
Computer Assisted Methods in Engineering and Science, 19: 241–255, 2012.
Copyright c© 2012 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Solving two-dimensional packing problem

using particle swarm optimization

Young-Bin Shin, Eisuke Kita
Graduate School of Information Science, Nagoya University
Japan
e-mail: kita@is.nagoya-u.ac.jp

Particle swarm optimization is one of the evolutionary computations which is inspired by social behavior of
bird flocking or fish schooling. This research focuses on the application of the particle swarm optimization
to two-dimensional packing problem. Packing problem is a class of optimization problems which involve
attempting to pack the items together inside a container, as densely as possible. In this study, when the
arbitrary polygon-shaped packing region is given, the total number of items in the region is maximized.
The optimization problem is defined not as the discrete-value optimization problem but as the continuous-
value optimization problem. The problem is solved by two algorithms, original and improved PSOs. In the
original PSO, the particle position vector is updated by the best particle position in all particles (global
best particle position) and the best position in previous positions of each particle (personal best position).
The improved PSO utilizes, in addition to them, the second best particle position in all particles (global
second best particle position) in the stochastic way. In the numerical example, the algorithms are applied
to three problems. The results show that the improved PSO can pack more items than the original PSO
and therefore, number of the successful simulations is also improved.

Keywords: packing problem, particle swarm optimization, global best position, global second best posi-
tion, personal best position.

1. INTRODUCTION

For solving nondeterministic polynomial time (NP)-hard problems, many researchers have been
studying several evolutionary computations such as genetic algorithm (GA) [1], simulated annealing
(SA) [2], particle swarm optimization (PSO) [3] and so on. This study focuses on the application
of PSO to two-dimensional packing problems, which is one of the popular NP-hard problems.
PSO, which has been presented in 1995 by Kennedy and Eberhart [3], is based on a metaphor of
social interaction such as bird flocking and fish schooling. PSO is a population-based optimization
algorithm, which could be implemented and applied easily to solve various function optimizations
problem, or the problems that can be transformed to the function minimization or maximization
problem.

Two-dimensional packing problems are a class of optimization problems in mathematics which
involve attempting to pack objects together in the packing region as densely as possible. There are
many variations of this problem, such as two-dimensional packing, linear packing, packing by weight,
packing by cost, and so on. They have many applications, such as filling up containers, loading
trucks with weight capacity, creating file backup in removable media and technology mapping in
field-programmable gate array semiconductor chip design.

This study focuses on two-dimensional packing problems. Two-dimensional packing problems
are traditionally defined as the optimization problems that pack definite-shaped (circle or square)
items in a definite-shaped (circle or square) packing regions. Therefore, analytical solutions can be
obtained in some cases [4–6]. However, in some actual industrial applications, it is not assumed



242 Y.-B. Shin, E. Kita

that the packing regions have definite shapes such as circle or square. When the packing regions
do not have the definite shapes, the solutions should be obtained by numerical way. In this study,
the packing problem is defined as the maximization of the items in the two-dimensional packing
regions without their overlap when the packing regions with arbitrary polygon-shapes are given.
The problems are solved by using particle swarm optimization.

The application of PSO for solving packing problem has been presented by some researchers
[7–10]. Liu et al. [7] presented evolutionary PSO for solving bin packing problem. Zhao et al. [8, 9]
applied the discrete PSO for solving rectangular packing problem. Thapatsuwan et al. [10] compared
GA and PSO for solving multiple container packing problems. They focus on the packing problem
of container in the storage or the ship cabin. Since the sizes of the storage and the ship cabin
are designed in conformity to the container sizes, the optimization problem can be defined as the
discrete-valued problem and therefore, the special PSOs such as discrete PSO are applied. In this
study, arbitrarily polygon-shaped packing regions are assumed. Therefore, the problems are defined
as the continuous-valued optimization problems.

The design objective function is to maximize the total number of the items packed into the
packing region without their overlap. The total number of items and the position vectors of the
item centers are used as the design variables. The problem is solved by the original and the improved
PSOs. In the PSO, the potential solutions of the optimization problem to be solved are defined as
the particle position vectors. Then, the particle positions are updated by PSO update rules. In the
original PSO, the particle position vector is updated by the best position of all particles (global best
position) and the local best position in previous positions of each particle (personal best position).
The improved PSO utilizes, in addition to them, the second best position of all particles (global
second best position). The use of the global second best particle position has been already presented
in [11]. Its numerical discussions and applications were not described in this reference. Besides, the
stochastic use of the global second-best particle position xg2 is presented in this study.

