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Trefftz method for large deflection of plates
with application of evolutionary algorithms
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The large deflection of thin plates by means of Berger equation is considered. An iterative solution of
Berger equation by the method of fundamental solutions is proposed. In each iterative step the Berger
equation can be considered as an inhomogeneous partial differential equation of the fourth order. The
inhomogeneous term is interpolated by radial basis functions using thin plate splines. For the optimal
choice of parameters of the fundamental solutions method an evolutionary algorithm is used. Numerical
results for square plate with simply supported edges are presented to compare the obtained results with
previous solutions.

1. INTRODUCTION

In the last decade, there has been considerable interest noticed in developing mesh-free methods for
solution of the boundary value problems encountered in applied mechanics [15] and today, there are
many versions of mesh-free methods. The family of these methods includes some versions of Trefftz
methods as boundary methods. The Trefftz method can be understood as a method in which the
differential equation is fulfilled exactly, whereas the boundary condition is fulfilled approximately.
There are few possibilities in approximate fulfilment of the boundary condition in the frame of
Trefftz method. One of them is the boundary collocation method (BCM) [14], where the boundary
conditions are fulfilled in collocation manner.

Two different sets of functions, which satisfy exactly differential equations, are used in frame
of BCM: T-complete Herrera functions [7] and fundamental solutions of governing equation [6].
In second case the method is known as the method of fundamental solutions (MFS). There are
many application of BCM for linear elastic solutions of thin plates based on T-complete functions
(e.g. [13, 16]) or fundamental solutions (e.g. [8, 9]). Then Trefftz method and the MFS as a special
case, cannot be use in straight way for non-linear boundary value problems (BVPs) which appear
at investigation of large deflection of plates. However, it doesn’t mean that Trefftz method can
not be used in any way for non-linear BVPs. First case when it can be used is BVPs with linear
equation but with non-linear boundary conditions. Examples of such applications of this method
are given in the papers [10, 17]. Second case known in literature is BVP with non-linear Poisson
equation [1, 3, 5, 11, 12|. In the paper [5] the non-linear thermal explosions problem was solved by
method of fundamental solutions. The radial basis functions were used for interpolation of right hand
side on Picard iteration method which was used to tread non-linearity. In the paper [3], a method
called “particular solution Trefftz method” was used. Another version of Trefftz method for solution
of non-linear Poisson equation was presented in the paper [1]. For non-linear thermal conductivity
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problem by Kirchhoff transformation the nonlinearity exists only in boundary conditions. The non-
linear algebraic equation was solved by stabilized continuation method. Kita at al. [11] considered
steady state heat conduction problems for functionally gradient materials. In order to overcome
the difficulty with non-linear Poisson equation the combination scheme of the Trefftz method with
the computing point analysis method was presented. Also steady state heat conduction problem
with temperature dependent conductivity was considered in the paper [12]. Combination of the
method of fundamental solutions with Picard iteration was used for non-linear Poisson equation.
Evolutionary algorithm was applied for the optimal determination of the method parameters. To the
best knowledge of the authors there isn’t a known application of MFS for large deflection of plates.

Linear plate theory is based on Kirchhoff model of plate. Kirchhoff theory assumes that normal
to midplane remains straight prior to deformation and normal after deformation. Improved plate
theories due to Reissner and Mindlin include the effect of transverse shear strains. Another plate
theory appropriate for large deflection of thin plates was proposed by Berger [4]. Governing equation
resulting from this theory is non-linear integro-differential equation and is applied with assumption
that in-plane displacements are constrained at the boundary.

Solution of Berger equation by BEM was proposed in the papers [18, 19]. In the paper [18],
a thin circular plate under a concentrated load was considered, while in the paper [19], the Berger
equation was decomposed into two coupled partial differential equations of the second order. The
local boundary integral equation method was applied to both equations. Such decomposition is
possible for plate with straight edges of plate.

