem, as shown in
Fig. 3. The domain enrichment involves adding more data (enriching), specifi-
cally word embeddings of user reviews instead of explicit information present in
the dataset between user–item interactions. By enriching the dataset, complex
user–item relationships can be captured, thereby addressing cold start problems
and data sparsity. The availability of more data for learning enhances the over-
all learning process. An essential topic to be tackled in this research is how to
properly transfer latent features across domains. Previous recommendation al-
gorithms relied on user opinions and did not fully use the sentiment data in user
reviews. STN-CDRS presumes that it can map latent information between do-
mains using a mapping function in order to bridge DA and the DB. Factorization
approaches can be used to connect user–item pairings within a mutual space and
employ implicit features to represent users and entities, which are crucial tools for

Enriched users 

using reviews 

Fig. 3. The dataset enrichment process using sentiment-derived reviews.
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providing recommendations. While it is reasonable to extend matrix factorization
methods utilizing implicit user rating feature embedding approaches to simulate
implicit engagements between users and items, this can also be done for other
feature information as well, this approach may become suboptimal during the
cross-domain recommendation process due to performance issues of the matrix
factorization methods, as discussed in [33]. Applying simple neural network mod-
els across all domains sparsely is not sufficient enough to obtain optimal results.

One key assumption is that users interested in domain DA should also have
comparable interests in domain DB. This implies that it is possible to learn
user interests from both domains DA and DB simultaneously. Therefore, to gain
a better knowledge of user preferences from DB, we may merge user sentiments
with target domain user interest information from DB. Moreover, if user interest
information is employed from DA into DB simultaneously, we may be able to
improve recommendation performance.

To effectively extract user preferences from reviews, RNNCore is utilized
within the knowledge transfer framework, mapping user reviews to user ratings
using feature embedding.

STN-CDRS introduces the analysis of user interest through two aspects:
current-domain preferences r, which record user engagements and predict user
ratings in domain DA itself, and cross-domain preferences r̀, which consider user
activities in the source as well as target domain DB. A new parameter called
transfer rate ω is introduced, denoting the relative relevance of the two com-
ponents in predicting user preferences. We suggest the following method for
estimating user ratings in domain pairings (DA, DB):

r̀A = ω ·ΠB (Ω ×ΘuA , ΘiA) + (1− ω) ·ΠA (ΘuA , ΘiA) , (1)

r̀B = ω ·ΠA

(
ΩT ×ΘuB , ΘiB

)
+ (1− ω) ·ΠB (ΘiB , ΘiB ) , (2)

where ΘuA , ΘiA , ΘuA , ΘiA are the latent information about users U ∈ |U | and
items

{
i1, i2, ..., i|DA,B|

}
and ΠA, ΠB are recommendations generated for DA

and DB, respectively.
Each equation’s first part ω ·ΠB (Ω ×ΘuA , ΘiA) and ωΠA

(
ΩT ×ΘuB , ΘiB

)
quantifies single-domain interests based on user and item attributes, whereas the
second part expresses cross-domain user interests based on the implicit mapping
function Ω, which captures domain diversity. This adaptive learning model can
be divided into two independent recommendation models if ω = 0, i.e., if there
no mutual users between DA and DB; however, if ω = 0.5, the model converts
into a knowledge transfer model and merges the two domains into a single global
recommendation model that can provide recommendation across both domains
DA and DB. Depending on the quantity of user reviews, typically, ω should
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take a positive value between 0.1 and 0.25 for individuals who appear in both
domains, indicating that self-domain preferences play a considerable job in un-
derstanding user patterns.

3.4. DNN architecture

The overall architecture of STN-CDRS network is presented in Fig. 4. It
is made up of an RNNCore-based review encoder for embedding user reviews

Fig. 4. Architecture of the STN-CDRS.



14 N. Taneja, H.K. Thakur

into embedding vectors with sentiment information. While DA (source) and DB

(target) share the same set of users, as shown in Fig. 3, the items cannot be
shared because of the different domains. Thus, STN-CDRS uses the RNNCore
sentiment to transform users’ latent review features, which are then utilized
upstream.

The knowledge transfer-based method mentioned in Subsec. 3.3 is then uti-
lized to enrich the missing values in the rating matrices of both domains. STN-
CDRS takes the observed word embedding for every user and item as its in-
put, maps each vector into a low-dimensional representation, and then outputs
a reconstitution layer to recover the embedding, allowing the unavailable or
missed ratings to be computed for recommendation purposes. The RNNCore
and the knowledge transferring method have been already explained earlier in
Subsecs. 3.2 and 3.3, respectively. Further layers of the STN-CDRS network are
explained as follows.

