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In this work, we discuss the role of probability in providing the most appropriate multiscale based uncer-
tainty quantification for the inelastic nonlinear response of heterogeneous materials undergoing localized
failure. Two alternative approaches are discussed: i) the uncertainty quantification in terms of construct-
ing the localized failure models with random field as parameters of failure criterion, ii) the uncertainty
quantification in terms of the corresponding Bayesian updates of the corresponding evolution equation.
The detailed developments are presented for the model problem of cement-based composites, with a two-
phase meso-scale representation of material microstructure, where the uncertainty stems from the random
geometric arrangement of each phase. Several main ingredients of the proposed approaches are discussed
in detail, including microstructure approximation with a structured mesh, random field KLE representa-
tion, and Bayesian update construction. We show that the first approach is more suitable for the general
case where the loading program is not known and the best one could do is to quantify the randomness of
the general failure criteria, whereas the second approach is more suitable for the case where the loading
program is prescribed and one can quantify the corresponding deviations. More importantly, we also show
that models of this kind can provide a more realistic prediction of localized failure phenomena including
the probability based interpretation of the size effect, with failure states placed anywhere in-between the
two classical bounds defined by continuum damage mechanics and linear fracture mechanics.
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1. INTRODUCTION AND MOTIVATION

In this paper, we address several important issues related to the numerical analysis of quasi-brittle
failure processes, chief among them is how to account for heterogeneities of real materials and
how to transfer the appropriate information provided from fine scales. Most case studies and de-
tailed illustration of ideas pertaining to heterogeneities and related uncertainties are given for
cement-based composite materials, such as concrete or mortar, certainly the most widely used
man-made materials. The mechanical behavior of heterogeneous materials can be represented at
different scales, depending upon the objectives and the physical mechanisms that are important
to account for. The choice of scale is also closely related to the corresponding uncertainty descrip-
tion.
Given computational resources for typical engineering applications, most frequently we ought to

perform an analysis at the structure scale or macro-scale. At these scales, cement-based materials
might be considered as homogeneous, and their properties obtained by using the key concept of
Representative Volume Element (RVE, see [7, 30]) to retrieve phenomenological models of inelastic
behavior (e.g. see [2, 21, 77]). Those models are well known for their robustness and lead to a rel-
atively moderate computational cost. Due to these two main points, phenomenological approaches
are widely used. On the other hand, such models are based on a set of “material” parameters which
need to be identified (e.g., see [32, 35]), mainly from experiments providing unique load paths
and boundary conditions. Hence, this “natural” methodology leads to a set of parameters which is
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linked to the chosen load-path. As they are not adapted to another path, it is difficult to get any
predictive features from those phenomenological macro-models. The main reason for this is that the
macro-scale is not the right scale to consider with the aim to model failure of heterogeneous materi-
als. Many authors tried to overcome this major drawback by furnishing micro-mechanical bases to
the macroscopic model set of parameters (see [37, 42, 79]) and provide more predictive macro-scale
models. One possible way to achieve such a goal is to adopt homogenization methods which lead to
accurate results for linear problems. In the presence of non-linearities such methods are not capable
to provide good estimates for the effective (macroscopic) properties (see [16]). Moreover, such an
approach does not take into account the inherent uncertainties attached to heterogeneous materials
and structures.

At a finer scale than the macroscopic one, cement-based materials appear to be heterogeneous
exhibiting an important variability. This variability might be viewed from the geometrical point
of view, considering the arrangement (positions, shapes) of the different phases. In this work, we
propose to take account of the meso-scale variability in order to compute the macroscopic (effective)
properties’ statistics for a porous medium made of a non-linear matrix. Moreover, we show how
these statistics (mainly the correlation length through the covariance function) might be used at
the macroscopic level to model particular features of cement-based materials such as size effects.
The key point is that the material parameters at the meso-scale are assumed to be deterministic,
so that the variability is only related to the size and the positions of the voids in the porous media.
In order to solve this stochastic problem and compute the statistical moments for the response
quantities, we employ the Monte-Carlo method within a distributed software environment. This
stochastic integration method is based on many evaluations of the meso-structural response, thus
leading to a time-consuming process. Moreover, as the error can directly be evaluated in terms
of the number of realizations, it is necessary to choose a relatively small discrete problem, even
in the case of complex meso-structures. To achieve this we propose a model based on a regu-
lar mesh which is not constrained by the physical interfaces. This model relies on either finite
element or discrete element representation of material microstructure, whose kinematic descrip-
tion is enriched by the use of strain and displacements discontinuities in order to represent two
phases.

The first approach we propose is referred to as sequential, where the results obtained at the fine
scale are used to define the probabilistic variation of the phenomenological model parameters used
at the macro scale. The key advantage of the sequential approach is to provide the appropriate
probabilistic description in agreement with the given material microstructure.

Another very important advantage of the sequential model is its ability to provide a sound
explanation of the size effect encountered in failure phenomena of engineering structures built from
quasi-brittle materials. The approach to failure analysis we propose is placed within a stochastic
framework, which provides a very good basis for taking into account the intrinsic randomness of the
heterogeneities of real building materials: concrete, mortar, soils or any other geo-material. Such
materials have a particular mechanical behavior, known as quasi-brittle, which can be seen as a sub-
category of softening materials (see [21]). A typical failure pattern we should be able to represent
contains the fracture process zone (FPZ) along with the macro-crack that is a final threat for the
structural integrity (see Fig. 1a). In the context of a simple 1D model interpretation, this behavior
can be described with four material parameters (e.g., see [22] or [9]): Young’s modulus E, the yield
stress σy which induces micro-cracking or the FPZ creation, and the failure stress σu which induces
macro-cracking after the sudden coalescence of the micro-cracks leading to a softening behavior
(see Fig. 1b). The last parameter is the fracture energy Gf [J.m

−2], which represents the amount
of energy necessary to create and open a macro-crack.

Several theories exist on how to model failure in quasi-brittle materials, and most of them link
the micro-cracks coalescence phenomenon to a size effect, a dependency on the size of a structure to
its failure load. The aim of all those theories is to combine continuum damage mechanics (CDM),
where the failure stress does not depend on the size of the structure, to linear fracture mechanics
(LFM), where a size effect appears naturally as the logarithm of the failure stress depends linearly
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a) b)

Fig. 1. Tensile test behavior: a) typical quasi-brittle failure pattern in engineering structure, b) quasi-brittle
material 1D model.

on the logarithm of the size of the structure (see Fig. 16). It can be experimentally demonstrated
that even if purely brittle materials follow LFM, quasi-brittle materials do not, and instead they
follow a non-linear relationship between the two previous logarithms of the failure stress and the
size of the structure. These materials exhibit a different size effect than the one encountered for
purely brittle materials.

The second approach we propose is the simultaneous, where the response of the meso-structure
can not be precomputed as in the sequential approach. Here the interaction between macro- and
meso-scale is considered so strong that it is not possible, or rather not meaningful, to try and
precompute all possible response. This may happen in regions where severe irreversible material
processes occur, such that the deformation path of the macro-scale, which is imposed onto the meso-
scale, influences the meso-scale response in some profound way. Our idea is that this approach can
actually be combined with the sequential approach described previously. The sequential approach
is regarded as the “standard” way of transferring the meso-scale properties to the macro-scale. But
in the circumstances just alluded to – severe meso-scale material irreversibility – the simultaneous
approach could be switched on like a magnifying “zoom lens”, and the meso-scale simulation can
run simultaneously coupled with the macro-scale computation. The response at the meso-scale can
then be used not to just identify the properties of macro-scale phenomenological models, but the
macro-scale state of the system itself. The state of the macro-scale is updated through a Bayesian
procedure directly from the meso-scale.

Both on the meso-scale level as well as on the macro-scale level, we see that mechanical mod-
els with a probabilistic description have to be dealt with both in a modelling aspect as well as
numerically. As described here, on the meso-scale only ‘geometric’ uncertainties are considered –
although material uncertainties could easily be added – whereas on the macro-scale the continuum
mechanics material description is probabilistic. For more details and a general overview of these
general modelling and numerical aspects, see, e.g., [46, 47].