The purpose of the present paper is the application of the method of fundamental solutions for
boundary value problem with Berger equation. The non-linearity is circumvented using algorithm of
iteration proposed in the Sladeks’ papers [18, 19]. In each iterative step the Berger equation can be
considered as inhomogeneous partial differential equation of the fourth order. The inhomogeneous
term is interpolated by radial basis functions. For the optimal choice of parameters of fundamental
solutions method an evolutionary algorithm is used. Numerical results for square plate with simply
supported edges are presented to compare the obtained results with previous solutions.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

According the Berger hypothesis, the governing equation for large deformation of thin plates has
the form

(VQ £ 132) v2,w($7y) & q(gy) (1)

with the Berger constant expressed as
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where w, q, D, A, and h denote the deflection, transversal load, plate stiffness, plate surface and
plate thickness, respectively.
After introducing dimensionless variables
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one has a non-dimensional governing equation in the form
ViW(X,Y) - B2V2W(X,Y) =b(X,Y) (4)

with the non-dimensional Berger constant
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where a is the characteristic dimension of the plate (width of a rectangular plate or radius of
a circular plate), qo is the characteristic value of transversal load (intensity of uniform load or
maximal value of space variable dependent load).

Equation (1) (or (4)) must be solved with appropriate boundary conditions resulting from the
way of support of boundary of the plate. Thus, for each point on the boundary, two, of the following
four, boundary conditions have to be satisfied,

w = i, (6)
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Qn + e Vo, (9)

where n is the normal to boundary contour, M,, is the bending moment per unit length of a section
of plate perpendicular to the n direction, @, is the shearing force per unit length of the section of
a plate and V,, is the effective shear force of the plate.

In the next example, a simply supported square plate is considered. The boundary condition in
such a case are presented in Fig. 1
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Fig. 1. Boundary conditions for simply supported square plate

3. METHOD OF FUNDAMENTAL SOLUTIONS

Equation (4) can be solved approximately using algorithm of iteration proposed in Sladeks’ pa-
pers [18, 19] where some cases of BEM were used. According to their method, the Berger constant
is calculated as

o N s e %2
APk }% Q? //w (__aw“;g;(,)f)) + (ﬁawgg,n) dXdy (10)
where W is the [-th iterative solution of a linear equation in the form
VW (X,Y) - B2 VAW (X,Y) = b(X,Y), (11)
with
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In our proposition, at each iteration step, the method of fundamental solutions with radial basis
function for interpolation right hand side is used for solution of Eq. (11). As yet, this method was
used for non-linear Poisson equation [3, 5]. Here an attempt is presented to use this for the Berger
equation. In that case, the solution of Eq. (11) is assumed in the form

W =W, +W, (13)
where W)}, is a general solution of the homogeneous solution, i.e.

VAWL(X,Y)=0 for I =0, (14)
and

VAWL(X, V) = B2 VWX, Y)=0 for 1'=1,2,3,..., (15)
whereas W, is the particular solution of the inhomogeneous Eq. (11), i.e.

VAW, (X,Y) =b(X,Y) for =0, (16)
and

VAWL(X V) = VW (X, V) =8(X,¥)  “for 1=1,2,3,. " (17)

Using the method of fundamental solutions, the general solution of homogeneous equation is
taken in the form

Wi, = chr In(r +Zd Inrj  for 1=0, (18)
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where r; = \/(X' — X;)2 + (Y —Y;)? is the distance between the field point (X,Y") and the source

points (X' i f/}), ¢; , d; are unknown coefficients which can be determined from satisfaction of bound-
ary conditions, K is the zero-order modified Bessel function of the second kind, N is the number
of source points. The source points placed outside the domain of the problem on source contour
which is similar to boundary of the problem (see Fig. 2). A distance between boundary contour and
source contour is equal to S.

For construction of particular solutions of Egs. (16) and (17), the radial basis functions (RBFs)

A M M
is used. Let {Pi w={ Xy, YZ)} denote the set of M collocation points in €2, of which {(XL, Y)} 1
. i=1

. . M
are interior points and {(Xi,Y;)}. are boundary points (M = M; + Mjs). The right-hand side

function in Eq. (16) or (17) is approximated by RBFs as

b(X,Y) = Zaupz +Zﬁk<pk5(f” (20)
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where @;(r;) = @i <\/(X - X2+ (Y - Yi)?> are the RBFs and {gﬁk;(X,Y)} is the complete

basis for d-variate polynomials of the degree < m — 1. The coefficients «; and f; can be found by
solving the system of linear equations

M K

Zai (ﬁi("'im) =i Zﬁk (ﬁk(X7n,Y~;n) = b(Xmai/r )7 1<m< ]Ma (21)
M ~ ~

Zaz@k(xi,yi):(), l£kg K, (22)