3.4.1. User sentiment embedding layer. The user sentiment embedding layer,
also known as text convolution layer, is the first to generate user review embed-
dings. The embedding layer’s job is to create a low-dimensional latent infor-
mation embedding space. Each word present in a user review corresponds to
Σ(w)→ |W |, where the word dictionary |W | contains every word present in the
review corpus. Every word w can be mapped into a ∀-dimensional dense vector
using an embedding function Σ(w). This word embedding approach is used by
STN-CDRS to incorporate the interpretations of both user and item reviews.
Opinions and item information are stored as word embedding matrix in the em-
bedding layer, each of which carries its own semantics. Moreover, when placing
the embedding layer, all of a user’s reviews are linked together in a document
called du. An embedding matrix Πu

i:l is generated for user u using this embedding
layer represented as:

Πu
i:l =

[
Ω
(
ΓU1
)
, ΠΩ

(
ΓU2
)
, ...,ΠΩ

(
ΓUl
)]
, (3)

where ΓUl is j-th review word written by user User i review Γu and latent map-
ping function Ω

(
ΓUj

)
results the matching ∀-dimensional embedding vector for

the review word and Π is a join operation.

3.4.2. Feed forward layers. To approximate the learning of user–item pref-
erences, feedforward layers are employed in the STN-CDRS model. These layers
are built using a mapping function Υ = F (X,H) where the parameters H val-
ues are trained to optimize the function. As the knowledge is transferred using
the mapping function, this function uses the features X to estimate the inter-
mediate blocks required to achieve the function F . These models are known as
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feed-forward models because the information flows from the input layers to the
output without any feedback links, meaning that the model’s outputs do not
flow back into it. Given that the application involves textual data rather than
images, deep feedforward layers were chosen over convolutional or other types of
layers. Deep feedforward layers aid in the identification of hidden user preferences
in the input data.

3.4.3. Max pooling. By conducting nonlinear down sampling, pooling sim-
plifies the result, and the number of parameters that the network has to learn
decreases. This technique is beneficial in feedforward networks as the outbound
connections frequently receive similar input. Max pooling selects the maximum
element from the input feature matrix covered by the filter. As a consequence,
the max pooling layer’s result is a feature map that contains the most important
features from the previous layers. In the case of average pooling, this pooling
produces down-sampled or pooled feature maps that highlight the most present
feature in the patch rather than the average presence of the feature. For NLP
applications, max pooling has been proven to perform better in practice than
average pooling.

3.4.4. Dropout layer. To train the fully connected layers and reduce the
overfitting problem, dropout layers have been added. Their fundamental job is
to stop some of the updating of neuron weights in the hidden layer. This simplifies
the complex co-adaption among the neurons.

3.4.5. Fully connected layers. Along with convolution layers, fully connected
(FC) layers are the building blocks of most neural networks. They are the units
(layers) from which most neural networks are built. Fully connected layers are
multiplication parameters that connect one layer of a neural network to succes-
sive layers, resulting in each layer’s weights being a linear combination of the
weights of the preceding layer. However, they differ from convolutional layers in
how they link two layers of a neural network.

Fully connected layers, as the name implies, connect every neuron in the
output layer to every neuron in the input layer. This work uses FC layers instead
of convolution layers because of two reasons. Firstly, the data type is textual,
not images, for which convolution operation is most suited, and secondly, in the
input layer, FC layers can be used to describe any generic pattern. FC layers
excel at identifying global patterns in a neural network layer because of this. As
a result, they are ideal for wrapping up all of the patterns identified by the prior
layers. Furthermore, because the layers at the final levels of a neural network are
generally tiny, the large number of parameters inside a fully connected layer is
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less of an issue when it comes to learning. However, because of the large number
of weights and associated issues such as overfitting, FC layers may not always
be the most favored choice in neural network systems. Convolution layers [39],
on the other hand, link the output layer to a previous layer using a universal
“filter”, resulting in a significantly lower number of parameters to learn compared
to a fully-connected layer. Consequently, highly adapted convolution layers can
be used for detecting local features that may exist anywhere in the input data.
Instead of training each layer one by one to identify a similar set of features, the
network learns a single layer that is shared by all nodes. FC layers, on the other
hand, are employed to identify certain global configurations of characteristics
identified by the net’s lower layers. Thus, convolution layers are more suitable
for image-related task, where they break the input image into features, whereas
the FC layers work together to combine these features, such as word embedding
in our case of textual data, into ∀-dimensional entities the network can recognize.