The remaining part of this paper is organized as follows. The PSO algorithms and the opti-
mization problem are explained in Sec. 2 and 3, respectively. In Sec. 4, the packing problem in
two-dimensional regions is solved. Finally, the conclusions are summarized again in Sec. 5.

2. PSO ALGORITHM

2.1. Original PSO

2.1.1. Update rule

In the PSO algorithm, the particles represent potential solutions of the optimization problem. Each
particle in the swarm has a position vector xi(t) (i = 1, 2, . . . , N) and a velocity vector vi(t) in
the search space at time t. The parameter N denotes the total number of particles in the swarm.
The particle position vector is defined by the design variable set for the optimization problem.
Each particle also has memory and hence, can remember the best position in search space it has
ever visited. The satisfaction of the particle i for the design objective is estimated by the objective
function or the fitness function f(xi(t)).
The position at which each particle takes the best fitness function is known as the personal best

position xp
i (t) and the overall best out of all particles in the swarm is a global best position x

g(t).
Then its velocity and position are updated according to the following formulas:

xi(t+ 1) = xi(t) + vi(t+ 1), (1)

vi(t+ 1) = ω · vi(t) + c1 · r1 × (xp
i (t)− xi(t)) + c2 · r2 × (xg(t)− xi(t)), (2)

where w is the inertia weight, c1 and c2 are acceleration coefficients, and t is the iteration time.
Besides, r1 and r2 are random numbers in the interval [0, 1].



Solving two-dimensional packing problem using particle swarm optimization 243

The inertia weight w governs how much of the velocity should be retained from the previous
time step. Generally, the inertia weight is not fixed but varies as the algorithm progresses. The
inertia weight w, in this study, is generally updated by self-adapting formula as

ω = ωmax − (ωmax − ωmin)×
t

tmax
, (3)

where the parameter ωmax and ωmin denote the maximum and minimum inertia weight, respectively.
The parameter t and tmax are the iteration step and the maximum iteration steps in the simulation,
respectively.
The parameters c1 and c2 denote the effect of x

p
i (t) and xg(t). According to the recent work

done by Clerc [12], the parameters are given as

c1 = c2 = 1.5. (4)

2.1.2. Algorithm

Total number of the particles in the swarm is fixed as N . The original PSO algorithm is shown in
Fig. 1 and summarized as follows.

1. Set t = 0.

2. For i = 1, · · · , N , set xp
i (t) = 0.

3. Initialize the position vector xi(t) and the velocity vector vi(t) of each particle with random
numbers.

4. Set t = t+ 1.

Fig. 1. Flowchart of original PSO algorithm.



244 Y.-B. Shin, E. Kita

5. For i = 1, · · · , N ,

(a) Evaluate fitness functions f(xi(t)) for each particle.

(b) If f(xi(t)) > f(xp
i (t− 1)), set xp

i (t) = xi(t).

(c) If f(xi(t)) ≤ f(xp
i (t− 1)), set xp

i (t) = x
p
i (t− 1).

6. Find the best particle position x1(t) among xp
i (t) (i = 1, 2, · · · , N).

7. If f(x1(t)) > f(xg(t− 1)), set xg(t) = x1(t).

8. If f(x1(t)) ≤ f(xg(t− 1)), set xg(t) = xg(t− 1).

9. For i = 1, · · · , N , update the velocity vector vi(t) and position vector xi(t) of each particle
according to Eqs. (2) and (1), respectively.

10. Go to step 5 if t ≤ tmax.

2.2. Improved PSO

2.2.1. Update rule with global second-best position

The original PSO has no handling mechanism for the local optimization. The original PSO reduces
the chance of local optimization to make use of xp

i (t) in one way. In the improved PSO, in addition
to the global best position xg(t) and the personal best position xp(t), each particle can remember
the position of the global second-best particle xg2(t). The use of xg2(t) can reduce the chance of
local optimization of PSO. In the improved PSO, the position vector and the velocity vector of the
particle are updated according to Eq. (1) and the following formula, respectively.

vi(t+1) = w ·vi(t)+c1 ·r1× (xp
i (t)−xi(t))+c2 ·r2× (xg(t)−xi(t))+c3 ·r3× (xg2(t)−xi(t)), (5)

where w is the inertia weight, c1, c2 and c3 are acceleration coefficients and t is the iteration time.
Besides, r1, r2 and r3 are random numbers distributed in the interval [0, 1]. The parameter c1 and
c2 are taken as the same values in the original PSO; c1 = c2 = 1.5. The parameter c3 is determined
from some numerical experiments, which is given as c3 = 1.9.
The update rule (5) has been already presented in [11]. Its numerical discussions and applications

were not described in this reference. The stochastic use of the global second-best particle position
xg2(t) is presented in this study.