=1



Trefftz method for large deflection of plates 411

vy A

o o o o o
© © © ©

/Collocation Points

x x® £ >

> N

Source Points

0——0 0

D ¥ % % Ay
X

o o o o o o o
© © © O © © © -0

Fig. 2. Distribution of collocation and source points
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where 7y, = \/(Xm - X;)?+ (Y, — Yi)? and {(Xm,Ym)} | are the interpolation points placed
m=
in QU of.
Now, the particular solution of the inhomogeneous equations (16) and (17) is taken in the form

M K
Wa(X,Y) =Y aiti(ri) + Y Brin(X,¥) (23)
t=1 ==
where
Vi (X,Y) = ¢;(X,Y) for i=1,...,M and =0, (24)
Vi (X,Y) = ¢p(X,Y) for k=1,...,K and | =0, (25)
and
Vi (X,Y) — k2V%,; = (X, Y) for i=1,...,M and [=1,2,3,... (26)
Vi (X,Y) — B2V2i, = gp(X,Y) for k=1,...,K and 1=1,2,3,... (27)

Nowadays, one can find in the literature many propositions of RBFs. Some numerical experiments
related with application of five types of these function for solution of the Poisson equation are given
in the paper [20]. Here, the RBF known as thin plate spline is used. This function has the form

@i(r;) = r? Inr;. (28)
Solution of the differential equations (24) and (26) has the forms

Cri(6ln(r)) —5)  r?

U; = T o éz for,.l = 0., (29)
and
2y 4 : 4
ui=—n }nn ot 1r~17"z i L (30)
k4 1642 32k?

respectively.
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Table 1. Forms of polynomials used for interpolation right hand side in Eq. (20) and appropriate particular

solution of Eq. (25)
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Table 2. Forms of polynomials used for interpolation right hand side in Eq. (20) and appropriate particular

solution of Eq. (27)
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Forms of polynomials used for interpolation of the right hand side with appropriate particular

solutions are given in Tables 1-2.

After determination of the interpolation coefficients a; and By, the coefficients ¢; and d; can
be determined from satisfaction of appropriate boundary condition in a collocation manner. For
better satisfaction of boundary conditions, the number of collocation points NC' is greater than the
number of source points V. An overdetermined system of linear equations resulting from satisfaction
of boundary conditions is solved in the least squares sense.

Iteration procedure is done until convergence condition in the form

|1 - 4 < 701

(31)

is achieved, where T'OL is assumed the tolerance of the solution error.
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4. OPTIMIZATION OF PARAMETERS IN MFS BY MEANS OF EVOLUTIONARY
ALGORITHM

Analysis of the algorithm in MFS shows that essential parameters which have influence on exactness
of method are: the number of collocation points (NC'), the number of source points (N), and the
distance between the contour of boundary and the contour of sources (S). If we choose the maximal
local error of satisfaction of boundary conditions as a parameter of exactness of the method, one
can observe that this measure has many local minima when parameters of the method are changed.
For example see Fig. 3 where maximal local error as a function of parameters is shown.
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Fig. 3. Maximal local error of satisfaction of boundary conditions d,max as a function of distance between
the boundary contour and the source contour S

We note that once the problem has been formulated as an optimisation problem then various
optimisation algorithms may be used in order to locate the optimum of the objective function.
The efficiency of a particular optimisation method clearly depends on the form of the objective
function. In the problem considered in this paper, the objective function has a complex non-linear
structure. Moreover, an analytical expression for the objective function for every possible solution
of the problem is not known. Therefore evolutionary algorithms appear to be very suitable for
optimizing the objective function of the problem considered since they do not require knowledge
of the gradient of the objective functions, which makes them particularly suited to optimization
problems for which an analytical expression for the fitness function is unknown.

In the proposed consideration, the evolutionary algorithm is used for optimal choice of parameters
of MFS. Evolutionary algorithm (EA) is a stochastic searching method based on the principles of
population genetics and biological evolution. The EA can be considered as the modified genetic
algorithm in which population are coded by the floating point representation [2]. The real code is
used in algorithm which is presented on Fig. 4.