3.4.6. SGD momentum optimizer. In addition to the existing stochastic gra-
dient descent (SGD) method, a momentum-based SGD technique may be uti-
lized to improve the learning algorithm, which nearly always performs better and
quicker than stochastic gradient descent. Momentum SGD is a method for speed-
ing up convergence by accelerating gradient vectors in the proper directions. It
is one of the most widely used optimization techniques and is used to train many
cutting-edge models. SGD momentum makes use of exponentially weighted av-
erages to cope with numerical sequences. When we use momentum, such as when
pushing a ball down a hill, we are essentially employing momentum. The ball
gains momentum as it goes downhill, accelerating faster and faster, as it does so.
The loss function Loss(H) used by the SGD momentum is formulated as:

Loss(H) = −
S∑

(u,i)

rB(u,i)log r̀B(u,i) +
(
1− rB(u,i)

)
log
(
1− r̀B(u,i)

)
, (4)

where S is the union of observed interactions, H is the model parameters =
{L,B, I, h}, where L is the learning rate, B is the batch size, I is the number
of iterations, and h is the number of latent dimensions. The STN-CDRS uses
the word embedding matrix W to reduce model complexity by utilizing Eq. (4)
as the loss function. The Loss(H) mentioned in Eq. (4) is optimized by the
momentum-based stochastic gradient descent (M-SGD) algorithm. M-SGD is an
upgraded variant of gradient descent that is used to better optimize the issue of
the loss function being too large in the update and to expedite convergence.

3.4.7. Sigmoid activation function. The logistic function and the sigmoid
activation function are two terms for the same operation. As the STN-CDRS
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is converted into a regression learning approach, the logistic function is em-
ployed. The logistic function accepts any number as input and returns a value
between [0, −1] as output. The greater the input, the closer the output of the
logistic function to 1, and the lower the input, the closer the function output
to 0. As the cross-domain recommendation problem is constructed as a linear
regression problem, the sigmoid activation function for regression problem can
be summarized as:

logistic(z) =
1

1 + e−(α+βz)
, (5)

where α+βz is similar to the linear model γ = αz+β. Usually, recommendation
systems generally work in the range of (1–5); therefore, the logistic function can
be updated for values in any rage, for example (1–5), using:

logistic(z) =
T

1 + e−(α+βz)
, (6)

where T is set to the maximum value, which in our case is T = 5.

4. Experiments

The experiments are conducted using the ratings from the Amazon books and
movies dataset [40]. In the research, we examined several baseline methodologies
and analyzed the efficacy of rating and ranking prediction using a set of measures.
A 5-fold cross-validation is used to conduct tests and assessments of the proposed
model, which analyzes cross-domain recommendation performance using RMSE,
MAE, precision, and recall metrics [41]. In our experiments, a group of state-of-
the-art methods including Nearest Neighbor (KNN) [42], SVD++ [43], NCF [36],
and DDTCDR [35] are evaluated for comparison, alongside our model, where:

1. KNN [42] is a supervised learning technique used for classification and
regression. To classify a new data point, the algorithm saves all the data
points and classifies the new point based on similarity index by putting
it into the most similar saved category. It is also known as lazy learner
algorithm because instead of learning immediately from training data, it
learns at the time of classification.

2. SVD++ [43] uses implicit feedback information for matrix factorization
model, Although, SVD++, as discussed in earlier works, provides the best
recommendations in traditional methods, itis very slow compared to other
methods. The prediction r̀B(u,i) with SVD++ is given by:

r̀B(u,i) = µ+ bu + bi + qTi

pu + |Iu|−
1
2

U∑
j∈Iu

yj

, (7)
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where yj refers to a new set of item factors that represent implicit ratings,
implicit ratings occur when a user u rates an item j, independent of the
rated value. The factors pu and bias bu, are assumed to be zero, if the user
u is unknown, and the same is applicable to item i with bi, qi and yi.

3. NCF [36] replaces matrix factorization using a deep architecture that
learns any function from the data, allowing it to express and generalize
matrix factorization. It also uses a MLP to learn the user–item relation
function.

4. DDTCDR [35] efficiently transfers user preferences across domain pairs
through a dual learning mechanism. It operates by embedding latent infor-
mation from one domain into the other and iteratively loops through the
transfer learning loop until both domain models settle.

During the evaluation, for each baseline method under comparison, all hyper-
parameters settings during training and testing are kept fixed. Also, both book
and movies domains are used as the target domain for evaluating the performance
of STN-CDRS. Tables 1 and 2 show the statistics of the data for evaluation for
KNN, SVD++, NCF, DDTCDR and STN-CDRS.

