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In this paper the two-dimensional finite element with an embedded edge crack proposed by Potirniche
et al. (2008) is improved further for crack depth ratios ranging up to 0.9 and for predicting the natural
frequency of a cracked beam more accurately. The element is implemented in the commercial finite element
code ABAQUS as user element subroutine. The accuracy of the proposed improved cracked element is
verified by comparing the predicted, first natural frequency with available experimental data. Subsequently,
a methodology to detect the crack’s location and size in conjunction with the proposed improved cracked
element is also presented.

Keywords: cracked finite element, user element, ABAQUS, natural frequency, crack fault diagnosis.

NOMENCLATURE

c – Distance of crack from end of beam

E – Modulus of elasticity

Fi – Nodal force

Ff – Geometric factor for single edge notch strip under tension loading

Fm – Geometric factor for single edge notch strip under bending loading

FI – Mode I geometric factor for vertical nodal force

FII – Mode II geometric factor for vertical nodal force

h – Height of element

H – Height of beam

KI , KII – Stress Intensity Factor for mode I and mode II

Kij – Components of stiffness matrix

L – Length of beam

t – Thickness

ui – Nodal displacement

w – Width of element

α – Crack depth

ν – Poisson’s ratio

ρ – Density

ω – Natural frequency of uncracked beam

ωc – Natural frequency of cracked beam
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1. INTRODUCTION

The quantitative diagnosis of structural cracks through nondestructive testing is an important part
of predicting structural integrity and reliability of components for a wide range of civil, mechanical
and aeronautical engineering applications. Due to the practical importance of an early detection
of cracks, the crack identification problem in structures has been extensively investigated and has
led to the development of various methods. The presence of a crack drastically affects the dynamic
behavior of structures. Depending on the location and size of the crack, the stiffness of the structure
is reduced and, therefore, so are its natural frequencies compared to the original crack free structure.
Many researchers have used the above characteristics to detect and locate cracks and a plethora of
vibration-based methods for crack detection has been developed [2, 14, 16, 20–22, 25, 28].

The most useful damage localization methods based on vibration measurements are probably
those based on changes in natural frequencies and mode shapes. Reviews of research works dealing
with the problem of crack detection based on changes in modal parameters can be found in the pub-
lished literature [8, 19, 27, 32]. Shift in natural frequencies has been commonly used to investigate
the location and size of crack. For example, some research works [9, 15, 22] have been devoted to the
identification of the location and size of crack through the determination of the intersection point
of the superimposed contours corresponding to the measured eigenfrequency variations due to the
crack. This damage identification technique is called the “frequency contour lines method”. In order
to avoid the problem of a non-unique damage location in the case of a structural symmetric beam,
Swamidas et al. [33] proposed to extend this crack identification method by adding an off-center
mass to the simply-supported beam. Sinou [30, 31] developed an extension of the frequency contour
lines method based on the changes of frequency ratios in the cracked beam, thus avoiding the need
for accurate knowledge of the material properties and frequencies of the crack- free beam. More-
over, Owolabi et al. [23] proposed a crack identification technique based not only on the measured
changes in the first three natural frequencies (i.e., the frequency contour lines method), but also
in the corresponding amplitudes of the measured acceleration frequency response functions. Using
the frequency contours and amplitude contours of the first three modes, they demonstrated that
the location and size of crack can be determined uniquely. Dilena and Morassi [5, 6] proved that
the measurement of an appropriate set of frequencies and antiresonance frequencies enables unique
identification of damage. The theoretical results were confirmed by comparisons with numerical
and experimental tests. Dilena and Morassi [7] also suggested that the direction in which the nodal
points move can point to the damage location.

Several approaches have been used to model the problem of a cracked beam using the finite
element method. One-dimensional cracked beam finite elements for vibration studies have been
developed previously by other researchers [3, 4, 11, 13, 17, 24]. With the aim to simulate the crack
presence without actually modeling the crack, more recently a two-dimensional cracked finite ele-
ment was developed by Potirniche et al. [26] for fatigue and fracture applications. In this approach,
the influence of the additional flexibility of the element due to the crack presence was derived from
the Castigliano’s first theorem using fracture mechanics concepts. However, the accuracy of the
predicted natural frequency using the cracked finite element developed by Potirniche et al. [26] for
higher values of crack depth ratios is less. Assuming that the applied shear forces results only in
mode II stress intensity factors (SIF), Potirniche et al. [26] derived the components of the stiffness
matrix for the cracked element, adopting the geometrical factor (for the effect of boundary condi-
tions at free edge) corresponding to pure shear for infinite boundary conditions given in Tada et
al. [34]. It should be noted that the pure shear condition can only be reproduced when the shear
force acting along the edge of the cracked element, is accompanied by shear forces acting on the
other three edges. However, when the applied shear force acts along the edge of the cracked element
without accompanying shear forces on the other three edges, as considered in Potirniche et al. [26],
mixed-mode conditions prevail instead of the pure shear condition, which results in both mode I
and mode II SIFs. In addition, the adopted geometrical factor should take into account both the
effect of finite size of the cracked element and the effect of boundary conditions at the free edge.
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Hence, this study is aimed at further improvement of the two-dimensional finite element with an
embedded edge crack proposed by Potirniche et al. [26].