The outline of this paper is as follows: Sec. 2 is devoted to the description of the sequential
approach; in Subsec. 2.1 we present the ingredients along with a detailed illustration for a meso-
scale level description, with the plasticity model employed and the structured mesh representation,
leading to a fast computation of non-linear response without any remeshing. In Subsec. 2.2 we de-
scribe the stochastic problem, the geometrical description process for defining the meso-structure
and the stochastic integration method. The following Subsec. 2.3 describes the probabilistic char-
acterisation of the material on the macro-scale. Subsection 2.4 presents the results obtained for the
SRVE size, as well as the corresponding macroscopic properties statistics. Finally, Subsec. 2.5 deals
with size effect modelling based on second order correlated macroscopic material property fields.
In Sec. 3 we present the details of the simultaneous approach. Many items are analogous as in the
sequential approach and thus can be mentioned only briefly. What is described in more detail is
the identification process for the macro-state from the meso-scale response. Concluding remarks
are given in Sec. 4.
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2. SEQUENTIAL APPROACH FOR PROBABILISTIC MULTISCALE ANALYSIS

2.1. Meso-scale model of material heterogeneities with deterministic material

parameters

Meshing is one of the major issues in modelling heterogeneous materials. The possibly high number
of phases and their complex shapes frequently might lead to a quite high number of degrees-of-
freedom and also quite distorted meshes. Moreover, the meshing process itself might consist in a
complex and time-consuming algorithm. The objective of this first part is to show how to employ
structured meshes in order to simplify the meshing process of heterogeneous materials. Hence,
this section presents the main ideas leading to regular meshes which are not constraint by the
physical interfaces between the different phases. The key ingredients to provide such models are
field discontinuities introduced inside the elements in which the physical interfaces are present.
These kinematics enhancements might be developed within the framework of the incompatible
modes method (see [25, 74]), and require a dedicated solution algorithm which is illustrated next.

2.1.1. Structured mesh and element kinematics enhancements

At the meso-scale, we consider a heterogeneous material in 2D built of different phases and we
assume that each of these phases is described by the inclusions positions and shapes. In order to
model such material with a structured mesh, Fig. 2 shows a typical 3-nodes triangular finite element
representing two phases. Those two phases are introduced through two types of discontinuities
(see [24]), namely a discontinuity of the strain field and a discontinuity of the displacement field,
both of them lying at the same position (prescribed by the known physical interface between the
two phases). The strain discontinuity permits the proper strain representation of two different
sets of elastic properties corresponding to each phase. The displacement discontinuity leads to the
possibility to model debonding or any failure mechanism at the interface. For the latter, two failure
mechanisms are considered: one corresponding to the opening of the crack in the normal direction
and the second one to the sliding in the tangent direction (see [66]). Both of these discontinuities
are introduced by using the incompatible modes method (see [25, 74]). The key advantage of this
method is to lead to a constant number of global degrees-of-freedom.

Fig. 2. Two phase 3-node triangular element, interface position and the corresponding sub-domains.

Both of those kinematics enhancements are added on top of the standard CST element (Fig. 2).
Hence, this element is divided into two parts by introducing an interface whose position is obtained
by the intersection of the chosen structured mesh with the inclusions placed within the structure.
The domain Ωe of the standard 3-node constant stress triangle (CST) element is thus divided

into two sub-domains Ωe− and Ωe+. One of the most important and well-known features of strong
(displacement field) discontinuity models is their capability to be independent from the mesh, even
for softening laws. This ability is based in the fact that the dissipation process occurs on a line
(i.e., the interface) and not in the whole volume. However, different elastic-plastic or elastic-damage
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behavior laws, with positive hardening, might be chosen for each of the two sub-domains split by
the interface, with different elastic properties (see [23]).
It is worth to note that the strain field discontinuity is always present, due to the different elastic

constants between the two phases. In contrast and because of representing a failure mechanism
between the two phases, the displacement field discontinuity needs to be activated according to
some chosen failure criterion.
Introducing those discontinuities requires enhancement the kinematics of the element by using

two incompatible modes. Thus, the displacement field might be written as follows:

u
h(x, t) =

3∑

a=1

Na(x)da(t) +M
α
I
(x)αI(t) +M

β
I
(x)βI(t) +MII(x)αII(t). (1)

This expression contains four terms: the first one provides a constant strain field inside the ele-
ment (as the classical CST element does). The second and third terms both represent jumps in
the displacements field, in the normal and the tangential directions. Finally, the last part provides
the strain field discontinuity. All the strain and displacement enhancements are limited to a sin-
gle element only; the latter provides a much better basis for constructing robust operator split
analysis from the X-FEM method. The shape functions MI(x) for the first incompatible mode
(see Fig. 3a.) corresponding to the displacements field discontinuity for both normal and tangent
directions (see [22]) might be written as:

MI(x) = HΓS
(x)−

∑

a∈Ω+

Na(x), (2)

where Na represents the normal CST shape functions element and HΓS
the Heaviside function

placed at the interface position. The shape functionMII(x) which provides the jump in the strain
field is shown on Fig. 3b.

a) b)

Fig. 3. Incompatible modes corresponding to displacements a) and strain b) discontinuities
for the CST element.

Considering the displacement interpolation (1), the strain field might be written as

εh(x, t) = Bd+GIIαII + (nT ⊗ n)Gα
Ir
αI +

1

2

[
n
T ⊗m+m

T ⊗ n

]
G

β
Ir
βI, (3)

whereB(x) are the well-known CST element strain-displacement matrixes (e.g., see [77]) andGIr(x)
contains the derivatives of the first incompatible mode. Finally, in (4), GII is the matrix containing
the derivatives of the second shape function MII(x).

2.1.2. Operator split solution procedure for computing interface failure modes

Deriving from the incompatible modes method for the two kind of discontinuities added on the
top of the classical CST element (strain field and displacement field), the total system to be solved
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consists of four equilibrium equations, with (4a) as the global equilibrium equation and (4b) to (4d)
are corresponding to the local ones. It is worth to remind that Eqs. (4b) and (4c) have to be solved
only in case of activation of the displacement discontinuity in the normal or the tangent direction.
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The consistent linearization (e.g., see [21]) of this set of equations leads to a linear system, in
matrix form:
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The expanded form for each block can be found in [17].
The operator split strategy consists in first solving the local equations of system (4) (namely

Eqs. (4b) to (4d)) at each numerical integration point and for fixed global degrees-of-freedom values.
The second step is then to carry out a static condensations (e.g., see [75]). These static condensations
leads to the effective stiffness matrix (see [67] and [17] and thus the last step is to solve the global

system of Eq. (4) to obtain the updated value of the displacement field d
(k+1)
n+1 = d

(k)
n+1 + ∆d

(k+1)
n+1

from

K̂
(k)
n+1 ·∆d

(k+1)
n+1 = −r(k)n+1. (6)

One of the key points to note is that the total number of global unknowns remains the same as
with the standard CST element which is a major advantage of the ‘incompatible modes method’.
Simple illustrative examples dealing with the use of structured meshes might be found in [17].

2.1.3. Comparison between structured and unstructured mesh computations

Here, we aim to make a comparison between structured and unstructured meshes in order to assess
the capability for both cases to get very close results. For this we consider a porous material
made of a perfectly plastic matrix with circular voids of different sizes. The first case (Fig. 4a)
presents an exact mesh obtained by using the software GMSH. Obviously, in this case each element
contains only one phase (namely the matrix or the “voids”). Moreover, several elements are strongly
distorted and they exhibit quite different sizes. For these two reasons the stiffness matrix is poorly
conditioned. The second case (Fig. 4b) relies on a structured mesh which is based on a regular grid.
In this case, the elements need to represent two phases to model the inclusions and we adopt the
strategy presented at the beginning of this Section. Figure 4 shows the axial displacement contour
plot (with an amplification factor of 100) for both unstructured and structured meshes. Figure 5
plots the corresponding macroscopic axial reactions displacement curve.
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a) b)

Fig. 4. Longitudinal displacement contour plot corresponding to max.load a) for adaptive mesh and
b) regular mesh.

