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The paper contains three different multi-domain formulations using Trefftz (T-) displacement approxima-
tion/interpolation, namely the hybrid-displacement FEM, reciprocity based FEM (multi-domain BEM)
and the Boundary Meshless Method (BMM) for a single and multi-domain (MD) formulation. All three
methods can lead to compatible formulation with the isoparametric FEM, when the displacements along
the common boundaries are defined by same interpolation function. All three T-formulations enable to
define more complicated elements/subdomains (the T-element can be also a multiply connected region)
with integration along the element boundaries, only.

1. INTRODUCTION

There is 69 years since Trefftz published his paper [18] on the method which we call now the Trefftz
method and there is 9 years since we started to organize the Workshops on Trefftz methods. The
Workshops are organized every three years in different countries. Moreover, sessions on T-methods
are organized in during many important conferences and congresses on Computational Mechanics.
The T-functions improve efficiency of numerical methods and so, they are important tool of the
numerical methods. The field of current application of the T-methods is large, but we want to show
how they can be used in FEM, BEM and BMM for solids. The extension to other problems is
straightforward.

The T-functions can have two roles in numerical models: 1) approximation and 2) interpolation
of the field variables and the functions are approximated a) by the point collocation or b) in the
weak (integral) form.

T-functions for solids may have different forms:

1. T-polynomials — obtained a) analytically (symbolically) [6, 7], or b) numerically [9]. In ana-
lytical models coefficients depend on the material properties and are obtained once for any
material properties, but they are more complex and computationally not effective especially for
3D problems. In numerical models the coefficients are simply computed for each material and
corresponding expressions are given in a matrix form for each order of the polynomial and for
each material.

2. Kelvin (fundamental) solution [13] with source points outside the domain. The expressions have
a weak singularity for displacements and strong singularity for strains, stresses and tractions in
the source points. They correspond to action of a unit force in an infinite continuum.

3. Boussinesq-Cerruti [2, 3] solution is similar to the Kelvin solution and corresponds to action of
a unit force on the boundary of the half space (or half plane in 2D).

4. Somigliana dislocation solution [17] with the source point outside the domain, too. The basic
properties of these functions are similar as the previous two types, however, each of them has
some advantages for particular purposes.
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5. Special functions corresponding to the response of finite or infinite elastic continuum with holes,
domains of special forms etc. to some special kinds of loads.

6. Also continuous distribution of Kelvin, Boussinesq—Cerruti and dislocation source functions as
well as many other point and distributed source type functions can be included to this type of
T-functions.

The polynomial and source type T-functions can be found in [1, 4, 8, 11] and some of them are
given in Section 2.

Three kinds of basic displacement models (FEM, BEM and MM) are shown here and their MD
presentation requires a weak (integral) representation of equilibrium in order to keep convergence.
Then all three presentations are very similar and one can find some similar features in all of them.

First basic hybrid Trefftz displacement (HTD) formulations as defined by Jirousek [6] are pre-
sented. In these formulations two independent fields of displacements are used. The first one ap-
proximates the T-displacement field inside the element and has to satisfy the governing equations
inside the element and the second field is defined on the element boundary only.

The second variant of the HTD FEM [6] uses the second (boundary) displacement field on the
inter-element boundaries, only.

In the reciprocity based FEM [10] (or multi-domain BEM) formulation T-displacements and
T-tractions are used as reciprocal states of the same body and are related to the known and unknown
boundary conditions in the way as it is known from BEM [5]. For MD formulation the displacements
are considered to be continuous on the sub-domain (element) boundaries and tractions have to satisty
the weak inter-element equilibrium.

The boundary meshless method (BMM) [11] is a point collocation method. A well known single
domain BMM is the Method of Fundamental Solutions (MFS) [14], in which Kelvin type T-functions
with source points outside the domain are used as interpolators of boundary conditions. No inte-
gration and no meshes are required. More general T-functions can be used in BMM in order to
improve accuracy and numerical stability of the system of equations in the BPM. For more com-
plicated problems and/or inhomogeneous materials a MD formulation can be used. In order to
obtain a convergent solution for general problem, the weak form of equilibrium is necessary also for
a homogeneous structure and the formulation is not totally meshless and requires some integration,
too.

The singular value decomposition (SVD) [16] plays an important role in the formulation as
matrices with more columns than rows, which arise in some cases of the MD formulations, are to
be inverted in order to obtain more accurate solution. The SVD minimizes the solution vector.

All methods using T-elements enable to define large elements with more complicated form than
classical FEM formulations and they are open to further development. The elements can be even
multiply connected and can be simply extended to special use, e.g. they can contain special functions,
which better approximate the field inside the element. This is similar to the technique used in
extended finite elements (EXFEM).

The MD formulations of all three kinds of T-elements mentioned above are compatible with
displacement FEM and can be combined with them.