This paper presents an improved two-dimensional finite element with an embedded edge crack
for crack depth ratios ranging up to 0.9 and for predicting the natural frequency of a cracked beam
more accurately. The element is implemented in the commercial finite element code ABAQUS as
user element (UEL) subroutine. The accuracy of the UEL is verified by comparing the frequency
response of various beams with the edge crack under bending. Later, a methodology to detect the
crack location and size in conjunction with the proposed improved cracked element is presented for
singularity problems like a cracked beam.

2. IMPROVED CRACKED FINITE ELEMENT

For predicting the natural frequency of a cracked beam more accurately, in this section, the fol-
lowing improvements to the cracked finite element originally developed by Potirniche et al. [26]
are presented: (a) to handle crack depth ratios ranging up to 0.9; and (b) the additional flexibility
of the cracked element due to the applied shear forces. Consider the cracked finite element with
the node numbering and the degrees of freedom per node as shown in Fig. 1a the mathematical
definition details of which are given in Potirniche et al. [26].

In Fig. 1b, the tensile force at node 3 gives a force and a moment, both of which contribute to
the opening of the crack. Hence, the contribution KIF3

of the nodal force F3 at node 3 is summation
of the SIFs given by the force and the resulting bending moment F3h/2 (h is the element depth),
which can be written as

KIF3
= Kf

IF3
+Km

IF3
, (1)

a) b)

c) d)

Fig. 1. Two-dimensional cracked finite element: a) node numbering and degrees of freedom at all nodes,
b) nodal force F3 at node 3, c) nodal force F2 at node 2, and d) nodal force F6 at node 2.
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where

Kf
IF3

= Ff
F3

ht

√
πα and Km

IF3
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3F3

ht

√
πα, (2)

with t being the element thickness.
The FRANC2DL finite element code [10, 12, 35, 36] is used with the J−integral option to extract

the SIFs from stress strain fields around the crack tip location. Two-dimensional, finite element
models having w/h = 2 with degrees of freedom ranging from 3510 (for the case α/h = 0.1) to 4258
(for the case α/h = 0.9), along with a ring of six-noded quarter-point elements around the crack tip
and eight-noded elements elsewhere are used under plane stress conditions. The minimum element
size at the crack tip location is0.0025w. Crack length to depth ratios (α/h) are varied from 0.1 to
0.9 with nodal forces applied at various locations on the cracked element. Using the SIFs values
obtained from FRANC2DL for α/h ranging from 0.1 to 0.9, and Eq. (2), the geometrical factors
Ff and Fm, for the cracked element under tensile and bending loading respectively, are obtained
by curve fitting techniques as a function of α/h, as follows:
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The above given geometrical factors Ff and Fm are validated for other cases with w/h > 2.0 by
comparing the SIFs values obtained from FRANC2DL with those values obtained using Eq. (2)
in conjunction with Eq. (3) and (4). The effect of w/h is found to be practically negligible for
w/h ≥ 2.0.
Contrary to the tensile force acting at node 3 (in Fig. 1b), as discussed above, in Fig. 1c the nodal

force F2 acting at node 2 results in a force that leads to the opening of the crack and a resolved
bending moment that leads to the closing of the crack. Hence, the contribution KIF2

of the nodal
force F2 at node 2 can be written as

KIF2
= Kf

IF2
−Km

IF2
, (5)

where

Kf
IF2

= Ff
F2

ht

√
πα and Km

IF2
= Fm

3F2

ht

√
πα, (6)

with the geometrical factors Ff and Fm defined in Eq. (3) and (4).
Following the procedure based on Castigliano’s first theorem, outlined in Potirniche et al. [26]

the stiffness components K2j and K3j can be obtained using the geometrical factors Ff and Fm

defined in Eq. (3) and (4). The stiffness components K1j and K4j can also be obtained following
the same procedure as that for the stiffness components K2j and K3j .
In Fig. 1d the nodal force F6 acting at node 2 gives a shear force and a moment (Fw), both of

which contribute to mode I and II SIFs, which can be written as

KIF6
= FI

6Fw
h2t

√
πα and KIIF6

= FII
F
ht

√
πα . (7)