Fig. 5. Reactions sum vs. displacement curve (black unstructured mesh, red structured mesh).

We show that both cases are providing very close results, but with a gain of computing time
in favor of the structured mesh strategy (this point is mainly due to the tangent matrix optimal
conditioning). Combined to a meshing process which is much easier, the structured mesh way
appears to be a good and accurate method to model heterogeneous materials, especially in the
context of many realizations that have to be analyzed. This last point is one of the key issues
considering probabilistic aspects for heterogeneous materials.

2.2. Probability aspects of inelastic localized failure for heterogenous materials

At a finer scale than the macroscopic one, cement-based materials obviously appear to be hetero-
geneous. As an example, at this meso-scale mortars are made of three phases: two solid ones (the
grains and the cement paste) and voids. It is well-known from experimental data that macroscopic
properties of such materials are strongly linked to the (at least) meso-scale constituents. In [76], the
authors gathered some experimental results showing the very important decrease of macroscopic
mechanical strength (in tension or compression) along the increasing void volume fraction. More-
over, considering a constant porosity, the voids shapes and positions also have a major influence on
the macroscopic properties, especially for small specimens. This key point is linked to the statistical
RVE size (see e.g., [30]), which has to be determined along a prescribed macroscopic error toler-
ance. The main objective of this section is then to illustrate the possibilities provided by the use of
a structured mesh representation and the efficient computational capabilities of the proposed model
for dealing with random heterogeneities. To that end, we consider herein a porous material, typical
of mortars at the meso-scale level. At this scale, we assume that such a material is characterized
by a two-phase micro-structure with a solid phase and a fluid phase. The former will be referred
as the “matrix” and the latter is supposed to represent the voids or inclusions. Depending on the
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number of inclusions, their sizes and positions, the non-linear macroscopic response of such a ma-
terial will vary. In other words, the macroscopic properties, such as Young’s modulus or the yield
stress, will be influenced by the meso-scale geometry. Our goals here are: first, to determine the
statistical RVE size corresponding to such a geometry (morphological RVE); second, to carry out
numerically the variations of the macroscopic characteristics upon the inclusion sizes and positions.
The key point for this study is that the variability introduced into the model is restricted to the
specimen geometry only, whereas the mechanical characteristics of the two phases are assumed to
be deterministic. To be more precise, the matrix phase is supposed to be accurately modelled by
an elastic-perfectly plastic model based upon the Drucker-Prager criterion (see [12]). The voids are
represented by a simple linear isotropic elasticity model with very small Young’s modulus value.
In the following sections, we first begin to describe the Gibbs point process, leading to the real-
izations of the meso-structures. We also show an example of one typical mesh obtained and the
corresponding macroscopic response to a tension test. Then, we turn to the stochastic integration
method which has been chosen to numerically solve this problem and the corresponding software
engineering aspects. Finally we present the methodology leading to the RVE definition and we
discuss the results obtained for this stochastic problem.

2.2.1. Geometry description of material meso-structure

Here, we describe both the process and the hypothesis leading to the meshing procedure within a
rectangular domain (3.6×1.8 cm2). The meso-structure geometry of such a domain is here supposed
to be accurately modelled by a Gibbs point process. Such a point process is built on a two steps
scheme. The first one is the determination of the number of inclusions according to a Poisson’s
law. The second step consists in the determination of the inclusion center coordinates as well as
of the radius for each inclusion. While such a Gibbs process already naturally leads to a set of
non-intersecting inclusions, we applied an even more restrictive criterion, by choosing the minimal
distance between the inclusions (here equal to 2 mm). Moreover, in order to be consistent with
the mesh size and the model features, the inclusions’ radii are bounded between 1 mm and 3 mm.
Figure 6 shows a particular realization of the meso-structure and the corresponding structured
mesh. We can notice that each inclusion is correctly modelled by a set of discontinuities without
any major distortion.

a) b)

Fig. 6. a) Meso-structure geometry and b) corresponding structured mesh.

Since the material parameters are chosen to be deterministic, the statistics of the macroscopic
response depend on the meso-structure geometry only, defined by the void volume fraction and
consequently the voids’ radii and center positions. Thus, the macroscopic problem is stochastic and
requires a stochastic integration method which is presented in the next section.
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2.2.2. Computation of stochastic integrals

As we just mentioned, the positions and sizes of the voids in the matrix are described by a discrete
random field, based on a Gibbs point process. In a general sense, a 2D random point process might be
viewed as a finite set of random variables, which are indexed by the vectors of spatial coordinates in
R2. Thus the meso-structure geometry is defined as a random field, which implies that every solution
computed by the mechanical model is also a random field (e.g., the structure displacement at a
fixed point is a random variable). In this study, we are interested in characterizing the macroscopic
mechanical properties of our structure. To achieve this goal, we use a global approach which consists
in identifying the material properties governing the global behavior of the structure. More precisely,
we aim to determine the effective global material properties by the corresponding identification of
the global response computed by the finite element model. Therefore, since the global responses
(displacement and reactions) are random variables, the global material properties we aim to identify,
such as the Young’s modulus or the yield stress, are also random variables.
A probabilistic characterization of the macroscopic mechanical properties can be viewed as

describing the probabilistic law followed by each of these properties. Two approaches can be drawn
to find a probabilistic law describing a random phenomena. The first one, the so-called frequentist
approach [31], is based on statistical tests, like the χ2 test for the Gaussian probability law. Results
of these tests are error margins that evaluate how the outcomes of the given random phenomena
fit with respect to a given probability law. The second, so-called Bayesian approach [26], is trying
to use all the available information along with the maximum entropy theory (see [65, 69]) in order
to provide the most general probability law for a given state of information; thus, to fully describe
this probability law, the statistical moments of different orders have to be computed. In this work,
the second approach is chosen. The macroscopic material properties we tend to characterize are all
defined on the positive real line. Moreover, we assume that they can be given a mean value and a
finite standard deviation. On the basic of such information, the maximum entropy theory leads to
the most general probability law for this case in terms of the log-normal distribution, which is fully
described by its computed mean value and standard deviation.
Consequently, in order to characterize the macroscopic mechanical properties using the Bayesian

approach, the first two statistical moments of each of these properties have to be computed. The
statistical moment of any random variable is an integral of a functional of this random variable
over a probability space. Hence, an efficient numerical tool to compute such an integral in a multi-
dimensional space is required. Rather than high order quadrature rules like the Smolyak algorithm
[68], we use here a simple direct integration algorithm which is Monte Carlo simulation [8]. The
basic idea of Monte Carlo simulation is to approximate the integrals of a functional of a random
variable by a weighted sum of realizations of this random functional. Let ξ be a random variable
defined on some probability space (Ω, B, P ), where Ω is the space of elementary events, B is
a σ-algebra built on Ω, and P is a probability measure. Any defined function of ξ can be written

as

∫

Ω

f(ξ(ω))dP (ω). The simple Monte Carlo algorithm consist in approximating this integral as

a finite weighted sum of realizations f(ξ(ωi)), each computed at a randomly independently chosen

point ωi ∈ Ω, multiplied by the corresponding weight
1

N
(with N the given number of realizations)

∫

Ω

f(ξ(ω))dP (ω) ≈ 1

N

N∑

i=1

f(ξ(ωi)). (7)

For this kind of numerical integration, the convergence rate can be a priori estimated thanks to
the central limit theorem [40]. It is found that the standard deviation of the error is proportional
to the standard deviation of f(ξ) over

√
N , N being the number of evaluations of f(ξ). As each

realization of the Gibbs process is stochastically independent from the others, this method can
be directly applied here, and further more the computations may be easily parallelized using an
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appropriate software environment to eliminate the main drawback of the Monte Carlo algorithm,
the slow rate convergence. In this case, where no correlation exists in the geometrical space, other
tools such as a Karhunen-Loève expansion are not required (see [11, 40]).
The software architecture used here is based on the software component technology and the

middleware ‘Component Template Library’ (CTL) [45], which provides an adequate network en-
vironment to enable code communication under a prescribed protocol and more generally code
coupling. The basic idea of software component technology is to divide a software framework into
several tasks and then to implement software components, each of them being able to carry out this
particular task. Existing software can be turned into a component by defining an interface through
which the communication will be channeled. Implementing a component from for a pre-existing
program consists in coding a set of methods that other software can call through this interface.
In the case of Monte Carlo simulations, two different tasks can be identified. One is to generate
a Gibbs process and to transfer this result defining the inclusions geometry in a structured mesh.
The other is to run a computation with this given geometry within the mechanical model defined
in the first section. Based on the FEM code Feap [77], a CTL software (e.g., see [34, 50, 51])
component named coFeap has been derived [29]. The second component in charge of the geometry
generation (the so-called client in Fig. 7) will ask for several runs of the coFeap component at the
same time, each of them using a different meso-structure realization.