2. TREFFTZ FUNCTIONS FOR LINEAR ELASTICITY
First we will show obtaining T-polynomials for a 3D isotropic elastic solid. The displacement field,

which describes its behavior under static load condition have to satistfy the homogeneous equilibrium
equations expressed in displacements, known as Lame-Navier equations,

(A +p) Ujij + HUi 5 = 0. (1)
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The components of the displacement field are expressed as

uy Px) O 0 c
U p= 0 Pkx) O ct2 (2)
U3 0 0 P(x) c®)

where P(x) is the full polynomial of the n-th order,

P SESH s DR G SR TR R R i ey T e 3 | (3)
and CU) is the vector of unknown coefficients.

The equilibrium equation (1) contains the second derivatives of the displacements. Thus, the
terms of the 0-th and 1-st order satisfy this equation automatically. However, the higher order poly-
nomials cannot be chosen arbitrarily in order to satisty the equilibrium equation (1). Equation (2)
is split into the form

uy AD o 0 a) B o 0 b
uy P = 0o A@ o gi-L. 1l 'np PO -g b2 (4)
us3 0 0 AB al® 0 0 B® b®

where the matrix B contains as many terms as many terms has the two order lower polynomial. The
terms of each order of the polynomial are computed separately and they are functions of material
properties only. As example the third order polynomial terms

2 .2
Tix2 T3
2 . . 2 (5)
1Ty T1ToT3 T1T3

can be split so that the upper three terms will be included into B and the lower part terms into
A®M_ The terms for BO) and AW are obtained by changing cyclically the component indices and
set into Eq. (1). In this way we can obtain the relation

[M(z)[{b} + [N(z:)l{a} = {0}. (6)

Now the vector b contains dependent coefficients, which have to be expressed through the inde-
pendent coefficients a in order to satisfy the equilibrium equations in each point.

The solution of this problem can be done symbolically or numerically. In the last case, we choose
so many or more discrete points, as many dependent terms are in the corresponding order of the
polynomial (in the given example of the third order polynomial there are at least three points). Note
that if more points are chosen than is the number of the dependent terms, the system of equations
will contain more equations as the number of unknown terms, but it will be not solved in the least
square sense, as the redundant equations are a combination of the others.

We get Eq. (6) in the form

pa(92)] 1=~ ()] 2
from which we have
{b} = - [M"'] [N){a}. (8)

The upper left index corresponds to the nodal point for determination of coefficients of the T-
polynomial displacement. With this, the T-polynomial displacement is

{u} = ([A(z:)] - [B(z:)] [M™'] [N]) {a} = [U(z:){a}. (9)
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Each column of the matrix U in Eq. (9) introduces a T-displacement function for each component
defined by corresponding row. The T-polynomial contains then one independent term of the polyno-
mial and the dependent terms, too. Note that in this way the matrix U contains polynomial terms
of both matrices A and B.

The points for numerical evaluation of Eq. (4) have to be conveniently spaced so that the ma-
trix M will not be singular or bad conditioned. We can conveniently choose the points lying on a
quadrant of a sphere in order to overwhelm such problem. Note that the number of T-polynomial
functions, which can be defined is (2n + 1) for 2D and (n + 1)? for 3D problems, with n being the
polynomial order (containing all the orders from 0 to n).

The Kelvin functions (fundamental solution for elasticity problems) are the basis for BEM and
are well known from extensive BEM literature (see also nice paper on its history [4]). Displacement
and boundary traction components in the point x corresponding to the unit point force acting in
the point y in direction of j-axis are

1
Uij(z,y) = T = e v (B — 4v) bij + rir 4] (10)
and
1 or
Tij(z,y) = “8r(l— v)r? [(1 = 20) 835 + 3rr ] 5 — (1= 20) (ramj — rm) ¢ (11)

respectively, for 3D problems. The first index, 4, corresponds to the displacement, or traction com-
ponent.
Similarly, for the plane strain problems,

1 :

Uij(z,y) = g (3 = 4v) 65 In(r) — ;7 j] (12)
and

Tii(z,y) = ! [(1 - 20) 6 + 2r .]@_(1 W) (rin; —rm;) (13

i (z,y) = Tl o ij 7T an V)TN —Fn i) 5 )
with r being the distance between the points x and y and
or T . :

14 35 0) = ?l with 7 = z;(y) — zi(z) (14)
and

or ring

— = = 15

on r Tt (15)

n is a unit vector in the outer normal direction to the surface S.

T-functions can be introduced by single forces acting in the continuum outside the domain
of interest (d.o.i.), or they can be modeled by distributed field of tractions (forces). If they are
presented by distributed forces p along some surface S (defined outside the d.o.i.), the resulting
field of T-displacements is given by

uj = / Ujipi dS. (16)
a8

In this case p denotes stress discontinuity along the surface S.
Similarly, the displacement field corresponding to a point dislocation [4, 17] in an unbounded 3D
space

1

Dijie = 8m(1 — v)r?