Using the SIFs values obtained from FRANC2DL for α/h ranging from 0.1 to 0.9, and Eq. (7), the
geometrical factors for the cracked element FI and FII , respectively, are obtained by curve fitting
techniques as a function of α/h as follows:
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The stiffness componentsK6j can be obtained adopting the following procedure. Using Castigliano’s
first theorem, the difference between the nodal forces in the cracked (Fi) and uncracked (F

0
i ) cases

can be obtained by taking the partial derivatives of the SIFs with respect to the corresponding
displacements (ui) by the relation [34],

F 0
6 − F6 =

2t

E′




α∫

0

KI
∂KI

∂u6
da+

α∫

0

KII
∂KII

∂u6
da


 , (10)

where E′ = E for plane stress, E′ = E
/(

1− ν2
)
for plane strain, E and ν are the modulus of

elasticity and Poisson’s ratio, respectively. Replacing the SIFs in the above equation with their
respective formulas in Eq. (7) and after some simplifications, one obtains:
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and noting that

∂F6

∂u6
= K66, (13)

the relation between the two nodal forces for the uncracked and cracked elements becomes

F 0
6 = (1 +A66K66)F6. (14)
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{u}, Eq. (14) can be written as
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which is valid only if the coefficients multiplying the independent variables uj on both sides of the
above equation are equal,

K0
6j = (1 +A66K66)K6j for j = 1, 2, . . . , 8. (16)

Solving Eq. (16) for K6j the solution is found to be

K66 =
−1 +

√
1 + 4A66K

0
66

2A66
, (17)

and

K6j =
2K0

6j

1 +
√

1 + 4A66K0
66

for j = 1, 2, . . . , 8 and j 6= 6. (18)

Similar formulas can be obtained for all the components K5j , K7j and K8j .
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3. VALIDATION OF CRACKED FINITE ELEMENT

The proposed improved two-dimensional finite element with an embedded edge crack is imple-
mented in the commercial finite element code ABAQUS [1] as a User Element Fortran subroutine
(UEL.f). The performance of the proposed improved finite element is demonstrated by comparing
the frequency ratio (ωc/ω) (ratio of the natural frequency of the cracked beam to that of the un-
cracked beam) versus the crack depth ratio (α/H) (the ratio of the crack depth (α) to the beam
height (H)) results obtained using UEL, with the reported results in the literature, for the bending
mode, for various crack location ratios (c/L) (ratio of the crack location to the beam length). The
following beam cases are considered: (1) Simply supported beam with a double edge surface crack
at mid-span; (2) Cantilever beam with a surface crack at 20% of the beam span from fixed end;
and (3) Simply supported beam with a surface crack at mid-span. In the numerical study the crack
depth ratio (α/H) is varied from 0 to 0.5.

3.1. Simply supported beam with a double edge surface crack

In this numerical example, a steel beam [3] having the length L = 0.575 m, the height H =
0.03175 m, the thickness t = 0.00952 m with E = 2.06 × 1011 N/m2, and ρ = 7800 kg/m3, is
considered. Figure 2 shows typical FEM discretization with 36 standard four- node ABAQUS [1]
elements and one UEL each at the top and the bottom at the top of the beam for c/L = 0.5.
Figure 3 shows the first natural frequency ratio (ωc/ω) versus the crack depth ratio (α/H) for
simply supported beam with two surface cracks, at the top and bottom edges of the beam at mid-
span. Compared with the predictions obtained using the damaged finite element by Potirniche et
al. [26], the first natural frequency reduction predicted by the proposed improved two-dimensional
finite element matches very well with the experiments results by Chondros et al. [3].

Fig. 2. Discretization of simply supported beam with double edge surface crack using 36 standard four
node ABAQUS elements and two UELs.

Fig. 3. First natural frequency ratio versus the crack depth ratio for simply supported beam with double
edge surface crack at mid-span.
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3.2. Cantilever beam with a surface crack

In this numerical example, a steel cantilever beam [37] with all the geometric and material properties
same as that of simply supported beam with a double edge surface crack except having the height
H = 0.0242 m, is considered. Typical FEM discretization with 22 standard four node ABAQUS [1]
elements and one UEL for c/L = 0.2 measured from fixed end is shown in Fig. 4. Figure 5 shows the
first natural frequency ratio (ωc/ω) versus the crack depth ratio (α/H) for steel cantilever beam
with crack located at a distance of 20% of the beam length from the fixed end. Compared with the
predictions obtained using the damaged finite element by Potirniche et al. [26], the first natural
frequency reduction predicted by the proposed improved two-dimensional finite element matches
very well with the experiments results by Wendtland [37]. Contrary to the reported results [26], the
current study showed much deviation in the predictions obtained using the damaged finite element
by Potirniche et al. [26], when compared with the experiments results by Wendtland [37].