2.2.2. Algorithm

The improved PSO shares the information of xp
i (t), x

g(t) and xg2(t). Obviously, xg2(t) is worse
than xg(t). If only Eq. (5) is used for updating particle velocities, the obtained result is similar to
worse than that of original PSO. Therefore, both update rules of the original and improved PSOs
are used in the present algorithm. Here, we present the following update rule in which the PSO of
Eq. (2) and the PSO of Eq. (5) are randomly used in probability Ps. The improved PSO algorithm
is shown in Fig. 2 and summarized as follows.

1. Set t = 0.

2. For i = 1, · · · , N , set xp
i (t) = 0 and xg(t) = 0.

3. Initialize the position vector xi(t) and the velocity vector vi(t) of each particle with random
numbers.

4. Set t = t+ 1.



Solving two-dimensional packing problem using particle swarm optimization 245

Fig. 2. Flowchart of improved PSO algorithm.

5. For i = 1, 2, · · · , N :

(a) Evaluate fitness functions f(xi(t)) for each particle.

(b) If f(xi(t)) > f(xp
i (t− 1)), set xp

i (t) = xi(t).

(c) If f(xi(t)) ≤ f(xp
i (t− 1)), set xp

i (t) = x
p
i (t− 1).

6. Find the best particle position x1(t) among xp
i (t) (i = 1, 2, . . . , N).

7. If f(x1(t)) > f(xg(t− 1)), go to next step. Otherwise, go to step 12.

8. Set xg(t) = x1(t).

9. Find the second best particle position x2(t) among xg(t− 1) and xp
i (t) (i = 1, 2, . . . , N).

10. Set xg2(t) = x2(t).

11. Go to step 14.

12. If f(x1(t)) > f(xg2(t)), set xg2(t) = x1(t).

13. If f(x1(t)) ≤ f(xg2(t)), set xg2(t) = xg2(t− 1).

14. Generate random number r in the interval[0, 1].



246 Y.-B. Shin, E. Kita

15. If r > Ps, update the velocity and position vectors of all particles according to Eqs. (1) and
(2), respectively.

16. If r ≤ Ps, update the velocity and position vectors of all particles according to Eqs. (1) and
(5), respectively.

17. Go to step 5 if t ≤ tmax.

3. PACKING PROBLEM

3.1. Optimization problem

The packing problem can be formulated to maximize the number of items N compacted into a
two-dimensional polygonal region P as follows:

max z (6)

s.t. g1(i, P ) = 0,

g2(i, j) = 0,

0.5w ≤ pix ≤W − 0.5w,

0.5h ≤ piy ≤ H − 0.5h,

i = 1, 2, . . . , z; j = 1, 2, . . . , z,

where the vector {pix, piy} denotes the center position vector of the item i, w and h are item sizes,
and W and H are feasible space sizes. The function g1(i, P ) estimates the inclusion of the item i
in the region P , which is defined as follows:

g1(i, P ) =

{
0 The item i is included in the region P .

1 The item i is not included in the region P .
(7)

The function g2(i, j) estimates the overlap between the item i and the item j, which is defined as
follows:

g2(i, j) =

{
0 The item i and j are not overlapped.

1 The item i and j are overlapped.
(8)

3.2. PSO implementation

When the number of items is given, PSO is applied for solving the item packing problem within the
packing region without violating the constraint conditions. The optimization problem is defined as
follows:

• fitness function

f(xi) =
1

1 +
∑z

i=1

{
g1(i, P ) +

∑z,i6=j
j=1 g2(i, j)

} ; (9)

• design variable vector
xi = {p1x, p1y, · · · , pix, piy, · · · , pzx, pzy}T ; (10)

• side constraints for design variable
0.5w ≤ pix ≤W − 0.5w (i = 1, 2, · · · , z);
0.5h ≤ piy ≤ H − 0.5h (i = 1, 2, · · · , z). (11)



Solving two-dimensional packing problem using particle swarm optimization 247

3.3. Optimization process

The process of the present algorithm is summarized as follows.