4.1. MSE and MAE convergence

Before comparing the proposed model to other models, the mean spared
error (MSE) and mean absolute error (MAE) metrics are evaluated to assess the
performance of the network during training. The MSE metric is computed as:

MSE =

∑∣∣r̀B(u,i) − rB(u,i)

∣∣2
N

, (8)

and MAE, a measure of errors between the predicted and actual observations [15],
is expressed as:

MAE =

∑∣∣r̀B(u,i) − rB (u,i)

∣∣
N

, (9)

whereN represents the total number of expected outcome, r̀B(u,i) is the predicted
value for user u on item i and rB(u,i) gives the true rating. During training, MSE
and MAE metrics are calculated at each epoch to validate the performance of
the STN-CDRS, Figs. 5 and 6 show the convergence curve of the STN-CDRS in
terms of MSE and MAE, respectively.

It is evident from Figs. 5 and 6 that the STN-CDRS network converges
very fast, i.e., in less than 10 epochs the network achieves minima in terms of
both MSE and MAE, for both movie and book domain. Compared to existing
approaches, STN-CDRS takes less time to achieve lower MSE and MAE values.
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Fig. 5. MSE error of the STN-CDRS during epochs.

Fig. 6. MAE error of the STN-CDRS during epochs.

The training loss for the book and movie domains is compared in Tables 1
and 2, respectively, which also evaluates various methods in terms of RMSE,
MAE, precision and recall.

Table 1. Comparison of existing methods with STN-CDRS for the target domainbook.

Domain: Book
Algorithm RMSE MAE Precision Recall
STN-CDRS 0.1937 0.1247 0.8937 0.981
DDTCDR 0.2213 0.1708 0.8595 0.9594

NCF 0.2315 0.1887 0.8357 0.8924
SVD++ 0.9101 0.7216 0.585 0.331
KNN 0.9761 0.7785 0.563 0.315
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It is evident from Table 1 that, in terms of RMSE, the STN-CDRS out-
performed all other methods: DDTCDR, NCF, SVD++ and KNN significantly.
For the book domain, the RMSE values obtained using STN-CDRS, DDTCDR,
NCF, SVD++ and KNN are 0.1937, 0.2213, 0.2315, 0.9101 and 0.9761, respec-
tively. STN-CDRS outperformed the existing methods by 0.0276, 0.0378, 0.7164
and 0.7824 in absolute RMSE terms, respectively. Overall, STN-CDRS shows
improvements of 12.47%, 16.33%, 78.72% and 80.16% over DDTCDR, NCF,
SVD++ and KNN methods, respectively.

For the book domain, the MAE values obtained using STN-CDRS, DDTCDR,
NCF, SVD++ and KNN are 0.1247, 0.1708, 0.1887, 0.7216 and 0.7785, re-
spectively. STN-CDRS outperformed the existing methods: DDTCDR, NCF,
SVD++ and KNN by 26.99%, 33.92%, 82.72% and 83.99%, respectively. Preci-
sion, which is the count of correct positive outcomes (recommended items liked
by the user) divided by the classifier’s predicted count of positive results (total
recommended items), is calculated as:

Precision =
True Positives

True Positives + False Positives
, (10)

whereas, recall is calculated by dividing the count of truly positive results (rec-
ommended items liked) by the total number of targeted samples (recommended
liked items and also liked items that are not recommended):

Recall =
True Positives

True Positives + False Negatives
. (11)

A plot illustrating the distinctions between precision and recall is shown
below in Fig. 7. STN-CDRS shows good improvement in precision compared
to the baseline methods, with a 3.98 % improvement over DDTCDR, a 7.32%
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Fig. 7. Precision and recall value comparisons of STN-CDRS, DDTCDR, NCF,
SVD++ and KNN.
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improvement over CoNet, a 52.78% increase in precision compared to SVD++,
and a 58.75% improvement over KNN in percentage terms. In addition, STN-
CDRS shows improvement in recall compared to the baseline methods: a 2.26%
better recall than DDTCDR, a 9.13% better recall than CoNet, a 196.39% better
recall than SVD++, and a 211.44% better recall than KNN.

As STN-CDRS is capable of producing recommendation across domains, the
book domain can be used as a source domain to recommend into the movie
domain as the target. Table 2 shows the comparison of the proposed method
with DDTCDR, NCF, SVD++ and KNN methods with STN-CDRS for target
Domain Movie in terms of RMSE, MAE, precision and recall.

Table 2. Comparison of existing methods with STN-CDRS for the target movie domain.