Fig. 4. Discretization of cantilever beam with surface crack using 22 standard four node ABAQUS elements
and one UEL.

Fig. 5. First natural frequency ratio versus the crack depth ratio for cantilever beam with surface crack at
20% of beam length from fixed end.

3.3. Simply supported beam with a surface crack

An aluminum beam [3] having the length L = 0.235 m, the height H = 0.0254 m, and the thickness
t = 0.006 m with the elastic modulus E = 7.2 × 1010 N/m2 and the density ρ = 2800 kg/m3, is
considered. Typical FEM discretization with eight standard four node ABAQUS [1] elements and
one UEL for c/L = 0.5 is shown in Fig. 6. Figure 7a shows the first natural frequency ratio (ωc/ω)
versus the crack depth ratio (α/H) for simply supported beam with a surface crack at mid-span.
Compared with the predictions obtained using the damaged finite element by Potirniche et al. [26],
the first natural frequency reduction predicted by the proposed improved two-dimensional finite
element matches very well with the experiments results by Chondros et al. [3].
For the simply supported beam case considered above, the FEM discretization with the height

of UEL equal to the beam height is adopted. In the following, the effect of the number of elements
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Fig. 6. Discretization of simply supported beam with surface crack using 8 standard four node ABAQUS
elements and one UEL.

a)

b)

c)

Fig. 7. Variation in natural frequency reduction of simply supported beam with surface crack at mid-span:
a) first mode with surface crack at mid-span, b) second mode with surface crack at mid-span, and c) third

mode with surface crack at c/L = 1/3.
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along the direction of the beam height on the accuracy in predicting the reduction in the natural
frequencies of higher modes is studied.
Noting that if the crack location coincides with the vibration node of one of the modes, the

frequency for that mode remains almost unchanged, Fig. 7b shows variation in the natural frequency
reduction of second mode of simply supported beam with a surface crack at mid-span with respect
to the number of elements along the direction of the beam height, predicted by the proposed
improved two-dimensional finite element for the various values of the crack depth ratios (α/H).
Similarly, Fig. 7c shows the variation in the natural frequencies reduction of third mode of simply
supported beam with a surface crack at c/L = 1/3 measured from the support, with respect to
the number of elements along the direction of the beam height. It can be observed from Figs. 7b
and 7c that by adopting two elements along the direction of the beam height, better accuracy can
be obtained in the prediction of reduction in the natural frequencies of higher modes, which are
essential for the predicting the crack location and size. Hence, in the crack identification technique
presented in the subsequent sections, two elements along the direction of the beam height are
adopted and when the crack depth is equal to the height of UEL, the element stiffness is assumed
to be zero.

4. CRACK IDENTIFICATION PROCEDURE

Using the first three natural frequencies obtained using the proposed improved two-dimensional
finite element, frequency response functions are approximated using surface fitting techniques avail-
able in MATLAB [18]. As the crack location and the crack size influence the changes in the natural
frequencies of a cracked beam, a particular frequency can correspond to different crack locations
and crack sizes. The frequency contour line resulting from a combination of different crack locations
and crack sizes (for a particular mode) can be plotted in a curve with crack location and crack size
as its axes [23]. The development of a crack, at a certain location, results in a sudden reduction of
the bending stiffness of the beam, and subsequently leads to a shift of the natural frequency. The
inverse problem of the crack identification is to predict the crack location ratio (c/L) and crack
depth ratio (α/H), once the value of natural frequencies are known. Information of any two natural
frequency variations enables one to predict the location and depth of a crack [29]. As the frequency
for a mode remains almost unchanged, if the crack location coincides with the vibration node of
that mode, a minimum of three curves is required to identify the two unknown parameters of crack
location and size.

5. EXPERIMENTAL VALIDATION

The crack detection procedure outlined above in conjunction with the proposed improved two-
dimensional finite element is validated using: a) the experimental data reported by Silva and
Gomes [29], who performed an extensive set of modal analysis experiments on free–free beams
with the goal of providing objective data to validate proposed techniques for damage detection and
b) the experimental data on fixed-fixed and simply supported beams reported by Owolabi et al. [23].

5.1. Free-free beam

Test specimens adopted by Silva and Gomes [29] were steel beams with 0.032×0.016 m2 rectangular
cross-section and 0.72 m long. The corresponding material properties were: E = 2.06× 1011 N/m2;
ν = 0.29; and ρ = 7650 kg/m3. In the current study, the same beam is modeled with 73 standard
four node ABAQUS [1] elements and one UEL. Typical discretization of free-free beam is shown
in Fig. 8. Table 1 presents a satisfactory comparison of the frequency ratio (ωc/ω) of the first
three natural frequencies predicted by the proposed improved two-dimensional finite element with
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Fig. 8. Discretization of free-free beam with surface crack using 73 standard four node ABAQUS elements
and one UEL.