1. Set the threshold Ps and the maximum step size tmax.

2. Set z = 0.

3. Set z = z + 1.

4. Apply PSO algorithm.

5. If f(xg(t)) = 1, return to Step 3. If not so, go to next step.

6. Stop by z = z − 1.

4. NUMERICAL EXAMPLES

4.1. Case A

The packing problem in two-dimensional polygonal regions is considered as a numerical example.
The packing region of case A is shown in Fig. 3. PSO parameters are shown in Table 1. Number
of particles and maximum iteration steps are specified as N = 200 and tmax = 2000, respectively.
The other parameters are taken as ω = 0.9, c1 = 1.5, c2 = 1.5, c3 = 1.9, and Ps = 0.1.

Fig. 3. Packing region in case A.

Table 1. Parameters.

Number of particles N = 200

Maximum iteration step tmax = 2000

Update rules parameters ωmax = 0.9, ωmin = 0.4,

c1 = 1.5, c2 = 1.5, c3 = 1.9

Five hundred simulations are performed from different initial conditions. Maximum item num-
bers for case A are shown in Fig. 4. The figures are plotted with the run number as the horizontal
axis and the item number z as the vertical axis, respectively.
The results by the original and the improved PSOs are compared in Table 2. The average

maximum item number and the average CPU time denote the average values of the maximum
item numbers and CPU time 500 simulations, respectively. The average maximum item number is
11.144 in case of the original PSO and 12.984 in improved PSO. The average CPU time is 35.007



248 Y.-B. Shin, E. Kita

a) Original PSO

b) Improved PSO

Fig. 4. Maximum item numbers in case A.

Table 2. Comparison of original and improved PSO in case A.

Original PSO Improved PSO

Average maximum item number (zmax)ave 11.144 12.984

Average CPU time (seconds) 35.007 59.753

Number of success simulations (zmax ≥ 14) 14 123

Number of success simulations (zmax = 15) 1 33

and 59.753, respectively. The average maximum item number is defined as the average values
of the maximum item numbers in the 500 simulations. Although the item numbers are integer
numbers, the average maximum item numbers are shown as decimal numbers in order to compare
the algorithms, effectiveness. The maximum number of the items which can be packed in the region
is manually estimated as 15. The term “number of success simulations (zmax = 15)” and “number of
success simulations (zmax ≥ 14)” denote the number of the simulations which could reach zmax = 15
and zmax ≥ 14, respectively. Therefore, the former and the latter means the number of simulations
which could reach optimal and quasi-optimal solutions, respectively. Unfortunately, both algorithms
cannot reach the optimal solution because number of success simulations (zmax = 15) is 1 in the
original PSO and 33 in the improved PSO, respectively. Number of success simulations (zmax ≥ 14)
is 14 in the original PSO and 123 in the improved PSO, respectively. Therefore, it is concluded that



Solving two-dimensional packing problem using particle swarm optimization 249

the use of the improved PSO can increase the item number and the number of success simulations
although the CPU time is increased.

Figure 5 shows the fitness function f(xg) converges to 1 in case of the item number z ≤ 15
although it dose not converge to 1 in case of z = 16. Therefore, in this case, maximum item number
is concluded to be z = 15. Figure 6 shows the item placement in case of the improved PSO. We
can determine from Fig. 6 that the items overlap in case of z = 16.

Fig. 5. Fitness convergence of improved PSO in case A.

a) z = 11 b) z = 13

c) z = 15 d) z = 16

Fig. 6. Best item placement determined by improved PSO in case A.



250 Y.-B. Shin, E. Kita

Next, the effect of the parameter Ps is discussed. Table 3 shows the maximum number of items
and the CPU times for the different parameter Ps. The results show that the item number is
maximized at Ps = 0.1 and CPU time is also shortest.

Table 3. Effect of parameter Ps in case A.

Ps 0.1 0.2 0.3 0.4 0.5 0.6

Average maximum item number 12.97 12.81 12.69 12.06 12.72 11.46

Average CPU time 58.82 67.11 64.99 72.47 86.94 144.53

4.2. Case B

The packing region of case B is shown in Fig. 7. PSO parameters are identical to case A (Table 1).
Number of particles and maximum iteration steps are specified as N = 200 and tmax = 2000,
respectively. The other parameters are taken as

ω = 0.9, c1 = 1.5, c2 = 1.5, c3 = 1.9, and Ps = 0.1.