Fig. 7. Parallel software architecture for Monte Carlo simulations using the coFeap component.

Further details on the use of this parallel framework and results are presented in the following
Sec. 3.

2.3. Probabilistic characterization of two-phase materials at the macro-scale

At the macro-scale, the major mechanisms which are present at the meso-structure level have to
be represented as well. By taking an ‘energetic’ look, one sees that there has to be at least an
energy storage functionality for the reversible part of the material behavior – represented through
a stored energy function – and an energy dissipating functionality for the mechanically irreversible
material behavior, represented through a dissipation function. This corresponds to the description
of ‘generalized standard materials’. Here, it is well-known that these functions can act as thermo-
dynamic potentials respectively pseudo-potentials (see e.g., [21, 39, 41, 44]), and are thus sufficient
to describe the behavior alluded to.
To achieve a probabilistic description for such a phenomenological model, it is then conceptually

sufficient to model these two functions as random variables – or rather random fields to take account
of the spatial variation. In this short overview for the extension towards the stochastic situation we
will follow the development as outlined in [48, 57–60].

2.3.1. Boundary conditions for the RVE

Let us just for a moment only look at the determination of the elastic constants – assuming linear
elasticity and hence a quadratic stored energy function – then it is well known that by just averaging



Probabilistic multiscale analysis of inelastic localized failure in solid mechanics 287

either the stiffnesses or the compliances, one can derive well-known upper or lower bounds for the
said constants. In a situation where one has a separation of scales, one may argue that the RVE is
subjected only to constant global strain or stress, as variations of those quantities over the size of
the RVE are negligible and will vanish asymptotically.

Hence, the RVE computation to determine the macro-properties may be performed for either
Uniform Static Boundary Conditions (USBC), or for Uniform Kinematic Boundary Conditions
(UKBC). The results from such computations still form upper or lower bounds respectively, which
are better than the well-known averaging ones mentioned earlier, but there may still be a consid-
erable gap [27, 28, 52]. This means that from such a computation with either one of the uniform
boundary conditions it is not possible to assign a unique value for the macro-scale constants. This
can be seen as an additional uncertainty for the case where one wants to sequentially pre-compute
macroscopic properties, which has to be included into the probabilistic description.

This means that – at least for situations with high macroscopic strain or stress gradients – the
results from the sequential approach may be at least dubious. This problem with the boundary con-
ditions is unfortunately one of the so-called FE2-method [14]. In such cases with high macroscopic
strain or stress gradients, another approach is to actually allow for a finite scale ratio of macro- to
meso-scale, and compute macroscopic quantities with the actual global strain field, which does not
have to be uniform. This approach is then not sequential any more, and will be described closer in
Sec. 3, see also [19, 23, 42, 43].

2.3.2. Macro-scale probabilistic description

On the macro-scale one wants to end up with – disregarding for a moment the probabilistic aspect
– a conventional continuum mechanics description [21]. We look at an elasto-plastic material as the
simplest instance of a rate-independent description. Rate dependent irreversible mechanisms can
be dealt with similarly and are actually mathematically simpler. The elasto-plastic material may
serve as a model problem, as other dissipative mechanisms can be formally treated in a completely
analogous manner [44].

Coming back to the situation alluded to in the beginning of Subsec. 2.3.1 we look at a quadratic
stored energy function [48, 59, 60]. At the beginning it is sufficient to just consider a material point
x ∈ D. Denote the stress tensor by σx, the total strain due to some displacement u by ǫx(u), the
plastic strain by ǫpx, and the hardening variables by ηx. From these quantities we construct the
generalised plastic strain Epx = (0, ǫpx, ηx), and the generalised total strain Ex = (ǫx(u), ǫpx, ηx).
Herewith, we define the stored energy bilinear form

ax(Ex, E
′
x) := (ǫx(u)− ǫpx) : Cx : (ǫ′x(u)− ǫ′px) + 〈ηx,Hxη

′
x〉x, (8)

where Cx is the fourth-order elasticity tensor at x, Hx a hardening modulus, and the bilinear form
〈·, ·〉x an appropriate duality pairing depending on the specifics of the hardening variables [48, 59,
60]. From this a Helmholtz free energy may be defined by

ψx(Ex) :=
1

2
ax(Ex, Ex). (9)

Now if the macro-scale point x ∈ D corresponds to some meso-structure ensemble and RVE, all
quantities in (8) have to be modelled as random quantities, effectively making the stored energy
in (9) a random quantity. It can be shown [48, 59, 60], that a probabilistic plasticity problem at
a material point may be formulated with the averaged quantities, i.e., the expected values of those
in (8) and (9):

ax(Ex, E
′
x) := E(ax(Ex, E

′
x)). (10)
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To develop an equation for the whole body, these quantities have to be integrated over the body,
i.e., the domain D, to give the probabilistic bilinear form for the whole body

a(E,E′) :=

∫

D

E(ax(Ex, E
′
x)) dx, (11)

where the quantities in bold signify fields or functionals on the level of the elasto-plastic body in
the domain D. A completely analogous extension has to be performed for the dissipation func-
tional, see [48, 59, 60]. Having obtained stochastic versions of the Helmholtz free energy and the
dissipation function, one ‘only’ has to formally follow the normal derivation of evolution equations
for generalized standard materials, to obtain a stochastic version of the elasto-plastic problem with
hardening.
With the definition w := (u,E) to represent all deformation-like random fields, such that the

random strain field E corresponds to the random displacement field u, and setting a(w,w′) :=
a(E,E′), as well as – analogous to (11)

〈w,w′〉P :=

∫

D

E(u(x) · u′(x)) + E(ǫx(u) : ǫ
′
x(u)) + E(〈ηx, η′x〉x) dx, (12)

for the inner product, defining the generalized exterior random force field as f = (f,0) to match
the deformation-like random field u, as well as dual stress-like quantities w∗ := (0,Σ) – with the
random fields of generalized stress Σ := (σ, σ, θ), where σ is the random Cauchy-stress field, and
θ is the random field of thermodynamic fluxes corresponding to the hardening – one may finally
announce that [48, 59, 60] there are unique time evolutions w(t) and w∗(t) which solve the mixed
stochastic elasto-plastic problem, such that for all z and for all z∗ ∈ K

a(w(t), z) + 〈w∗(t), z〉P = 〈f(t), z〉P , (13)

〈ẇ(t), z∗ −w
∗(t)〉P ≤ 0. (14)

Here, the closed convex set K in the space of generalized random stress fields represents the
‘elastic domain’, the relation (13) represents the stochastic equilibrium equation, and (14) repre-
sents the stochastic normal flow rule, and the superimposed dot in (14) is a weak time deriva-
tive. The set K is quite simply the set of all generalized random stress fields w

∗ = (0,Σ)
with Σ = (σ, σ, θ), such that the random Cauchy-stress field σx satisfies a stochastic yield con-
dition almost surely almost everywhere in the body D. Here, we choose a general quadratic
function φx(σx) := 1/2(σx : Yx : σx) + σx : τx + sx, the square root of which will serve
as a yield function. Here, Yx is a random field of positive definite fourth order tensors, τx is
a random field of strain-like quantities to shift the origin of the general quadric φx(σx), and sx
a scalar random field to determine the yield level. The elastic domain K is then simply the set
of all generalized random stress fields, such that the associated random Cauchy-stress field sat-
isfies

√
φx(σx) ≤ σyx almost surely at almost all x ∈ D, where σyx is a random field of yield

stresses.
To actually compute the solution [48, 59, 60], developments which parallel the stochastic

FEM [46, 47] have to be carried out, including a stochastic form of the closest point projection so
well-known in computational plasticity. In Fig. 8 one may see an example of such a computation –
the example is the well-known Cook’s membrane – where one may see the initial grid, the deformed
grid for a deterministic computation with average material parameters, and the average deforma-
tion for a fully stochastic computation along Eqs. (13) and (14). For the same example we show in
Fig. 9 one of the possible results of such a stochastic computation, here the exceedance probability
for a certain level of the shear stress.
With the ability to perform such stochastic computations for inelastic materials, these may now

serve as a macro-scale representations for heterogeneous media as explained before. What is needed
additionally is the macro-scale identification of random material parameters, which will be sketched
out in Subsec. 2.3.4.
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Fig. 8. Deformations for stochastic elasto-plastic model.