Table 1. Comparison of (ωc/ω) of first three predicted natural frequencies of free-free beam with
experimental data.

Crack
case

Actual
crack [29]

Mode 1 Mode 2 Mode 3

Location
c/L

Size
α/H

Experi-
ment
[29]

Proposed
Method

Error
[%]

Experi-
ment
[29]

Proposed
Method

Error
[%]

Experi-
ment
[29]

Proposed
Method

Error
[%]

1 0.125 0.125 1.0003 0.9980 0.24 0.9991 0.9974 0.17 0.9967 0.9950 0.17

2 0.125 0.250 0.9994 0.9980 0.13 0.9944 0.9943 0.02 0.9840 0.9867 0.27

3 0.125 0.375 0.9969 0.9975 0.06 0.9847 0.9884 0.37 0.9582 0.9711 1.35

4 0.125 0.500 0.9946 0.9942 0.04 0.9648 0.9681 0.35 0.9199 0.9223 0.27

5 0.250 0.125 0.9972 0.9953 0.19 0.9926 0.9899 0.27 0.9940 0.9916 0.24

6 0.250 0.250 0.9887 0.9901 0.15 0.9725 0.9752 0.28 0.9786 0.9798 0.12

7 0.250 0.375 0.9717 0.9802 0.87 0.9311 0.9498 2.01 0.9507 0.9610 1.08

8 0.250 0.500 0.9432 0.9483 0.54 0.9904 0.8833 10.81 0.9080 0.9199 1.32

9 0.375 0.125 0.9943 0.9903 0.40 0.9986 0.9931 0.55 1.0003 1.0005 0.02

10 0.375 0.250 0.9737 0.9766 0.30 0.9811 0.9832 0.21 0.9991 0.9999 0.09

11 0.375 0.375 0.9356 0.9522 1.78 0.9566 0.9668 1.06 0.9976 0.9988 0.12

12 0.375 0.500 0.8485 0.8840 4.18 0.9219 0.9272 0.57 0.9955 0.9949 0.07

13 0.500 0.125 0.9883 0.9877 0.06 1.0005 1.0004 0.01 0.9925 0.9910 0.15

14 0.500 0.250 0.9601 0.9699 1.02 1.0005 1.0005 0.00 0.9725 0.9783 0.60

15 0.500 0.375 0.9172 0.9391 2.38 1.0002 1.0005 0.02 0.9456 0.9574 1.24

16 0.500 0.500 0.8269 0.8573 3.68 1.0002 0.9996 0.06 0.8927 0.9082 1.74

the experimental data reported by Silva and Gomes [29], for a total of 16 damage scenarios that
include four different crack locations and four crack size levels at each location. Figures 9a–9c
show the frequency response functions of the first three natural frequencies obtained using the
proposed improved two-dimensional finite element plotted (in a three-dimensional plot) in the form
of frequency ratio (ωc/ω) versus the crack depth ratio (α/H) for various crack location ratios (c/L).
Figures 10a–10c show the plots of the predicted variations of the first three natural frequencies as
a function of the crack size, for some of the crack locations of the free-free beam. Similar to the
observations reported by Li et al. [15], the present study shows that for all the cases considered, the
natural frequencies decrease as the crack sizes increase. For some of the crack locations considered,
the frequencies remained unchanged until a certain value of crack size ratio is attained, after which
the frequencies decreases rapidly. For larger values of crack size ratio the frequency decreases rapidly.
Figures 11a–11c present the predicted variations of the first three natural frequencies as a func-

tion of the crack location. Since the frequency for a mode remains almost unchanged if the crack
location coincides with the vibration node of that mode, when the crack is located at the cen-
ter of the beam, the second natural frequency is almost unaffected. When the crack is located at
c/L = 1/3 (or c/L = 2/3), the third natural frequency is almost unaffected. Similar observations
were reported by Li et al. [15].
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a)

b)

c)

Fig. 9. 3D plots of natural frequency ratio versus crack location, and size for free-free beam: a) Mode 1,
b) Mode 2 and c) Mode 3.
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a)

b)

c)

Fig. 10. Natural frequency ratio versus crack size for free-free beam: a) Mode 1, b) Mode 2 and c) Mode 3
(1: uncracked, 2: c/L = 1/8, 3: c/L = 1/3 and 4: c/L = 1/2).