Fig. 7. Packing region in case B.

The results are shown in Fig. 8 and Table 4. The average maximum item number is 12.07
in case of the original PSO and 13.99 in improved PSO. The average CPU time is 35.198 and
65.124, respectively. The maximum number of the items which can be packed in the region is
manually estimated as 18. The term “number of success simulations (zmax = 18)” and “num-
ber of success simulations (zmax ≥ 17)” denote the number of the simulations which could reach
zmax = 18 and zmax = 17 or 18, respectively. Therefore, the former and the latter means the
number of simulations which could reach optimal and quasi-optimal solutions, respectively. Un-
fortunately, both algorithms cannot reach the optimal solution because “number of success sim-
ulations (zmax = 18)” is zero in both algorithms. Number of success simulations (zmax ≥ 17)
is 0 in the original PSO and 2 in the improved PSO, respectively. Therefore, it is shown that
case B is much more difficult to be solved than case A and that the use of the improved PSO
can increase the item number and number of success simulations although the CPU time is in-
creased.
Figure 9 shows the item placement in case of the improved PSO. We notice that the items

overlap in case of z = 18 although they do not overlap in case of z ≤ 17.



Solving two-dimensional packing problem using particle swarm optimization 251

a) Original PSO

b) Improved PSO

Fig. 8. Maximum item numbers in case B.

Table 4. Comparison of original and improved PSO in case B.

Original PSO Improved PSO

Average maximum item number (zmax)ave 12.07 13.99

Average CPU time (seconds) 35.198 65.124

Number of success simulations (zmax ≥ 17) 0 2

Number of success simulations (zmax = 18) 0 0

Next, the effect of the parameter Ps to the convergence property is discussed. The maximum
number of items and the CPU times for the different parameter Ps are listed in Table 5. The results
show that, at Ps = 0.1, the item number is largest and CPU time is shortest.

4.3. Case C

The packing region of case C is shown in Fig. 11. PSO parameters are identical to case A (Table 1).
Number of particles and maximum iteration steps are specified as N = 200 and tmax = 2000,
respectively. The other parameters are taken as ω = 0.9, c1 = 1.5, c2 = 1.5, c3 = 1.9, and Ps = 0.1.



252 Y.-B. Shin, E. Kita

a) z = 13 b) z = 15

c) z = 17 d) z = 18

Fig. 9. Best item placement determined by improved PSO in case B.

Table 5. Effect of parameter Ps in case B.

Ps 0.1 0.2 0.3 0.4 0.5 0.6

Average maximum item number 14.1 13.83 13.97 13.76 13.37 13.39

Average CPU time 66.57 77.00 81.80 85.56 95.18 108.65

Fig. 10. Packing region in case C.



Solving two-dimensional packing problem using particle swarm optimization 253

a) z = 11 b) z = 13

c) z = 15 d) z = 16

Fig. 11. Best item placement determined by improved PSO in case C.

Figure 11 shows the item placement in case of the improved PSO. We notice that the items
overlap in case of z = 16 although the items do not overlap at z ≤ 15.

The results are shown in Fig. 12 and Table 6. The average maximum item number is 12.07 in
case of the original PSO and 13.99 in improved PSO. The average CPU time is 35.198 and 65.124,
respectively. The maximum number of the items, which can be packed in the region, is manually
estimated as 16. The term “number of success simulations (zmax = 16)” and “number of success
simulations (zmax ≥ 15)” denote the number of the simulations which could reach zmax = 16 and
zmax = 15 or 16, respectively. Therefore, the former and the latter means the number of simulations
which could reach optimal and quasi-optimal solutions, respectively. Unfortunately, both algorithms
cannot reach the optimal solution because “number of success simulations (zmax = 16)” is zero in
both algorithms and “number of success simulations (zmax ≥ 15)” is 2 in the original PSO and 11
in the improved PSO. Therefore, also in this case, the use of the improved PSO can increase the
item number although the CPU time is increased.

Table 6. Comparison of original and improved PSO in case C.

Original PSO Improved PSO

Average maximum item number (zmax)ave 11.7 12.864

Average CPU time (seconds) 60.754 80.931

Number of success simulations (zmax ≥ 15) 2 11

Number of success simulations (zmax = 16) 0 0



254 Y.-B. Shin, E. Kita

a) Original PSO

b) Improved PSO

Fig. 12. Maximum item numbers in case C.