Fig. 9. Exceedance probability of a certain shear stress level.

2.3.3. Probabilistic description of positive definite tensors

A short interlude is necessary to explain one possibility for the probabilistic description of random
positive definite tensor fields, such as Cx and Hx which appear in the internal energy bilinear
form (8), or the field Yx used for the elastic domain K, see also [61, 62]. For positive scalar fields
the problem will be described in more detail in Subsec. 2.5.1.

Conceptually, the problem is no different for tensor fields. In Subsec. 2.5.1, the problem is solved
by modelling the logarithm of a positive scalar. The final exponentiation then makes everything
positive. This may be seen as a simple manifestation of a general principle: the positive numbers
are a Lie group under multiplication, which is made into a Riemannian manifold by introducing a
metric on the corresponding Lie algebra, the additive group (and vector space) of all real numbers,
which is the tangent space at the group identity, the number one. The maps between Lie algebra
and Lie group are the exponential and logarithm, respectively. This then has the effect that zero
and infinity are both infinitely far away from any finite positive number.

This general prescription is also followed for positive definite tensor fields. These are geometri-
cally an open cone in the space of all symmetric tensor fields [61, 62], and can be given the structure
of a Lie group. The corresponding Lie algebra is the vector space of all symmetric tensor fields,
and the exponential and logarithm – also defined for the case of symmetric tensors – are again the
maps to make the correspondence between the Lie algebra and the Lie group. This again has the
effect that singular tensors or tensors with a singular inverse are infinitely far away from any finite
positive definite tensor.
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2.3.4. Macro-scale properties identification

The probabilistic identification of macroscopic properties to represent the heterogeneous random
meso-structure will follow Bayes’s rule, which is the preferred way of incorporating information into
a stochastic model. In [61, 62] this is described for the case where the identification is performed
through measurements – although in that publication the measurement were ‘virtual’ ones. The
Bayesian update for a random variable with finite variance boils down to an orthogonal projection.
By sacrificing some information gained from the measurement, this can be approximated by a sim-
pler linear update which is reminiscent of the well-known Kalman filter – actually the Kalman filter
can be shown [62] to be the low-order part of this new linear update.
In Fig. 10 one may see the probability density functions prior to any identification and after

a measurement – the posterior one. Here, we replace the measurement by a meso-structure compu-
tation, and the identification proceeds completely in the same manner. What was shown in Fig. 10
for a single parameter (the shear modulus, although, as described in Subsec. 2.3.3 we identify the
logarithm of the shear modulus) can be performed for all random fields needed here, i.e., Cx and Hx

which appear in the internal energy bilinear form (8) (or rather their logarithms), the (logarithm of
the) field Yx in the yield function, as well as the random fields τx, sx, and σ

y
x in the yield criterion

φx(σx) in Subsec. 2.3.2.

Fig. 10. Prior and posterior for the identification of shear modulus.

2.4. Determination of statistical RVE size

As we have already mentioned in the introduction part, macroscopic models are usually based on
the concept of RVE. Here, we focus on the notion of statistical RVE (see [52]) leading to a volume
element large enough to assure that its macroscopic properties are assumed to be deterministic, up
to a certain tolerance. Obviously, such size strongly depends on the properties to be considered and
we restrain our analysis to geometrical properties, namely the void volume fraction. Following [30],
the methodology adopted consists in estimating the void volume fraction mean ρ and variance σ2ρ
along different domain sizes. In order to get those estimates we used the Monte Carlo framework
presented before considering a set of 10,000 realizations for each volume fraction and domain size.
As a result, Fig. 11 shows the 0.95 confidence interval along the domain size. This confidence
interval is defined for one realization as [ρ− 1.96σρ; ρ+ 1.96σρ].
Table 1 as well as Fig. 11b shows, the SRVE size corresponding to 5% relative error for different

voids volume fraction. Clearly the SRVE size is decreasing with an increasing porosity. Typical
porosity values for mortars are in the 5% to 10% range and so leading to a 0.07–0.15 m morphological
SRVE estimate range. As we mentioned before, although the same methodology might be followed
in different cases, this estimate does not provide any information about SRVE size linked to any
non-linear mechanical properties (e.g., a macroscopic yield stress).
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a) b)

Fig. 11. a) Voids volume fraction confidence interval (0.95) along domain size b) 5% relative error
morphological RVE size.

Table 1. SRVE size for different mean voids volume fractions and 5% relative error.

ρ [%] 1.15% 3.4% 6.1% 9.6% 12.3%

SVRE size [m] 0.48 0.203 0.125 0.075 0.055

2.4.1. Simple tension test: numerical results and discussion

By using the stochastic numerical integration method detailed in the previous section, we performed
Z = 10, 000 integration points, each of them corresponding to an independent meso-structure
realization. These Monte-Carlo integration points have been distributed on nine processors and we
shall present here the different results.

The first point to be mentioned deals with the void volume fraction for each meso-structure
geometry. To some extent those data might be viewed as the “input” parameters according to the
stochastic integration method. We recall here that each meso-structure realization is built by using
a modified Gibbs point process with inclusion radii bounded between 1 mm and 3 mm. Figure 12
shows the void volume fraction (ratio of the void volume versus the total volume) histogram cor-
responding to the Z realizations. The associated mean value is 6.26% and the standard deviation
is 3.59%.

The stochastic integration process is leading to a set of Z axial reaction force-displacement
diagrams. Figure 12 shows a subset of 100 realizations. It is worth to recall again that the vari-
ability shown by this sample is due only to the meso-structure geometry variability (the material
parameters are assumed to be deterministic and so constant along the realizations). Moreover, we
shall note that some meso-structures included in this sample have obviously no voids. This point
is directly linked to the Gibbs point process features, in particular to the discrete Poisson’s law
leading to an inclusion number which is possibly zero.

Figure 13 shows the estimated mean macroscopic stress-strain curve as well as the 99.9% confi-
dence interval. Since this confidence interval is quite narrow the number of integration points for
the stochastic integration method is sufficient to make accurate conclusions and to provide good
estimates of statistical moments. Moreover, the macroscopic stress σ and strain ε are defined as
equivalent homogeneous quantities,

ε =
u

Lx
, σ =

∑
iRi

Ly
, (15)
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a) b)

Fig. 12. a) Void volume fraction histogram, b) 100 realizations sample results.

a) b)

Fig. 13. Macroscopic mean stress w.r.t. the macroscopic strain: a) 0.999 confidence interval, b) standard
deviation.

where Lx and Ly are the size of the domain and Ri the axial reactions. This macroscopic mean curve
leads to the determination of an estimate for the macroscopic mean Young’s modulus as well as to an
estimate of the mean maximum stress σf . Table 2 summarizes the statistical macroscopic estimates
obtained from this numerical example. Those estimates are quite good candidates to be employed in
the context of a macroscopic phenomenological model, here for the 1D case. Actually these macro
model parameters might be used in order to define macroscopic random fields, and therefore, a
stochastic macro-model (that would have to be solved using any stochastic integration method).
It is worth to note that the only missing data in order to fully define weakly homogeneous second
order random fields is the covariance function. In the simplest case, such second-order information
might be given according to one scalar parameter only, the macroscopic correlation length.