Improved two-dimensional cracked finite element for crack fault diagnosis 225

a)

b)

c)

Fig. 11. Natural frequency ratio versus crack location for free-free beam: a) Mode 1, b) Mode 2 and
c) Mode 3 (1: uncracked, 2: α/H = 1/8, 3: α/H = 1/4 and 4: α/H = 1/2).
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a) b)

c) d)

e) f)

Fig. 12. Crack identification results for free-free beam: (a) case 3, (b) case 5, (c) case 6, (d) case 10, (e)
case 13, and (f) case 14 (1: mode 1, 2: mode 2, 3: mode 3).
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The method for crack identification is verified for several combinations of crack locations and
crack sizes listed in Table 2. The first three natural frequencies measured by Silva and Gomes [29]
are used as input in this case. Figures 12a–12f show the contour lines of the first three modes of
free-free beam, for selected cases. The intersection of the three curves indicates the possible crack
location and crack size. When the three curves do not meet exactly, the centroid [21] of the three
pairs of intersections is taken as the crack location and crack size. Table 2 compares the predicted
crack locations and crack sizes with the corresponding actual values. The predicted values are in
good agreement with the corresponding actual values. It is worth noting that the average error in
the crack location predictions is 1.20% and the average error in the crack size predictions is 5.72%,
which is less when compared to the predictions reported by Li et al. [15].

Table 2. Comparison of predicted crack positions and sizes of free-free beam with corresponding actual
values.

Crack case
Actual crack [29] Predicted crack Predicted error [%]a

Location c/L Size α/H Location c/L Size α/H Location c/L Size α/H

1 0.125 0.125 0.070 0.323 5.46 19.83

2 0.125 0.250 0.111 0.326 1.44 7.64

3 0.125 0.375 0.125 0.433 0.03 5.82

4 0.125 0.500 0.114 0.561 1.06 6.06

5 0.250 0.125 0.252 0.101 0.21 2.45

6 0.250 0.250 0.257 0.262 0.69 1.22

7 0.250 0.375 0.253 0.441 0.29 6.65

8 0.250 0.500 0.243 0.556 0.74 5.61

9 0.375 0.125 0.404 0.078 2.93 4.73

10 0.375 0.250 0.374 0.267 0.13 1.74

11 0.375 0.375 0.370 0.437 0.53 6.23

12 0.375 0.500 0.368 0.562 0.73 6.17

13 0.500 0.125 0.467 0.123 3.30 0.17

14 0.500 0.250 0.490 0.298 1.05 4.85

15 0.500 0.375 0.494 0.438 0.56 6.33

16 0.500 0.500 0.500 0.561 0.02 6.06
a Predicted error [%] = (Actual value – Predicted value) × 100.

5.2. Simply supported beam

Owolabi et al. [23] tested seven simply supported beam models with cracks at seven different
locations, starting from a location nearer to one of the simply supported ends. The crack depth
was varied from 0.1H to 0.7H (the depth of the beam, H = 0.0254 m) with an increment of 0.1H
at each crack location. Each beam model was made of an aluminum bar of cross-sectional area
0.0254 m×0.0254 m with a length of 0.650 m. It had the following material properties: Young’s
modulus E = 7× 1010 N/m2, density ρ = 2696 kg/m3, the Poisson ratio ν = 0.35.
In the current study, the same beam is modeled with 101 standard four node elements ABAQUS

[1] elements and one UEL at the top of the beam. Typical discretization of the simply supported
beam is shown in Fig. 13. Figures 14a–14c show the frequency response functions of the first three
natural frequencies obtained using the proposed improved two-dimensional finite element plotted
(in a three-dimensional plot) in the form of frequency ratio (ωc/ω) versus the crack depth ratio
(α/H) for various crack location ratios (c/L). Figures 15a–15c show the plots of the predicted
variations of the first three natural frequencies as a function of the crack size for some of the crack
locations of simply supported beam.
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Fig. 13. Discretization of simply supported beam with surface crack using 101 standard four node
ABAQUS elements and one UEL.

a)

b)

c)

Fig. 14. 3D plots of natural frequency ratio versus crack location, and size for simply supported beam:
a) Mode 1, b) Mode 2, and c) Mode 3.
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a)

b)

c)

Fig. 15. Natural frequency ratio versus crack size for simply supported beam: a) Mode 1, b) Mode 2 and
c) Mode 3 (1: uncracked, 2: c/L = 1/8, 3: c/L = 1/3, and 4: c/L = 1/2).
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a)

b)

c)