Table 7. Effect of parameter Ps in case C.

Ps 0.1 0.2 0.3 0.4 0.5 0.6

Average maximum item number 14.1 13.83 13.97 13.76 13.37 13.39

Average CPU time 66.57 77.00 81.80 85.56 95.18 108.65

Next, the effect of the parameter Ps to the convergence property is discussed. The maximum
number of items and the CPU times for the different parameter Ps are listed in Table 5. The results
show that, at Ps = 0.1, the item number is largest and CPU time is shortest.

5. CONCLUSIONS

The application of PSO for solving two-dimensional packing problems was presented in this study.
Since the storage and the ship cabin are designed so that their sizes are equal to the integral multiple
of the container sizes, usually it is assumed that the items are placed every certain intervals. In
this study, we considered the packing region that was arbitrarily polygon-shaped. The problem was
solved by the original and improved PSOs. In the original PSO, the particle position vectors are
updated by the global and the personal best positions. The improved PSO utilizes, in addition to



Solving two-dimensional packing problem using particle swarm optimization 255

them, the global second best position of all particles. The use of the global second best position is
determined in the probabilistic way.
The algorithms were compared in three numerical examples. The design, objective is to maximize

the number of items contained in the packing region without their overlap. In case of the original
PSO, the average values of the maximum number of the packed items are 11.1 in case A, 12.07 in
case B and 11.7 in case C, respectively. In case of the improved PSO, they are 12.98 in case A,
13.99 in case B and 12.86 in case C, respectively. It is concluded that the use of the improved PSO
can increase the maximum item number by two items.
By the way, we would like to discuss the disadvantages of the present algorithm. Firstly, the

performance of the improved PSO depends on the threshold Ps. In this study, the threshold Ps was
determined from the numerical experiments. Therefore, we would like to discuss the adequate pa-
rameter design. Secondly, from the viewpoint of engineering application of the packing problem, the
closer arrangement of the items is important. The aim of this study was to estimate the maximum
item number in the packing domain without their overlap. Therefore, the closer arrangement of
items is not taken into consideration in this study. Thus, in the next study we would like to present
the closer arrangement of the items by defining the additional objective function or constraint
conditions.

REFERENCES

[1] J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1st. edition, 1975.
[2] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi. Optimization by simulated annealing. Science, 220(4598): 671–680,
1983.

[3] J. Kennedy, R.C. Eberhart. Particle swarm optimization. In Proceedings of IEEE the International Conference
on Neural Networks, volume 6, pages 1942–1948, 1995.

[4] Hallard T. Croft, Falconer Kenneth J., Guy Richard K. Unsolved Problems in Geometry. Springer-Verlag, 1991.
[5] J. Melissen. Packing 16, 17 or 18 circles in an equilateral triangle. Discrete Mathematics, 145: 333–342, 1995.
[6] Erich Friedman. Packing unit squares in squares: a survey and new results. The Electronic Journal of Combi-
natorics, DS7, 2005.

[7] D.S. Liu, K.C. Tan, S.Y. Huang, C.K. Goh, W.K. Ho. On solving multiobjective bin packing problems using
evolutionary particle swarm optimization. European Journal of Operational Research, 190(2): 357–382, 2008.

[8] Chen Zhao, Liu Lin, Cheng Hao, Liu Xinbao. Solving the rectangular packing problem of the discrete particle
swarm algorithm. In Business and Information Management, 2008. ISBIM ’08. International Seminar on,
volume 2, pages 26–29, 2008.

[9] Chuan He, Yuan-Biao Zhang, Jian-Wen Wu, Cheng Chang. Research of three-dimensional container-packing
problems based on discrete particle swarm optimization algorithm. In Test and Measurement, 2009. ICTM ’09.
International Conference on, volume 2, pages 425–428, dec. 2009.

[10] P. Thapatsuwan, J. Sepsirisuk, W. Chainate, P. Pongcharoen. Modifying particle swarm optimisation and genetic
algorithm for solving multiple container packing problems. In Computer and Automation Engineering, 2009.
ICCAE ’09. International Conference on, pages 137 –141, march 2009.

[11] Ryan Forbes, Mohammad Nayeem Teli. Particle swarm optimization on multi-funnel functions.
http://www.cs.colostate.edu/nayeem/papers/pso

−
paper.pdf.

[12] M. Clerc. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In
Proceedings of 1999 Congress on Evolutionary Computation, volume 3, pages 1951–1957, 1999.


