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The boundary element formulation for dynamic analysis of inelastic two-dimensional structures subjected
to stationary or transient inertial loads is presented. The problem is solved by using simultaneously the
displacement and stress integral equations. The numerical solution requires discretization of the boundary
displacements and tractions, and stresses in the interior of the body. The boundary is divided into quadratic
elements and the domain into constant or quadratic quadrilateral cells. The unknown stresses in the
coupled system of equations are computed using an iterative procedure. The mass matrix of the structure
is formulated by using the dual reciprocity method. The matrix equation of motion is solved step-by-step
by using the Houbolt direct integration method. Several numerical examples show the influence of the
discretization on the accuracy and new applications of the method. The solutions are compared to the
analytical results or those computed by the finite element method.

Keywords: boundary element method (BEM), dual reciprocity method (DRM), inelasticity, elastoplas-
ticity, dynamic analysis

1. INTRODUCTION

The dynamic analysis of elastoplastic structures is a significant subject of engineering research
in recent decades. To obtain more reliable results of computer aided analysis of structures under
transient dynamic loadings one must take into account nonlinearities due to inelasticity of the
material. The finite element method (FEM) is the most popular numerical method for the solution
of elastoplastic dynamic problems, but recently the boundary element method (BEM) becomes also
a very suitable method to solve this class of problems. Main advantages of this method are accuracy
of stress analysis and small number of degrees of freedom of the numerical model.

The fundamentals the BEM formulation for nonlinear materials are presented in the textbooks by
Telles [23], Banerjee [2] and Gao and Davies [12]. The most popular approaches in the elastoplastic
BEM are the initial stress and initial strain formulation, because of easy physical interpretation and
simple implementation. Each approach requires the plastic domain discretization, but this procedure
does not increase the number of degrees of freedom. The integral equations are formulated in the
incremental form and the numerical solution is obtained by the iterative methods.

Dynamic solution of the elastoplastic problem can be obtained by the BEM by using different
techniques. An overview of formulations and applications of the BEM to inelastic problems was
presented by Beskos |3, 4]. In the first method, presented by Ahmad and Banerjee [1], Telles, Car-
rer and Mansur [26] and Israil and Banerjee [16], the fundamental solutions of elastodynamics are
used. This approach, called the time domain boundary element method (TD-BEM), eliminates the
inertial domain integral and allows analysis of infinite or semi-infinite domains. However, the com-
putational cost is very high due to complex kernels involved. The second class of techniques uses the
elastostatic fundamental solutions. Simplicity of these solutions leads to computational advantages,
although the inertial domain integral is created. The inertial domain integral can be computed
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by the domain discretization by using cells and is called the domain boundary element method
(D-BEM). This approach was used by Carrer, Telles [6, 24, 25], Coda and Venturini [7] and Hatzi-
georgiou and Beskos [15]. The inertial domain integral can be transformed into boundary integrals
by approximating the accelerations within the domain, which is the basis of the dual reciprocity
boundary element method (DR-BEM). This method was proposed by Kontoni and Beskos [17-21]
for the elastoplastic analysis. In comparison to the D-BEM the number of unknowns in the resultant
algebraic system depends only on the boundary discretization and interior cells are required only
in the plastic domain.

This work presents the application of the DR-BEM to two-dimensional dynamic elastoplasticity.
The paper shows the integration of domain integrals in the plastic region in detail and the influence
of its discretization on the solutions. Preliminary results of this research were presented by Czyz
and Fedeliniski in [8-10]. New examples of application of the DR-BEM are given in this work.

2. GOVERNING EQUATIONS

Consider an elastoplastic, isotropic and homogeneous body with the boundary I' occupying the
domain 2 which is subjected to body forces or dynamic tractions, shown in Fig. 1. The theory of
small displacements is assumed.

I

X

I,
Fig. 1. Elastoplastic body

The following boundary conditions,

tilE r PR o =R on I, W
wi(z, 7) = iz, 7) on Iy,

and initial conditions
ui(z,0) = ud(z) and 4(z,0) = vd(x) in {2, (2)

are imposed, where u; is the component of displacement, ¢; is the component of traction, ; and
t; denote the prescribed boundary conditions, oi; is the stress tensor, n; is the component of the
outward normal versor at the boundary, Iy and Iy are parts of the boundary I' (It U Ty = I'),
u? and v? are prescribed initial conditions, z are coordinates of a point, 7 is time, repeated indices
denote the summation convention and overdots — time derivatives.