Table 2. Statistics of macroscopic quantities.

Mean Estimator std-dev interval

σu 6.63 MPa [5.82MPa, 7.45MPa]

σy 2.49 MPa [2.15MPa, 2.54MPa]

E 9.93 GPa [9.27GPa, 10.60GPa]
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2.5. Size effect representation

Size effects for quasi-brittle materials can be experimentally demonstrated at macro-scale and sev-
eral ways exist of dealing with its modelling. Most of them are linking the micro-cracks coalescence
phenomenon which consists in the failure process as a first step to such a size effect [4]. An exten-
sive literature exists on that topic, from the early studies of Weibull (see [73]) dealing with infinite
chains built from brittle links (theory of the weakest link), to the current two concurrent theories of
Bazant on the one side and of Carpenteri on another. The first one tends to describe the size effect
as a deterministic theory of strength redistribution in a Fracture Process Zone (FPZ), the size of
which is proportional to a characteristic length, that leads to energetic dissipation. At some level,
the micro-cracks’ coalescence occurs, and that induces both heterogeneous behavior and some kind
of localization, and is strongly intricate to the size effect. Hence, a way to study the fracture of
quasi-brittle material is to study the size effect. Recently, Bazant has developed a new theory as a
combination of this previous theory with Weibull’s one leading to the so called energetic-statistical
size effect (see [3]). Another theory combining a non-local model and a stochastic approach has
been developed in [63]. On the other hand, Carpenteri’s theory is based on the study of quasi-brittle
materials seen as materials with a fractal micro-structure (see [10]).
Our goal is to stress the possibility to model the size effect, taking place at the macro-scale, with

the use of correlated random fields for macroscopic properties. With some basic assumptions, such
macroscopic random fields are in the simplest case characterized by their marginal (point-wise)
distributions as well as their spatial mean and covariance function, which of course have to match
the first two moments of the marginal distribution. Adding an isotropy condition, this covariance
function might be parametrized using, for example, a unique scalar value: the correlation length Lc.
This length plays a key role in the context of size effects. Contrary to classical macroscopic models
which are based on the RVE concept only, Lc actually defines a scale to which the whole structure
size is compared. In that sense, such correlated fields naturally incorporate size effects. Moreover, to
some extent such a correlation length Lc might be considered as the “characteristic length” which
needs to be defined when using well-known macroscopic non-local models [56]. However, contrary
to this characteristic length for which there is a lack of physical interpretation, the correlation
length Lc as well as the marginal distribution necessary to characterize random fields for the
macroscopic properties might be retrieved from a two-scale analysis like the one presented in the
previous section. Thus, we indicate here a complete macroscopic modelling methodology, starting
from properties and uncertainties at the meso-scale (which appears to be the most pertinent one
considering mechanical failure of cement based materials) up to macroscopic behavior.
As an example of this methodology in a 1D context, we first begin to recall some of the key points

dealing with random fields and the Karhunen-Loève expansion, which is one of the most efficient
ways of representation in a computational context. Then, we turn to the macroscopic description
of the model and its integration using once again direct Monte Carlo simulations.

2.5.1. Random fields for material properties and their Karhunen-Loève expansion

The macroscopic 1D model we consider here represents a three-stage failure process which is typical
of cement based materials. After the elastic regime, the inelastic behavior starts through a homoge-
neous micro-cracking in the so-called Fracture Process Zone (FPZ). Such a phenomenon might be
modelled by a volume dissipation process, and phenomenological macro-models are obviously good
candidates for this. Once having reached a certain loading limit, the coalescence of the micro-cracks
turns to some kind of localization and macro-cracking. For this last stage (and so just before the
structure’s failure), phenomenological models are no more valid, mainly due to two points: first
they are leading to some mesh dependence which is typical of softening laws; second because due
to localization the RVE concept is not applicable. To overcome this drawback, many authors have
turned to well-known non-local theories which consist in considering a characteristic length. An-
other way is to consider strong discontinuity models like the one presented in Subsec. 2.1 for the
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meso-scale. In the 1D context this model requires four parameters to fully describe all the failure
processes (see Fig. 1), namely the elastic modulus E, the yield stress σy, the failure stress σu and
the fracture energy Gf .
In order to model the size effect with such a macro-model, the key idea is to consider its

macroscopic parameters (namely σy and the gap ef = σu − σy) as correlated random fields over
the geometric space D and a probability space Ω. Mathematically speaking, Ω is a space of random
elementary events, together with a class of subsets ℑ of Ω (i.e., a σ-algebra, see [40]) to which
a real number in the interval [0, 1] may be assigned, the probability of occurrence, mathematically
a measure P . A V-valued random variable r is then a function relating to each ω ∈ Ω an element
r(ω) ∈ V. In case the space V is a space of functions F(D) on a spatial domain D, then r defines
a random field. In some sense, this random field r can be viewed as an infinite family of random
variables r(x, ω), assigned at each point x ∈ D. Both σy and ef are positive and supposed to have
a finite known variance. Thus, following the maximum entropy theory (see [65, 69]), these two
random variables σy and ef can be taken with lognormal distribution. Without a loss of generality
it is convenient to consider that these two random fields are defined as non-linear transformations
of two Gaussian random fields γ1 and γ2:

σy = exp(γ1) and ef = exp(γ2), (16)

where γ1 and γ2 are fully described by their expected values and their covariances:

Eγi(x) and Covγi(x, y) = Vi exp

(
−‖x− y‖

Lc

)
. (17)

In (17) above, we have indicated that the Gaussian random fields γ1 and γ2 are supposed to be
weakly homogeneous with an exponential form of covariance function and correlation length Lc.
As the geometric space is of dimension one, the covariance can be drawn as a surface in a three-
dimensional space over the two-dimensional space D ×D (see Fig. 14).

Fig. 14. Random field covariance 3D representation (top row), 2D representation (middle row) and repre-
sentation error (bottom row), obtained from a) 5, b) 10, c) 20 and d) 50 modes in truncated KLE expansion.
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Solving for the response of such a stochastic system essentially consists in computing some
response statistics (e.g., its expected value). To that end, we once again employ here the so-called
Monte-Carlo method which requires to solve many deterministic systems, each of them being built
with realizations σy(·, ωi) and ef (·, ωi) (see Fig. 15) of the random fields σy and ef . In order to
provide these realizations an effective computational representation of correlated random fields is
needed. One possible way is the Karhunen-Loève expansion (see [40]), which is basically a projection
of a given random field onto the eigenvector basis, orthonormal in L2(D), obtained by the Fredholm
eigenvalue problem of the second kind (18),

∫

D

Covγ(x, y)Φi(x) dx = ρiΦi(y), y ∈ D. (18)

The solution of this eigenvalue problem for any domain D is obtained using finite element techniques
and provides to a way to synthesize the two Gaussian random fields γi=1,2,

γ(x, y) =

∞∑

i=1

√
ρiΦi(x)ξi(ω), (19)

and consequently σy and ef through relations (16). In Eq. (19), the ξi(ω) are uncorrelated Gaussian
random variables (with unit variance and zero mean) and thus independent. Having a computational
approach in mind, the infinite sum (19) must be truncated. Figure 14 shows the covariance function
synthesized using a different number of modes in the KL expansion. These computations have been
performed using a modified version of the finite element code FEAP (see [77]).

a) b)

Fig. 15. Normalized realizations of correlated macro random fields σy and ef .

It may be worthwhile to point out that if the correlation function depends only on the distance
of the two points, like the one in (17), which is also called stationary, homogeneous, or translation
invariant, the computations involved in (18) and (19) can be considerably simplified. This explana-
tion is most easily seen for a simple interval D = [0, L]. Considered in terms of lags x− y in (17),
the covariance is defined on [−L,L], and since the covariance is even it is a fortiori periodic on this
larger interval. Hence embedding the domain D in a larger one of twice the size, and extending the
Fredholm integral equation (18) to this larger domain, one realises that it becomes a convolution
equation. As it is well known, this is effectively ‘diagonalized’ by the Fourier transform, turning the
convolution into a simple multiplication. This means that the sines and cosines from the Fourier
transform – or rather Fourier series for the finite interval [−L,L] – are the KL eigenfunctions on
this larger interval, and the eigenvalues are simply the corresponding values of the Fourier transform
of the correlation function. Hence, one may simulate the process on this larger interval, and then
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take as a realisation any subinterval of length L. The transform and the summation in (19) may be
performed quickly with the FFT algorithm. Analogous considerations apply in higher dimensions.