Fig. 16. Natural frequency ratio versus crack location for simply supported beam: a) Mode 1, b) Mode 2,
and c) Mode 3 (1: uncracked, 2: α/H = 1/8, 3: α/H = 1/4, and 4: α/H = 1/2).
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Figures 16a–16c present the predicted variations of the first three natural frequencies as a func-
tion of the crack location. Similar to the observations reported by Yang et al. [38], the present
study shows that for the first mode, the maximum change of frequency takes place as the crack
occurs at the midpoint of the beam. This is due to the fact that the dynamic bending moment
is larger at the centre of the beam (where the amplitude of the first mode shape is greatest) and
hence for the first mode, the presence of crack results in a greater loss of bending stiffness. How-
ever, the second and third modes are less affected at this location. The second and third mode
frequencies change marginally for crack location ratios c/L = 1/2 and c/L = 1/3, respectively;
this is due to the fact that these crack locations are respectively the vibration nodes of the second
and third modes. The crack occurring near the ends of the beam does not change the frequen-
cies.

Similar to that for free-free beam case, the method for crack identification is verified for several
combinations of crack locations and crack sizes listed in Table 3. The first three natural frequen-
cies measured by Owolabi et al. [23] are used as input in this case. Figures 17a–17f show the
contour lines of the first three modes of simply supported beam for selected cases. The predicted
crack locations and crack sizes are compared with the corresponding actual values in Table 3. The
predicted crack locations and crack sizes are in good agreement with the actual values with the
average error in the crack location and crack size predictions equal to 2.90% and 2.66%, respec-
tively.

Table 3. Comparison of predicted crack positions and sizes of simply supported beam with corresponding
actual values.

Crack
case

Actual crack [23] Predicted crack Predicted error [%]a

Location
c/L

Size
α/H

Location
c/L

Size
α/H

Location
c/L

Size
α/H

1 0.1875 0.10 0.283 0.053 9.52 4.74

2 0.1875 0.20 0.251 0.137 6.36 6.32

3 0.1875 0.30 0.247 0.239 5.91 6.05

4 0.1875 0.40 0.202 0.387 1.40 1.32

5 0.1875 0.50 0.247 0.463 5.91 3.68

6 0.3125 0.10 0.204 0.076 10.87 2.37

7 0.3125 0.20 0.289 0.134 2.30 6.58

8 0.3125 0.30 0.310 0.287 0.27 1.32

9 0.3125 0.40 0.321 0.416 0.86 1.58

10 0.3125 0.50 0.326 0.476 1.31 2.37

11 0.4375 0.10 0.434 0.074 0.37 2.63

12 0.4375 0.20 0.452 0.229 1.44 2.90

13 0.4375 0.30 0.445 0.332 0.76 3.16

14 0.4375 0.40 0.438 0.408 0.09 0.79

15 0.4375 0.50 0.438 0.482 0.09 1.84

16 0.5000 0.10 0.477 0.082 2.33 1.84

17 0.5000 0.20 0.497 0.184 0.30 1.58

18 0.5000 0.30 0.470 0.339 3.01 3.95

19 0.5000 0.40 0.497 0.421 0.30 2.11

20 0.5000 0.50 0.481 0.484 1.88 1.58
a Predicted error [%] = (Actual value – Predicted value) × 100.
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a) b)

c) d)

e) f)

Fig. 17. Crack identification results for simply supported beam: a) case 4, b) case 9, c) case 12, d) case 13,
e) case 15, and f) case 18 (1: mode 1, 2: mode 2, 3: mode 3).
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5.3. Fixed-fixed beam

Similar to the simply supported beam models, Owolabi et al. [23] also tested seven fixed-fixed
beam models having the same geometrical and material properties with cracks at seven different
locations, starting from a location nearer to one of the clamped end. In the current study the fixed-
fixed beam is modeled with the same discretization as shown in Fig. 13. Figures 18a–18c show the

a)

b)

c)

Fig. 18. 3D plots of natural frequency ratio versus crack location, and size for fixed–fixed beam: (a) Mode
1, (b) Mode 2 and (c) Mode 3.



234 A. Kalanad, B.N. Rao

frequency response functions of the first three natural frequencies. Figures 19a–19c show the plots
of the predicted variations of the first three natural frequencies as a function of the crack size for
some of the crack locations of fixed-fixed beam.

a)

b)

c)

Fig. 19. Natural frequency ratio versus crack size for fixed-fixed beam: a) Mode 1, b) Mode 2 and c) Mode
3 (1: uncracked, 2: c/L = 1/8, 3: c/L = 1/3, and 4: c/L = 1/2).
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Figures 20a–20c present the predicted variations of the first three natural frequencies as a func-
tion of the crack location. Unlike the simply supported beam, the maximum changes of frequencies

a)

b)

c)