The equation of motion of the body has the form

oijj + b; = pi; , (3)

where p is a mass density, b; is the component of body force and an index proceeded by a comma
denotes differentiation with respect to the appropriate coordinate.

The constitutive equations are based on the incremental stress-strain relations for inviscid plas-
ticity and elastoplastic flow theory [23]

dU,’j = Clejl;cl dgkl y (4)

where dey; is the total strain increment.
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For the isotropic hardening

i
e
Ci]r;CI = Cijkl = ? Oijmna'mnaopcopkl ) (5)

where Cjjy is the elastic tensor,

2Gv
k= e 00kt + G (001 + 0itdjk) (6)
G is the Kirchhoff shear modulus of elasticity, v is the Poisson ratio, d;; is the Kronecker delta and
amn 18 a derivative of the yield function F' with respect to the appropriate component of the stress
tensor,

oF

O0mn

(7)

Amn

The parameter 7' also depends on derivatives of the yield function, the elastic tensor and the
hardening slope H

v = aijCijrian + H. (8)
Introducing the elastic stress increment,

doj; = Cijki ek, (9)

the plastic stress increment can be calculated as

.3 1 .
do}; = doj; — doij = ~ CiimnOmnar dog; - (10)

3. BOUNDARY INTEGRAL EQUATIONS

The relation between the mechanical fields can be obtained using the displacement integral equation.
For the initial stress approach and zero initial conditions, the equation has the form [20],

s e /

Sy

Uij(z',z) tj(z,7)dI () — / Tl 2y usln,r)dl )
r

i
+p/QUij(a;',X)bj(X)dQ(X)—p/nUij(:L",X)iij(X,T)dQ(X)
: /Q Bji(', X) 0% (X, 7) d2(X), (11)

where ¢;; is a constant, which depends on the position of the collocation point, Uj;, Tij o Ejki
are fundamental solutions of elastostatics, z’ is the collocation point, z is a boundary point and
X is a domain point (Fig. 1). Since the fundamental solutions U;; and T}, are well known (see for
example [12]) only Ej;; for plane strain is given [23],

1
Ejki = S e T (1 = 2v)(r kdij + 7 ,50uk) — 7idjk + 2r v 57 k], (12)

where r is the distance between the points 2’ and X. The fundamental solution for plane stress is
obtained by replacing v by 7 = v/(1 4+ v).



382 T. Czyz and P. Fedelinski

Contrary to the elastodynamic case, Eq. (11) contains the domain plastic term, which depends
on the unknown plastic stress og.’k. In order to obtain the stress fields in the domain the stress

integral equation is used. For the initial stress approach the equation is [20]
oii(z', 1) = /1 Uijk(z', ) tx(z,7) dI (z) — /1 Tinle' 2 melz, 7) $EL0)
#H p/ﬂ Uijk(z', X) be(X) dR(X) — ,o/!2 Uij(z', X) i (X, 7) dR2(X)
4 /Q Eijkl(iljl, X)op(X,7)dR(X) + Fiju agke’, ) (13)

where Ujji, Tijk, Eiji and Fijp are other fundamental solutions. Since the fundamental solutions
Uijk, and Tjjj, are well known (see for example [12]) only Eijx and Fjjy for plane strain are given
here [12],

1
Eiji = TR [(1 = 2v)(0ik 015 + Ojkdui — ijOrt + 2057 k1)
+ 2V(5liT,,jT,k + 5jk7')lr7,; + (Sik’r"ﬂ')j + (Sﬂ’l"i’l“’k) + 2(51“{7‘71'7‘,_7' - 8T,i7',jr,k7',l] 5 (14)
1
Fim = o) (8361 + 0udj) + (1 — 4v)dii0k] - (15)

The inertial domain integral in Eq. (11) is transformed into boundary integrals using the dual
reciprocity method (DRM) proposed by Nardini and Brebbia [5, 22]. In this method the acceleration
is approximated by the following function,

iz, 7) = @ (7) 7 (2" 2), (16)

where @' is a time-dependent function and f™ is a coordinate function. In the present work it is
assumed that