2.5.2. Size effect and correlation length

As mentioned before, the 1D macro-model we consider here is based on a strong discontinuity
model (see [22]) which leads to the possibility to couple diffuse plasticity or damage (describing
the volumetric dissipation due to the homogeneous micro-cracking which takes place in the FPZ)
with surface dissipation at the macro cracks. The latter drives the stress to zero without any mesh
dependency. Moreover no special precaution has been taken in order to account for the size effect,
except considering lognormal correlated random fields for the macroscopic quantities σy and ef .
Considering tensile tests, three different lengths have been treated under displacement control

(0.01 m, 0.1 m and 1 m truss), keeping the correlation length equal to Lc = 0.01 m. These three
cases will be called respectively small, medium and large. It is worth to note that for the medium
case, the bar is the same size as the correlation length.
Computing a realization (evaluation of the random field at a given point in the stochastic

domain) of γ1 and γ2 via the truncated Karhunen-Loève expansion on each of these bars as described
previously and using the relations (16) lead to an efficient computational way to represent each
realization of the fields σy and ef . The normalized fluctuating part of one realization of σy and
ef for each of these bars is shown on Fig. 15. It is worth to note that the larger the bar is in
comparison to the correlation length Lc, the more fluctuating the random fields are. Thus, the
more likely these macroscopic properties are to have small lower bounds. In terms of strength, such
small lower bounds obviously lead to weaker behavior towards failure.
Each of these independent realizations is used to perform Monte Carlo with 10, 000 integration

points for each case using the coFeap CTL component. Figure 16 presents the cumulative density
functions for the maximum load. Considering a given percentile of broken bars, it is worth to note
that the smaller the bar is, the higher is its ultimate stress, e.g., 3.68 MPa for the small truss,
3.3 MPa for the medium one, and to 2.87 MPa for the large one. In other words, the strength of
the structure is directly linked to its size. The larger is the structure, compared to the correlation
length, the weaker it becomes. Moreover, it also has smaller contribution of FPZ in final failure

a) b)

c) d)

Fig. 16. a) Short, medium and short bar, b) ultimate stress cumulative distribution c) probabilistic size
effect diagram, d) standard size effect illustration.
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mechanism. Hence, this stochastic way of modelling quasi-brittle failure naturally reveals the size
effect. Figure 16 shows the 99% confidence interval with respect to the computations that have been
made. For each bar, none of these error bars are overlapping. This point leads to the conclusion
that the number of stochastic integration points used for the Monte Carlo process is large enough
and thus the results are accurate.
Clearly, the correlation length here plays the key role. Comparable to the characteristic length

which appears in the non-local theory, it can be linked to the size of the Fracture Process Zone
(FPZ) where micro-cracking occurs. If the size of FPZ prevails relative to the global size of the
structure, which is the case for the small bar, the model of Continuum Damage Mechanics (CDM)
will well describe the structure’s failure and corresponding mechanisms. In the opposite, if the FPZ
size is negligible with respect to the size of the structure (i.e., the case of large bar), its influence on
the global behavior of the structure is small. Thus, the dominant failure model remains macro-crack
that occurs following the model of Linear Fracture Mechanics (LFM).
The modelling procedure for the failure phenomena in quasi-brittle materials proposed herein can

be considered as a probability-based attempt to link these two limiting behaviors (LFM and CDM),
and provide a sound manner for picking the dominant failure mechanism in each particular case. The
likely failure mode for short and (statistically) homogeneous bar pertains to FPZ, whereas the failure
mode for long and (statistically) heterogeneous bar is likely a macro-crack. Figure 16 shows that
such a kind of size effect interpretation, based upon probability and multiscale providing correlated
random fields to describe macroscopic quantities, can provide a sound quantitative description of
this important issue in localized failure.

3. SIMULTANEOUS APPROACH TO PROBABILISTIC MULTISCALE ANALYSIS

We see the simultaneous approach is described here not as an alternative, but rather as a com-
plementary and additional method to be used mainly when the sequential approach fails to be
applicable. The sequential method may be suspect when the material experiences large strain of
stress gradients, or if the pre-computed phenomenological responses on the macro-scale do not cover
the material response adequately any more, e.g., when material instabilities, localisation, or cracks
start developing.

3.1. Two-scale coupling

A very general mathematical approach for multiscale coupling – but mainly aimed at homogeniza-
tion – has been described in [1, 13]. One possible approach is to have the meso-scale (or small-scale)
evaluation each time a finite element on the macro-scale wants to evaluate a material response, i.e.,
in each Gauss-point. This has become known as the ‘FE2-method’ [14, 15], and has already been
used extensively (e.g., [49, 70–72]). As a Gauss-point has no extension, there is no way in this
method to allow for scale-effects – the small scale is assumed to be infinitely smaller than the
macro-scale – and hence it is only applicable when there is a really large separation of scales.
Here, we want to allow for the scale effect and do not want to assume a separation of scales.

The key idea is to have a finite element on the macro-scale, with displacement field uM ), just be
an ‘empty hull’ or window, to be filled with a meso- or small-scale discretisation of displacement
field um (see Fig. 17). For given values of internal variables ξm, the total potential energy can then
be written:

Πtot =

Πint(um
e ,ξme ,λe,u

M )︷ ︸︸ ︷
nel∑

e=1

( ∫

Ωm
e

Ψe(∇sume , ξ
m
e ) dΩ

︸ ︷︷ ︸
Πint

e (um
e )

+

∫

Γm
e

λe · (ume − uM ) dS

︸ ︷︷ ︸
Πλ

e (u
m
e ,λe,uM )

)
−

∫

ΓM
N

uM · t dS

︸ ︷︷ ︸
Πext(uM )

, (20)
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where Ψe(∇sume , ξ
m
e ) is internal energy density, dependent upon micro element displacement and

internal variables. The main assumption in (20) is to consider that the internal variables ξme are
only defined at the micro-scale level. For the given value of internal variables, the internal potential
energy Πint can be obtained by summing up the contributions in each micro sub-domain e of the
internal potential energy of each micro sub-domain Πint

e .

Fig. 17. Macro- and meso-scale finite element model of a simple structure.

Of course now the meshes in adjacent sub-domains do not fit, so the additional term denoted
as Πλ

e , dependent upon the localized Lagrange multipliers λ, is supplied to enforce the correspon-
dence between the micro-scale displacements along the boundary Γm

e of each sub-domain and the
macro-scale displacements, as suggested in [78] but in a dual form. The coupling term implies an
adequate choice of localized Lagrange multipliers and displacement variation. The simplest and
most effective method is to just allow linear variations of the displacements along the meso-scale
element boundaries [23, 42, 43], along with the Lagrange multipliers reminiscent of hybrid finite
elements [21]. We thus obtain [42] a completely analogous element to well-known Pian-Sumihara
hybrid stress element [55], but with element arrays representing the corresponding microstructure of
heterogeneous material. The inner small-scale mesh is effectively under displacement control, which
makes the computations simple and stable. The theory is described in [43], and the computational
coupling in [51].

If one wants to allow higher order strain patterns to propagate through the small-scale bound-
aries, a more elaborate set-up is required. This problem also occurs when structures with different
meshes are coupled, and one way to treat this is with localized Lagrange multipliers [53, 54], and
this approach has also been adopted here. A similar approach – but not with localized Lagrange
multipliers – is the so-called ‘Arlequin-method’ [5, 6], and another multiscale coupling approach
may be found in [37, 38]. Our adaptation of the localized Lagrange multiplier method may be found
in [18, 19], and a typical meso-model with a discrete – non-continuum mechanics – meso-structure
is depicted in Fig. 18, as well as the de-bonding between the phases in Fig. 19, and a macro-crack
developing across the macro-element in Fig. 20 in one of the tests computed.