The problem solution using evolutionary algorithms is carried out by the following procedure:

Step 1. A population pool of individuals with various chromosomes is installed (the first gener-
ation). In our case, the individuals are solutions of BVPs and the chromosomes contain the
information about the method parameters. The chromosomes of the initial individuals are set
randomly.
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Step 2. The fitness value of each individual is calculated. In our consideration, the fitness function
has the form

1
P e e 32
— a (32)

where MRS is the maximal error in satisfaction of boundary conditions, ¥ is the penalty function,
which is equal to 0 if all constrains and conditions are fulfilled or 1 in the opposite case, Ppax
is the value of the fitness function for the currently best solution. Some individuals (solution of
BVPs) with low fitness are deleted from the population. The selection is carried out by a set of
rules based on the fitness values.

Step 3. The crossover is carried out among the chromosomes of individuals. These individuals,
general called “parents”, are the survivors of the selection that occurs in Step 2. “Crossover
points” are placed randomly in the chromosomes. The parts of parents’ chromosomes between
the crossover points are exchanged with each other to produce the offspring.

Step 4. Mutations occur at small probability in the chromosome of each of the offspring indi-
vidually to produce “children”. Genes of the chromosomes are changed randomly with some
established probability. This mutation procedure produces children, which, because solely the
crossover does not produce them, keeps the population pool diverse. The population pool of the
individuals obtained in this procedure is called the “next generation”.

Step 5. Steps 2—4 are repeated until the terminating condition is satisfied. When the condition
is satisfied, the individual with the maximum fitness value become the quasi-optimal solution of
BVP.

The other parameters appearing in the method of fundamental solutions are not searched by
evolutionary algorithm. The following values of these parameters were assumed:

— number of inner interpolation points M = 10 - 10 points arranged uniformly in the considered
region,

— number of polynomial terms @ (r,,) — experiments were done for K = 6.
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5. NUMERICAL EXAMPLE

Numerical results are presented for simply supported square plate with a uniform load ¢y. For
comparison purpose the dimensions and other parameters of the plate are the same as in Sladeks’
paper [19]. The side length and plate thickness are chosen as 8 and 0.03 m, respectively. The
material parameters are following: Young modulus £ = 10?2 N/m? and Poisson ratio » = 0.3. In

our numerical experiments the loading parameter Q= %@ was changed from 0.1 to 1.0. Results of
numerical experiments are given in Table 3 and in Fig. 5. In Table 3, the values NC' — the number
of collocation points, N — the number of source points, and S — the distance between the source
and the boundary contours are obtained by means of the evolutionary algorithm.

The obtained results for maximal deflection are practically the same as in the paper [19] where
local boundary integral equation was applied.

Table 3. Results of numerical experiments for simply supported square plate; Ws is the maximum nou-
dimensional deflection, IT is the number of iterations, dmax is the maximal error in satisfaction of boundary
conditions

& | NGy =N S Ws | IT Buax
0.1 28 | 201 569E-01 1 0.106 | 2 | 3.78E—06
0.2 | 10 | 10 | 2.59E400 | 0.196 | 2 | 2.68E—06
03 | 48 | 12 | 247E+00 | 0.288 | 39 | 1.5032E—05
04 | 41 | 13 | 2.58E+00 | 0350 | 8 | 7.01E—06
05 | 43 | 23 | 1.12E+00 | 0422 | 6 | 7.42E—07
0.6 | 34 | 10 | 1.62E+00 | 0.470 | 10 | 2.54E—06
0.7 | 45 | 22 | 1.62E+00 | 0.518 | 12 | 1.52E—06
0.8 | 43 | 20 | 2.38E-01 | 0.564 | 15 | 1.12E—06
09 | 40 | 11 | 8.69E—01 | 0.606 | 29 | 2.73E—05
1.0 | 28 | 10 | 8.54E—01 | 0.640 | 29 | 4.20E—07
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Fig. 5. Dependence of maximum deflection on the loading parameter for a simply supported square plate
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6. CONCLUSION

In the paper, the method of fundamental solutions as a kind of Trefftz method was successfully
applied to solve problems of bending of thin elastic plates with large deflection described by the
Berger equation. This equation was solved approximately using algorithm of iteration proposed in
the Sladeks’ papers [18, 19] where they used some kinds of BEM. In our method, an inhomogeneous
term is interpolated by radial basis functions. For the optimal choice of parameters of the funda-
mental solutions method, the evolutionary algorithm was used. Numerical results for a square plate
with simply supported edges are presented. The paper presents a new application of the method of
fundamental solutions to non-linear BVP with a four-order differential equation.
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