'z z) =r+C, (17)
where r is the distance between a defining point z* and the point z, and C is a constant. The

defining point can be a boundary or a domain point.
After the transformation the inertial domain term in Eq. (11) has the form

p [ U, X) 5 (X,1) a0(X) = p o) (") = [ V(o' 0) 3ta ) ar o
J:2 JI
+ [ 60 (e 0) AT ()] 60, (15)
e i

where: 47 and f;‘l are fictitious displacements and tractions [11], respectively, corresponding to the
fictitious body force defined by Eq. (17). Similarly the inertial domain term in Eq. (13) can be
transformed into the boundary integral form

/)/QUijlc(xlaX)ﬂk(X7T) d2(X) = p [5%1(37*,%') = /FUijk(ﬂ?',I) tyi(a*,2) AT (2)

+ [ Tl 2) e o) df(w)] & (r), (19)

where 617-31 is a fictitious stress.
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4. NUMERICAL IMPLEMENTATION

In order to obtain the numerical solution, the boundary is divided into 3-node boundary elements
and the part of the body where the inelastic behavior is expected is discretized into 1-node or
8-node quadrilateral cells, as shown in Fig. 2. The domain discretization is consistent with the
boundary discretization i.e. two constant cells adjoin one quadratic boundary element (Fig. 2a)
and one quadratic cell adjoins one quadratic boundary element (Fig. 2b). The method requires
discretization of this part of the domain (2, , which is in the plastic state. The boundary coordinates,
real and fictitious displacements and tractions are interpolated by using quadratic shape functions
and the stresses in the domain using constant or quadratic shape functions.

Fig. 2. Discretization of the body; a) constant cells, b) quadratic cells

The displacement integral equation (11) is applied to every boundary node. The resulting system
of equations can be written in the matrix form as

Hu + Miu = Gt + Mb + Eo?, (20)
where
M = p(Ha — Gt)F 1, (21)

H and G depend on boundary integrals of the fundamental solutions Tj; and Uj;, respectively,
and boundary shape functions, M is the mass matrix, E is dependent on the fundamental solution
Ejj; and domain shape functions, F contains values of functions f* at nodes, u and @ contain
nodal values of real and fictitious components of displacements, t and £ — nodal values of real and
fictitious tractions, b — nodal values of components of body forces and oP — components of plastic
stress tensor.

The stress integral equations (13) are used to determine stresses at all internal nodes of cells.
These equations can be written in the matrix form as

o=G't-Hu-Mi+Mb+EoP, (22)

where o contains components of the stress tensor at all internal nodes of cells. The matrices G’, H’,
M’ and E' are obtained similarly as matrices in Eq. (20). They depend on appropriate fundamental
solutions in Eq. (13). The stresses in nodes of the cells at the boundary are computed using tractions
and displacements.

5. COMPUTATION OF DOMAIN INTEGRALS

The fundamental solutions of elastostatics in the displacement and stress integral equations are sin-
gular. They tend to infinity when the distance between the collocation point x’ and the boundary x
or domain point X tends to zero. The boundary integration of fundamental solutions Uj; , Ti; , Ujjk
and Tjjj, is well documented in the literature (see for example [12]) and therefore it is not discussed
here.
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Fig. 3. Boundary collocation point — constant cells; a) singular cells at the collocation point, b) division of
cells into triangles
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Fig. 4. Boundary collocation point - quadratic cells; a) two singular cells at the collocation point, b) division
of two cells into triangles, c) one singular cell at the collocation point, d) division of one cell into triangles

The fundamental solution Eji; in the displacement integral equation, defined by Eq. (12), has
the order of singularity O(1/r), which is classified as the weak singularity. Special techniques of
integration should be used for cells, which are adjacent to collocation points. The following cases
should be considered:

for constant cells (Fig. 3):

— the collocation point z' is at the corners of two constant cells (Fig. 3a) — each cell is divided
into two triangles (Fig. 3b),

for quadratic cells (Fig. 4):

— the collocation point ' is at the corner of two quadratic cells (Fig. 4a) — each cell is divided
into two triangles (Fig. 4b),

— the collocation point is at the mid-side node of the quadratic cell (Fig. 4c) — the adjacent
cell is divided into three triangles (Fig. 4d).