[(1 - 21/)((5;”'7“,1' - (Sij’l"yk - 5“(,’1")‘) 7 3’!“71'7‘"7’7"]“] (17)



Trefftz functions in FEM, BEM and meshless methods 421

can represent a T-displacement. Corresponding distribution of dislocations with the density vector d
along a surface S defines the displacement field

(TR / Dyjin;d; dS. (18)
JS

The density of dislocations is also known as the displacement discontinuity (along ).

Special T-functions are all solutions on some domain which satisfy the homogeneous equilibrium
inside the domain. Many analytical solutions are known from the theory of elasticity. Examples
can be the infinite 2D or 3D domain with a hole, loaded by pressure at the hole boundary, rigid
inclusions in an elastic continuum, continuum with a crack inside, or on the domain boundary,
etc. [1, 8]. If such functions enable to satisfy the boundary conditions not only at a point of the
domain boundary, but also in some vicinity of the point, they can increase accuracy of the solution,
and elements with holes, cracks, or some special forms can be defined as large elements without
necessity to use very fine meshes in such parts of the structure.

Very convenient Trefftz-type functions are Boussinesq and Cerruti functions [2, 3| which
give the displacements and stresses (and also corresponding tractions) for a half space or a half
plane subjected to the unit force acting on their surface.

The displacements and tractions for a 3D problem of a concentrated normal force, Py, acting at
the origin on the half space, 3 > 0, are given by

P [zax3 Ta .
g = —— -1-2v) —— tl =1,2,
s dmp [ r3 ( ) r(r+ac3)] : T
P3 .’132 2(1 = I/) (19)
T s ol o B et |
57 dmp |3 T i
P3 [3zq2373 23 0o ToZg (2r + z3)
o froedl BERMCECT IR WIG FREEE TR
Rt { rs o i = S widie- il e B T
P3 3z,12
Obe = —2—3 3—“”"5& with @, f8=1,2, (20)
& 9
P3 3.23
o33 = —% 75—— .
Similarly for the case of forces acting in tangential directions we have
> e Taks 0oy Ty .
) ey § L2 Y 4 (] 2 - , th a,y=1,2,
. 27r,u{ r i r3 +A 3. (r+xz3)%2  r(r+z3)? e Ny e
. e |
ST dpp | 3 r(r+z3)]’
by | 32200, (1-2v) [(Br4z3)zazgz, (2r+z3) .
Oug'= —% { =5 — 7"('!‘—}-.1'3)2 T2(T'+.’L’3) + ) x71‘3(505 = (.’Lj5i7+.’l:7;(5j7) :
Bo3nsa:
03a = —"2_7’: % ) with o,B8,7v=1,2, (22)
_ _Py 32,23
o33 = —-g ’,—5 .

All source type of T-functions can be chosen with the source points on the domain boundaries,
or outside the domain. If the source points is on the domain boundary and a discrete T-function
is used in the solution, then all displacement and stresses are singular at such a point and the
boundary conditions can simulate finite solution only in the sense of the Saint-Venant principle.
However, distributed source functions can simulate very accurately even the boundary conditions
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with discontinuities, as it is in contact problems [11]. On the other side, using the T-source functions
with the source point outside the domain simplifies the formulation. If a collocation of boundary
conditions is used, the formulation of models can be very simple (such as MFS), however, if the
source points are closer to the boundary then more collocation points are necessary for obtaining
required accuracy. If the points are too far from the boundary the resulting system of equations can
be ill-conditioned, which also results in the lost of accuracy.

3. HTD FEM

The basic formulation as defined by Jirousek [6] is obtained by first enforcing in a weak sense
conformity of internal displacements, u, and another independent field of displacements, 1, defined
on the element boundaries, S, only

St(u — @) dS =0, (23)
Se

where t are tractions corresponding to the displacements, u, and then, using a weak equilibrium
between tractions t and tractions t, prescribed on the domain boundaries as

Z/. fatds - 6ﬁ(t—€)d5:2/ fitdsS — ) satds =0, (24)
e e /5t B e e 5t :

The lower indices e, ¢,u and ¢ belong to element, inter-element boundary and to boundary with
prescribed displacement and tractions, respectively.

After discretisation of Eqs. (23) and (24) by replacing the boundary displacements, u, by their
nodal values and corresponding shape functions, N, along the element boundaries and approximat-
ing the internal displacement and tractions by corresponding T-functions U and T,

u = Uc
ti=TDe¢,

u+St

(25)

where ¢ denotes the vector of intensities of T-functions, we obtain the following system of equations
(for more details see [6, 7])

Z K.u.=b (26)
where
K. = GTH'G,

H =/ TTds,
s, (27)

G = / TTNdS.