Fig. 18. Meso-scale model.
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Fig. 19. Meso-scale debonding.

Fig. 20. Macro-scale crack.

3.2. Probabilistic scale coupling

As was already mentioned, both the macro-scale as well as the small-scale are to be considered
as uncertain, and hence are modelled in a probabilistic manner. The coupling described in the
previous section describes really only the mechanical coupling, but the probabilistic information
on both scales has to be coupled as well. It is of course possible to mimic the development of the
mechanical coupling, but there is also another possibility, and this is the use of Bayes’s theorem.
This idea has already been suggested in [36].
We on each scale regard the respective other scale as an essentially ‘black box’, which we try

to approximate with the probabilistic description given on the scale on which we are sitting. It is
then quite natural to use conditional expectation to perform the transfer. Conditional expectation
corresponds to a projection, and that is what is needed. The difference to what was described in
Subsec. 2.5.1, here it is not material properties which are identified, by rather displacements and
forces or stresses and strains. Of course a tangent matrix may also be identified if needed in the
computational procedure, e.g., in Newton’s method.

3.3. Computational coupling

After the mathematics of the coupling has been sketched out, we turn to the code coupling required
for the simulation. This was performed with the component framework already mentioned [50, 51]
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and [33, 34], which is called ‘Component Template Library’ (CTL), and the computational structure
as used in this application is depicted in Fig. 21; it is similar to Fig. 7, only that the Monte Carlo
component on top is replaced by the macro-scale component, and the ‘satellites’ at the bottom
represent the meso-scale components.

Fig. 21. Task distribution scheme on different processors.

The codes which solve the macro-problem and the ones which solve the small-scale problem may
be different, all that is required is that they look like a component. In [43] on each of the scales
a version of FEAP (or rather coFEAP) [29, 77] was used, and the small scale just appeared as a
new kind of finite element on the macro-scale. This is particularly convenient as all the technology
already present in FEAP (like iterative non-linear solvers, etc.) may be continued to use.
In the more elaborate localised Lagrange multiplier framework, FEAP was still used on the small-

scale problems, whereas on the large scale a new component (named MuSCAD) was developed for
various reasons [18, 19], and a schematic sketch of the computational deployment is shown in Fig. 22.
This new component embodied the macro-scale as well as the computations for the coupling via the
localised Lagrange multiplier method. On the other hand, it would be perfectly feasible to make
the coupling a separate component. This shows the versatility of the component technology [51].

Fig. 22. MuSCAD component interaction in a parallel computation.

Another aspect which can be handled on a coarse-grained basis by the component framework is
parallelisation. From Fig. 21 one may easily glean that each component – using its own resources
– may run concurrently with all the other components, while all the necessary synchronisation
due to the information being passed around is being taken care of by the CTL [50, 51]. Each
component may be a parallel code on its own, and also use a parallel processor in these coupled
computations. This may be regarded as a fine-grained parallelization, so that we have a multiscale
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parallel computation to execute the multiscale mechanical problem, a curious duplicity granting us
with significant increase of computational efficiency.

4. CONCLUDING REMARKS

This work provides much improved approach with respect to currently dominant computational
strategy for dealing with localized failure of engineering structures, by using phenomenological
macro-models with parameters estimated by homogenization. The improvements concern both the
model capability to correctly represent failure mechanisms and their subsequent evolution, along
with their variability for real-life, heterogeneous materials.

In order to improve predictive modelling of failure when accounting for material heterogeneities,
the meso-scale has been here chosen as the one being pertinent to describe failure mechanisms of
cement-based composite materials (concrete, mortar etc.). At this scale, the cement-based compos-
ites are properly interpreted as heterogeneous, and represented as such by using a special structured
mesh methodology granting us computational efficiency. Any such structured mesh relies on a reg-
ular grid where elements are not constrained to the physical interfaces between the different phases
and can also contain phase interface. For any element crossed by phase interface, as shown here
in detail for the classical CST elements, we explained how to enhance the elements kinematics ac-
cordingly by using the incompatible modes method providing two kind of discontinuities. The first
discontinuity consists in a strain discontinuity inside the element in order to model different elastic
properties of the two phases, whereas the second one corresponds to a displacement jump that
allows to model the interface failure (e.g., debonding). Such a representation provides much higher
computational efficiency than the exact, non-structured mesh adapted to the phase interface. More-
over, the structured element mesh with incompatible modes is more robust than the corresponding
X-FEM representation, for it keeps all the extra computations pertinent to phase interface local (or
element-wise). Finally, the proposed mesh is also the most suitable for probability computations,
since it does not require any remeshing or changing the number of elements for handling different
realizations of elements crossed by the phase interface.

Besides such an efficient tool for probability studies, the key idea suggested here to ensure the
success of probability computations pertains to identifying the source of uncertainty and providing
the corresponding description. In the chosen context of cement-based materials, the variability
of the geometric description at the meso-scale level (placing the aggregates within the cement
matrix) is the main source of uncertainty. By considering such geometric uncertainty of cement-
based materials, we recover the corresponding probability distribution of macroscopic mechanical
properties, such as mechanical strength that remains strongly dependent upon volume fraction.
Here, for representing uncertainties in meso-scale geometry, we have employed modified Gibbs
points processes with circular voids inside a perfectly-plastic Drucker-Prager matrix. Although the
material properties of the two phases are assumed to be deterministic, such geometric variability
leads to a stochastic problem to be solved at the structural scale with random fields replacing
deterministic values of material properties.

Finally, with the macroscopic properties (e.g., yield stress, ultimate strength) described by ran-
dom fields of this kind and their covariance function (namely the correlation length), we showed
that the proposed macro-model provides a very sound interpretation of the size effect. Such size ef-
fects are a major issue in modelling quasi-brittle failure like cement-based one and bridge two limit
cases of failure, continuum damage mechanic and linear fracture mechanics. The main finding is
that the proposed multiscale strategy defining the random field distributions of failure parameters
can provide quantitative estimates of dominant failure mode, between the FPZ of continuum dam-
age mechanics for (statistically) homogeneous structure versus the macro-crack of linear fracture
mechanics for (statistically) heterogeneous structure.

Another key ingredient of our model granting it predictive capabilities pertains to its ability
to accommodate both failure mechanisms, FPZ and macro-crack introducing the displacement
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discontinuity and localized failure, and to take into account their interaction. The model thus
represents the proper generalization of weakest link from the classical Weibull’s theory, which
allows it to provide natural explanation of the size effect in structural failure. We note in passing
that the model can also recover the classical Weibull’s results, simply by considering uncorrelated
random field.
We note that many ingredients we employed in probability computations are indeed quite clas-

sical, such as KLE representation of random fields, and the Monte-Carlo method to compute the
statistical moments of the desired quantities, which would allow us to quickly integrate this ap-
proach with other multiscale methodologies. We also note that the use of the Components Template
Library (CTL) to provide the multiscale version of the finite elements code FEAP and the subse-
quent multiscale probabilistic strategy, can be quickly implemented in many other computer codes.
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[51] R. Niekamp, D. Markovič, A. Ibrahimbegovic, H.G. Matthies, R.L. Taylor.Multi-scale modelling of heterogeneous
structures with inelastic constitutive behaviour: Part II – Software coupling implmentation aspects. Engineering
computations, 26: 6–28, 2009.

[52] M. Ostoja-Starzewski. Material spatial randomness: from statistical to representative volume element. Proba-
bilistic Engineering Mechanics, 21: 112–132, 2006.

[53] K.C. Park, C.A. Felippa. A variational principle for the formulation of partitioned structural systems. Int.
J. Numer. Meth. Engng., 47: 395–418, 2000.

[54] K.C. Park, C.A. Felippa, G. Rebel. A simple algorithm for localized construction of non-matching structural
interfaces. Int. J. Numer. Meth. Engng., 53: 2117–2142, 2002.

[55] T.H.H. Pian, K. Sumihara. Rational approach for assumed stress finite elements. Int. J. Numer. Meth. Engng.,
20: 1638–1685, 1984.
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