The triangles are transformed from the global coordinate system (z; , 3) to the local coordinate
system (&1, €2), as shown in Fig. 5. After the transformation, the triangles become squares [11]. The
corner of the triangle C, where the collocation node 2’ is situated, is transformed into one side of
the square C'C". The relationship between the global and local coordinates is expressed as follows,

5= (=80 +@)at + 1= 50 +6) - 30 - +&)| P+ J0 40, (3

A

£ miB and IIZC are coordinates of the corners A, B, C.

where z
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Fig. 5. Transformation of the triangle in the global coordinate system into the square in the local
coordinate system

The Jacobian of this transformation equals
]. A £ 7 ¢
7] = 5 = &) (o7 - 27) (2§ ~ 28) - (aF - 1) (2 - =), (24)

The Jacobian equals zero at the collocation z’, which has the coordinate &1 = 1. The order of
the Jacobian is O(r) at the collocation point and can cancel out the singularity of the fundamental
solution Eji;. The integrals in the local coordinate system are computed by using the standard
Gaussian quadrature.

The fundamental solution E;ji; in the stress integral equation, defined by Eq. (14), has the order
of singularity O(1/r?), which is classified as the strong singularity. Special techniques of integration
should be used for cells, which contain or are adjacent to collocation points. The following cases
should be considered:

for constant cells (Fig. 6):

— the collocation point z’ is at the center of the constant cell (Fig. 6a) — the cell is divided into
four triangles (Fig. 6b),

for quadratic cells (Fig. 7):

— the collocation point is at the mid-side node of two quadratic cells (Fig. 7a) — each adjacent
cell is divided into three triangles (Fig. 7b),

— the collocation point 2’ is at the corner of four quadratic cells (Fig. 7c) — each cell is divided
into two triangles (Fig. 7d).

The cells are transformed from the global coordinate system (1, 2) to the local coordinate
system (&1, €2). Next, the cells are transformed to the polar coordinate system (60,4) with the
center at the collocation point (¢}, §3). The Jacobian of this additional transformation equals §.
The integral over the domain of cells 25 which contain the collocation point is

: M N .9, 1
/ Biju(a', X) af (X, ) d2(X) = 3 % /0 /0 (€', €) N™(€) J(€) 6 d6d0 o™ (r),  (25)

£2: m=)ln=1471

where M is the number of triangular segments at the collocation point, as shown in Figs. 6 and 7,
N is the number of nodes in the cell (N = 1 for a constant cell and N = 8 for a quadratic cell),
61 and 6, are the angles which define the sides of a triangle, N™ are stress shape functions, J is the
Jacobian of the transformation from the coordinate system (z , z2) to (& , &), of are components
of plastic stresses at the nodes of the cell. An arbitrary position of the collocation point in the cell
and its division into triangles is shown in Fig. 8. The integrand in Eq. (25) is denoted as

Fijki(0,0) = Eyri(€',6) N™ (&) J(€) 6. (26)
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Fig. 6. Internal collocation point — constant cells; a) singular cell at the collocation point, b) division of the
cell into triangles
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Fig. 7. Internal collocation point — quadratic cells; a) two singular cells at the collocation point, b) division
of two cells into triangles, c) four singular cells at the collocation point, d) division of four cells into triangles
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Fig. 8. Polar coordinate system with the origin at the collocation point
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The singular integral in Eq. (25) is computed using the method presented by Guiggiani and

Gigante [14]
)
/ / F.(0,6) dddo
01 J0

m=1
fglk[(e) o 5’"(9)
dod e 1 ) 2
> { /0 / Bul0,9) ~ = asao+ | g0 megas (27)
where f7" ki s the Taylor expansion of the integrand in the neighbourhood of the collocation point
ijkt(0,0) = [f iki(0) + 0(0)], (28)

6™ is the distance between the collocation point and the boundary of the cell in the local coordinate
system and ™ is computed as follows,

1
= TEe Ao 2
and
ox; 0x;
Az(e) = 8{ (51)52) COSQ+ f (61752) sin . (30)

The integrals in Eq. (27) are computed using the Gaussian quadrature.

The accuracy of the solution can be improved by using additional internal collocation points in
the displacement integral equation. In this case the division of cells and integration are similar as
presented above.

6. SOLUTION PROCEDURE

The matrix equation of motion (20) is solved step-by-step by using the direct integration Houbolt
method. This method introduces an artificial damping and filters the high mode response of the
solution.

In each time-step the unknown displacements, tractions and stresses are computed. The dis-
placement equation and stress equation contains a vector of not known a priori inelastic stresses
oP. In order to determine the stresses an iterative procedure is used. The algorithm of the iterative
procedure employed in each time-step is shown in Fig. 9.