Domain: Movie
Algorithm RMSE MAE Precision Recall
STN-CDRS 0.1870 0.1193 0.9145 0.9718
DDTCDR 0.2213 0.1714 0.8925 0.9871

NCF 0.2276 0.1903 0.8644 0.9589
SVD++ 0.9246 0.7340 0.5966 0.3334
KNN 0.9856 0.7800 0.5775 0.3241

It is clear from Fig. 8 that in terms of RMSE, STN-CDRS outperformed all
other methods significantly: DDTCDR, NCF, SVD++ and KNN. The RMSE
measures for the target domain movie obtained using the STN-CDRS, DDTCDR,
NCF, SVD++ and KNN are 0.1870, 0.2213, 0.2276, 0.9246 and 0.9856, respec-
tively.
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Fig. 8. RMSE and MAE values compared for the movie domain.

STN-CDRS outperformed the existing methods by 0.0343, 0.0406, 0.7376
and 0.7986 in absolute RMSE terms for the target domain movie. Also, in
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terms of RMSE, STN-CDRS shows improvements, which are 15.50% better
than DDTCDR, 17.84% better than NCF, 79.78% better than SVD++, and
81.03% better than KNN. Likewise, for MAE, STN-CDRS shows improvements
of 30.40% better than DDTCDR, 37.31% better than CoNet, 83.75% better than
SVD++, and 84.71% better than KNN.

For precision, STN-CDRS outperformed the baseline methods by 0.022, 0.050,
0.317 and 0.337 in absolute terms, which is 2.46% better than DDTCDR, 5.80%
better than NCF, 53.29% better than SVD++, and 58.35% better than KNN.
In terms of recall, STN-CDRS shows improvements of 1.22% better than CoNet,
191.49% better than SVD++, 199.86% better than KNN. However, only for
recall, the proposed method shows lower gain, which is −1.55% lower than
DDTCDR.

4.2. Training loss vs. epochs

To further show the improvements made by the proposed algorithm, the
training loss vs. epoch is plotted for both domains. It should be evident from
the figures that STN-CDRS converges much faster. Figures 9 and 10 show the
convergence curve of the proposed algorithm compared with the existing method
of NCF and DDTCDR taken from [35].

The convergence curves in Figs. 9 and 10 illustrate the number of epochs
required for each method to reach a stable minimum. It is evident from both fig-
ures that STN-CDRS only requires about 20 epochs to reach a stable minimum,
whereas other algorithms took considerably longer and were still unable to iden-
tify a proper minimum. This efficiency of the STN-CDRS can be attributed to
the utilization of the momentum-based SGD algorithm. Furthermore, it should
be noted that the size of the dataset greatly impacts the performance of the

Fig. 9. Convergence curve of STN-CDRS for the domain book.
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Fig. 10. Convergence curve of STN-CDRS for the domain movie.

network. If more data is available in one source domain and less data is available
in the target domain, the performance will likely be impacted.

5. Conclusion and future scope

This work proposes Sentiment Transfer Network especially designed for pro-
viding recommendation in cross-domain scenarios (STN-CDRS). This model im-
proves sparse recommendations utilizing user review data across domains from
provided user reviews. This enrichment process uses the previously developed
RNNCore method [37] for efficient learning from user reviews. This concept
of review-aided cross-domain recommendation systems is a direct advancement
over various existing recommendation systems inspiring the development of this
model.

For this purpose, this work introduces STN-CDRS, a cross-domain recom-
mendation algorithm. STN-CDRS uses sentiment information-based dataset en-
richment and latent knowledge transfer from domain DA to domain DB. It uti-
lizes cross-domain knowledge transfer and deep learning models to achieve its
goals. STN-CDRS enriches the data from word embedding of user reviews instead
of relying on explicit information present in the dataset regarding user–item in-
teractions to capture complex user–item relationships. This enrichment helps in
solving cold start problems and addresses data sparsity. More data available for
learning results in better learning outcomes.

The results clearly demonstrate the supremacy of the STN-CDRS method,
as it outperforms existing baseline techniques and improves recommendation
accuracy across a variety of domains and experimental situations. STN-CDRS
requires fewer epochs to reach a stable minimum compared to other algorithms.
This property makes it scalable enough to be used in enterprise settings. It is
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observed that the size of the dataset highly impacts the performance of the
network, if more data is available in one source domain and less data is available
in the target domain, the performance will likely be impacted. How to effectively
produce recommendations for smaller domains can be explored in the future.
Also, it can be explored how the model can be directly adapted to support
multi-domain recommendation scenarios.
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