Fig. 20. Natural frequency ratio versus crack location for fixed-fixed beam: a) Mode 1, b) Mode 2 and
c) Mode 3 (1: uncracked, 2: α/H = 1/8, 3: α/H = 1/4, and 4: α/H = 1/2).
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occur when the crack is near the ends of the beam. The reason is that the maximum bending
moment occurs near the support in the case of a fixed-fixed beam, and the presence of a crack at
these locations would reduce the stiffness near the supports (the boundary constraints). Similar
observations were reported by Yang et al. [38]. The first and third mode frequencies also show
higher decrease for the crack located at the centre of beam due to higher bending moment at these
locations. However for the second mode, the change in frequency is negligible because the centre
of beam is the node of the second mode of vibration. In addition, for fixed-fixed beam frequency
changes are also observed to be very low at those points where the dynamic bending moments are
least. Thus, the change in frequency is not only a function of the crack location and size, but also
of mode number, distance to mode shape node, etc.

Similar to that for simply supported beam case, using the first three natural frequencies mea-
sured by Owolabi et al. [23] are used as input, the method for crack identification is verified for
several combinations of crack locations and crack sizes listed in Table 4. Figures 21a–21f show the
contour lines of the first three modes of simply supported beam for selected cases. Comparison
of the predicted crack locations and crack sizes with the corresponding actual values in Table 4
shows that the predicted values are in good agreement with the actual values. The average er-
ror in the crack location predictions is 2.76% and the average error in the crack size predictions
is 2.93%.

Table 4. Comparison of predicted crack positions and sizes of simply supported beam with corresponding
actual values.

Crack
case

Actual crack [23] Predicted crack Predicted error [%]a

Location
c/L

Size
α/H

Location
c/L

Size
α/H

Location
c/L

Size
α/H

1 0.1875 0.10 0.252 0.059 6.45 4.08

2 0.1875 0.20 0.284 0.143 9.62 5.75

3 0.1875 0.30 0.195 0.283 0.80 1.71

4 0.1875 0.40 0.227 0.406 3.97 0.57

5 0.1875 0.50 0.225 0.461 3.74 3.95

6 0.3125 0.10 0.388 0.090 7.53 1.01

7 0.3125 0.20 0.280 0.145 3.29 5.53

8 0.3125 0.30 0.300 0.298 1.30 0.17

9 0.3125 0.40 0.311 0.425 0.16 2.54

10 0.3125 0.50 0.311 0.476 0.16 2.41

11 0.4375 0.10 0.417 0.064 2.03 3.64

12 0.4375 0.20 0.438 0.191 0.01 0.92

13 0.4375 0.30 0.433 0.318 0.45 1.80

14 0.4375 0.40 0.426 0.423 1.13 2.33

15 0.4375 0.50 0.438 0.485 0.01 1.54

16 0.5000 0.10 0.427 0.092 7.29 0.79

17 0.5000 0.20 0.492 0.114 0.75 8.60

18 0.5000 0.30 0.478 0.320 2.17 2.02

19 0.5000 0.40 0.468 0.432 3.23 3.20

20 0.5000 0.50 0.460 0.493 3.98 0.66
a Predicted error [%] = (Actual value – Predicted value) × 100.



Improved two-dimensional cracked finite element for crack fault diagnosis 237

a) b)

c) d)

e) f)

Fig. 21. Crack identification results for fixed-fixed beam: a) case 4, b) case 9, c) case 10, d) case 11, e) case
12, and f) case 19 (1: mode 1, 2: mode 2, 3: mode 3).
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6. CONCLUSIONS

This paper presents an improved two-dimensional finite element with an embedded edge crack for
crack depth ratios ranging up to 0.9 and for predicting natural frequency of a cracked beam more
accurately. The FRANC2DL finite element code is used with the J-integral option to extract the
stress intensity factors from stress strain fields around the crack tip location. The geometric factors
for various loading cases of the cracked element for crack depth ratios ranging up to 0.9 are obtained
by means of curve fitting techniques, and they are subsequently used to obtain the components
of the stiffness matrix for the cracked element from the Castigliano’s first theorem using fracture
mechanics concepts. The element is implemented in the commercial finite element code ABAQUS
as user element subroutine. The first natural frequency for the bending mode for several beam
cases with different damage locations, obtained using the proposed improved finite element are in
good agreement with the available experimental data. A methodology to detect crack location and
size in conjunction with the proposed improved cracked element is also presented for singularity
problems like a cracked beam. The frequency response functions are approximated by means of
surface fitting techniques as a function of the crack location and size. Measured natural frequencies
are used in a crack detection process and the crack location and size can be identified by finding
the point of intersection of three frequency contour lines. In addition, the experimental data from
beams studied by other researchers is employed to verify the accuracy of the proposed methodology
in the diagnosis of structural crack faults. The predicted crack locations and crack sizes are in good
agreement with the actual values.
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