At the beginning of the iterative procedure the plastic stresses from the previous time step are
used. Next the boundary unknowns are computed using Eq. (20) and the elastic stresses using
Eq. (22). Later the yield criterion is applied to detect which points are in the plastic state. For each
node, where the effective stresses are above the yield stress, the elastic stress increment is computed.
The elastic stress increment is the excess of stresses over the stresses, which correspond to the yield
stress. Knowing the elastic stress increment, the plastic stress increment can be computed from
Eq. (10) and substituted again to Eq. (20) for each node in the plastic state. Next this increment
is added to the total plastic stresses in the node. When the plastic stress increment is determined
for each node, the boundary unknowns with the new vector of plastic stresses are computed. This
procedure is repeated until the change of the results is so small that could be neglected. In the
numerical examples only one iteration is applied because further increase of the number of iterations
does not influence the accuracy of results.

The present method can be used for structures subjected to static loadings. It this case it is
assumed that the loads vary slowly linearly with time. The number of time-step corresponds to
consecutive increments of the applied load. If these steps are sufficiently small there is no need to
use the iterations. When the increments of load are greater or if only one increment is used, the
iterations are necessary to obtain accurate results.
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Computation of boundary unknowns
with ¢ from the previous step

v

Computation of stresses
and detection of plastic nodes

v

Computation of the plastic stress increment
using the elastic stress increment and plastic flow laws

v

Addition of the plastic stress increment
to the total plastic stress

4

Computation of boundary unknowns with new ¢®

repeat

Fig. 9. Iterative procedure in each time step

7. NUMERICAL EXAMPLES

The aim of the numerical examples is to show the influence of discretization on the accuracy of
solutions. The numerical results are compared with the analytical solutions or the results computed
by the commercial finite element code. The material of the plates is elastoplastic with linear isotropic
hardening obeying the Von Mises yield criterion. The yield stress of the material is oy, Young
modulus is £ and the tangent modulus is E; (Fig. 10a). The plates are in the plane stress and
are subjected to dynamic impact loading with the Heaviside time dependence. The magnitude of
loading is p, (Fig. 10b). The dimensions of the plates are given in millimetres. The time step of the
analysis is the time of propagation of elastic wave along the distance equal to half of the length of
the cell.

Frfogypa o P,

arctan E

>
>

€ t

Fig. 10. a) stress-strain relation b) time history of loading

7.1. Rectangular plate — inertial loading

A rectangular plate, shown in Fig. 11a, constrained at two opposite edges moves and is subjected
to inertial loads. The acceleration field is uniform within the body. The direction of acceleration is
horizontal and its magnitude is @ = 5 - 10° m/s?. The elastoplastic material of the plate has the
following properties: Young modulus E = 210000 MPa, tangent modulus E; = 5000 MPa, yield
stress oy = 300 MPa, Poisson ratio » = 0 and density p = 5000 kg/m®. The boundary of the
body is divided into 12 quadratic boundary elements and the domain is discretized into 32 constant
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interior cells, as shown in Fig. 11b. The numerical results are compared with the analytical solutions.
The percentage stress error in each interior cell is given in Fig. 11c. The stress error in each cell
is less than 1.3%. The displacements of the upper edge in the horizontal direction, for the elastic
and elastoplastic material are shown in Fig. 12. The numerically computed displacements are in
very good agreement with the analytical solutions. The maximum displacement for the elastoplastic
material is three times bigger than for the elastic material.
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e . . . .
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; 0.14| 0.30| 0.25/ 0.11/0.11] 0.25/0.30| 0.14
7 ..
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Fig. 11. Rectangular plate subjected to the inertial loading; a) dimensions and boundary conditions,
b) discretization, ¢) percentage stress error in each cell
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Fig. 12. Displacements of the upper edge of the plate
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7.2. Rectangular plate — dynamic loading

A rectangular plate is constrained at one edge and loaded on the opposite edge, as shown in Fig. 13.
The material of the plate has the following properties: Young modulus & = 200000 MPa, tangent
modulus E; = 50000 MPa, yield stress oy = 400 MPa, Poisson ratio » = 0 and density p =
8000 kg/m3. The plate is subjected to the uniformly distributed impact loading of value py =
500 N/mm.

The domain of the plate is discretized using different number of constant and quadratic cells, as
shown in Fig. 14. To improve the accuracy of solution additional internal points in each case are
used. The number of these points is from 13 till 25 and it is different for each type of discretiza-
tion.

100

\ 4

A

A4

50
WAV ANN NN

A\ 4

Fig. 13. Rectangular plate subjected to dynamic loading — dimensions and boundary conditions
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Fig. 14. Discretization of the rectangular plate; a) 32 constant cells, 12 boundary elements, b) 128 constant
cells, 24 boundary elements, ¢) 8 quadratic cells, 12 boundary elements, d) 32 quadratic cells, 24 boundary
elements

The comparison of horizontal displacement at the middle point of the loaded edge for each
discretization is shown in Fig. 15. A similar comparison of horizontal normal stresses at the middle
point of the plate is shown in Fig. 16. The results are compared with the analytical solutions [13].
The computed displacements are more accurate than stresses.

The results show that there are no significant differences between solutions obtained with use of
constant and quadratic cells even for the small number of boundary elements and cells.
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Fig. 15. Horizontal displacement of the middle point of the loaded edge
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Fig. 16. Horizontal normal stress at the middle point of the plate
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7.3. Plate with square holes — dynamic loading

A rectangular plate with quadratic holes constrained at one edge and loaded on the opposite edge is
shown in Fig. 17. The material properties and loading is the same as in the previous example. The
domain of the plate is discretized using different number of constant and quadratic cells, as shown
in Fig. 18. For these discretizations the comparison of displacements at the middle point of the
loaded edge with the finite element solutions obtained by the Dytran computer code is presented
in Fig. 19. The FEM model was discretized into 384 quadrilateral 4-node finite elements.

The displacements for 384 constant cells and 96 quadratic cells are almost the same. The dis-
placements for 96 constant cells are less accurate.
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Fig. 17. Plate with square holes subjected to dynamic loading — dimensions and boundary conditions

a) b)

Fig. 18. Discretization of the plate with square holes; a) 96 constant cells, 40 boundary elements, b) 384
constant cells, 80 boundary elements, ¢) 96 quadratic cells, 40 boundary clements
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Fig. 19. Displacements of the middle point of the loaded edge

8. CONCLUSIONS

In this paper the dual reciprocity boundary element method (DR-BEM) and initial stress approach
for elastoplastic plates in plane stress subjected to inertial or dynamic forces is presented. The
formulation requires that only the plastic region needs to be discretized. Although the internal cells
are introduced they do not increase the number of unknowns in the sets of equations. The paper
shows the influence of the domain discretization on the solutions.

The dual reciprocity boundary element method for elastoplastic dynamic analysis gives accurate
results and is computationally efficient, because the number of unknowns is much smaller than
in the finite element method. The numerical results obtained by the present method are in very

good agreement with analytical and finite element solutions. The computed displacements are more
accurate than stresses.

REFERENCES

[1] S. Ahmad, P.K. Banerjee. Inelastic transient dynamic analysis of three-dimensional problems by BEM. Inter-
national Journal for Numerical Methods in Engineering, 29: 371-390, 1990.

[2] P.K. Banerjee. The boundary element method in engineering. McGraw Hill, London, 1994.

[3] D.E. Beskos. Dynamic inelastic structural analysis by boundary element methods. Archives of Computational
Methods in Engineering, 2: 55-87, 1995.

[4] D.E. Beskos. Dynamic analysis of structures and structural systems. In: D.E. Beskos, G. Maier, eds., Boundary
Element Advances in Solid Mechanics, 1-53. International Centre for Mechanical Sciences, Courses and Lectures,
No. 440. Springer-Verlag, Wien, New York, 2003.

[5] C.A. Brebbia, D. Nardini. Dynamic analysis in solid mechanics by an alternative boundary element procedure.
Soil Dynamics and Earthquake Engineering, 2: 228-233, 1983.

[6] J.A.M. Carrer, J.C.F. Telles. A boundary element formulation to solve transient dynamic elastoplastic problems.
Computers and Structures, 45: 707-713, 1992.

[7] H.B. Coda, W.S. Venturini. Dynamic non-linear stress analysis by the mass matrix BEM. Engineering Analysis
with Boundary Elements, 24: 623-632, 2000.

[8] T. Czyz, P. Fedeliniski. Numerical aspects of modeling elasto-plastic materials by the boundary element method.

In: XLIIT Symposium Modeling in Mechanics, Scientific Papers of Department of Applied Mechanics, 23: 99-104,
Gliwice, 2004.



394 T. Czyz and P. Fedelinski

[9] T. Czyz, P. Fedeliniski. Elasto-plastic dynamic analysis by boundary element method. In: 16th International
Conference on. Computer Methods in Mechanics, Short Papers, 69-70 (CD-ROM, 4 pages). Czestochowa, 2005.

[10] T. Czyz, P. Fedeliriski. Boundary element formulation for dynamic analysis of materially nonlinear structures.
In: 10th International Conference on Numerical Methods in Continuum Mechanics, Book of Abstracts, 21-22,
(CD-ROM - 10 pages). Zilina, Slovak Republic 2005.

[11] J. Dominguez. Boundary elements in dynamics. Computational Mechanics Publications, Southampton, 1993.

[12] X.W. Gao, T.G. Davies. Boundary element programming in mechanics. Cambridge University Press, 2002.

[13] H. Garnet, H. Armen. One dimensional elasto-plastic wave interaction and boundary reflections. Computers
and Structures, 5: 327-334, 1975.

[14] M. Guiggiani, A. Gigante. A general algorithm for multidimensional Cauchy principal value integrals in the
boundary element method. Journal of Applied Mechanics, Transactions of the ASME, 57: 906-915, 1990.

[15] G.D. Hatzigeorgiou, D.E. Beskos. Dynamic elastoplastic analysis of 3-D structures by the domain/boundary
element method. Computers and Structures, 80: 339-347, 2002.

[16] A.S.M. Israil, P.K. Banerjee. Advanced development of boundary element method for two-dimensional dynamic
elasto-plasticity. International Journal for Solids and Structures, 29: 1433-1451, 1992.

[17] D.P.N. Kontoni, D.E. Beskos. Inelastic dynamic analysis by the boundary element method. In: C.A. Brebbia,
W.L. Wendland, G. Kuhn, eds., Boundary Element IX, 2: 335-351. Springer-Verlag, Berlin, 1987.

[18] D.P.N. Kontoni, D.E. Beskos. BEM dynamic analysis of materially nonlinear problems. In: C.A. Brebbia,
ed., Boundary Element X, 3: 119-132. Computational Mechanics Publications, Southampton, Springer-Verlag,
Berlin, 1988.

[19] D.P.N. Kontoni, D.E. Beskos. The dual reciprocity boundary element method for the transient dynamic analysis
of elastoplastic problems. In: C.A. Brebbia., M.S. Ingber, eds., Boundary Element Technology VII, 653-669.
Computational Mechanics Publications, Southampton, Elsevier Applied Science, London, 1992.

[20] D.P.N. Kontoni, D.E. Beskos. Transient dynamic elastoplastic analysis by the dual reciprocity BEM. Enginecer-
ing Analysis with Boundary Elements, 12: 1-16, 1993.

[21] D.P.N. Kontoni. Elastoplastic dynamic analysis by the DR-BEM in modal co-ordinates. In: H. Pina, C.A. Breb-
bia, eds., Boundary Element Technology VIII, 191-202. Computational Mechanics Publications, Southampton,
Boston, 1993.

[22] D. Nardini, C.A. Brebbia. A new approach to free vibration analysis using boundary elements. Applied Mathe-
matical Modelling, 7: 157-162, 1983.

[23] J.C.F. Telles. The boundary element method applied to inelastic problems. In: C.A. Brebbia, S.A. Orszag, eds.,
Lecture Notes in Engineering. Springer-Verlag, Berlin, 1983.

[24] J.C.F. Telles, J.A.M. Carrer. Implicit solution techniques for inelastic boundary element analysis. In: C.A. Breb-
bia, ed.,” Boundary Element X, 3: 3-15. Computational Mechanics Publications, Southampton, Springer-Verlag,
Berlin, 1988.

[25] J.C.F. Telles, J.A.M. Carrer. Static and transient dynamic nonlinear stress analysis by the boundary element
method with implicit techniques. Engineering Analysis with Boundary Elements, 14: 65-74, 1994.

[26] J.C.F. Telles, J.A.M. Carrer, W.J. Mansur. Transient dynamic elastoplastic analysis by the time-domain BEM
formulation. Engineering Analysis with Boundary Elements, 23: 479-486, 1999.