The right side vector b represents the static equivalent nodal loads defined exactly so, as it is well
known from isoparametric FEM.

The second variant of the HTD FEM uses the second displacement field on the inter-element
boundaries, only (see [6, 7] for more details). Compatibility of internal tractions with prescribed
boundary tractions and compatibility of internal displacements with the displacements on inter-
element boundaries and on the boundaries with prescribed displacements, S, have to be satisfied
as

ety L dgat R o8 dS+/ O oL S (28)
J St . Si
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The equilibrium is expressed by compatibility of tractions with prescribed tractions on the do-
main boundaries (i.e. by the first term in Eq. (28)) and by additional inter-element weak form

/ satds = 0. (29)
B3

Following the same procedure as in the previous case, the stiffness matrix K, in the resulting
system of equations (26) and the matrix G are defined similarly as in Eq. (27), but

H= TUHS = T UYNe (30)
JSu+S; J'S¢
and the right side vector is
b =GTH '»,
(31)

b* = —/ T adS 4l %48,
56 St

Comparing both variants one can see that the second variant reduces the resulting system of
equations and contains the nodal points on the inter-element boundaries, only and also the right
side is modified according to this reduction.

4. RECIPROCITY BASED (RB) FEM

T-displacements, U, and T-tractions, T, are used as reciprocal states of the same body and are
related to the known and unknown boundary conditions in tractions, t, and displacements, u (as it
is known from BEM; the body forces are omitted for simplicity), by

/ TudS = | Utds. (32)
J Se S8

In this case we consider non-singular T-functions on the element boundary. For MD formulation
(FEM) the displacements are considered to be continuous on the sub-domain (element) boundaries
and tractions have to satisfy the weak inter-element equilibrium

> [ butds—o. (33)
e VS

After discretisation, Eqs. (32) and (33) can be written in the sub-matrix form as

Ti1 T =Uss w Uu? pP1
To1 T —-Up w, p=4¢ Uyt >»=¢ po (34)
B0 0 0

with unknown displacements u; at nodal points on boundaries with prescribed tractions, and dis-
placements u; and tractions t; on the inter-element boundaries. The matrix terms are integral
presentation of corresponding Eqs. (32) and (33). The first row corresponds to the points in the
domain boundaries and the second to the inter-domain boundaries. All displacements on the domain
boundaries and tractions on the inter-element boundaries can be eliminated on the element level
and resulting system of equations is obtained in the form

> MU ' Thu; = Y MU pj (35)
- e
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with
TZQ B T22 i T21T1_11T127
U§2 = Uyy — T21T1_11U127 ‘ (36)

P2 =P2- T21T1_11P1 :
Equation (35) can be written as
Ku; = b; (37)

where K is stiffness matrix obtained from the matrices of elements, u is the vector of nodal dis-
placements on inter-element boundaries, and b is the vector of equivalent nodal loads.

5. BMM/BPM AND ITS MD FORMULATION

A well known BMM is the Method of Fundamental Solutions (MFS). The fundamental solutions
with source points outside the domain are used as interpolators of boundary conditions as

HERE!

with T, U and ¢ T-tractions, T-displacements by fundamental solutions (10)—(11) and intensities of
the forces acting in infinite continuum outside of the investigated domain, respectively. t and @ are
prescribed boundary conditions (tractions and displacements) at collocation points. No integration
and no meshes are required. More general T-functions can be used in order to improve accuracy
and numerical stability of the system of equations in more general point collocation method, the
Boundary Point Method (BPM).

For more complicated problems and/or inhomogeneous materials the MD formulation can be
used. In order to obtain a convergent solution for general problem, the weak form of equilibrium (24)
is necessary also for a single domain formulation and the formulation is not totally meshless and
requires some integration, too.

The following system of equations is obtained,

Uy U -1, 0 c 0

T21 TQQ 0 —It Co - 0

T31 T32 0 0 u; = E ' (39)
0 0 0 Y,M t; 0

The matrices I are identity matrices and the index denotes the dimension corresponding to the vec-
tors of nodal displacements and tractions and ¢; are sub-vectors of the vector of unknown coefficients
of T-functions chosen so that the inverse matrices in Eq. (43) below will not be underdetermined.

The first row of this sub-matrix form equation expresses the intensities of the T-functions by
the displacements at discrete points of the whole sub-domain (at both the domain and at the inter-
domain boundaries with common points at the neighbor sub-domains). The second row expresses
the unknown intensities by tractions at discrete points of the inter-domain boundaries, only. The
third row gives the intensities by prescribed boundary conditions at the discrete points of the domain
boundaries. Only prescribed tractions are denoted for simplicity, but the prescribed displacements
can be included to this row, too. The fourth row of Eq. (39) has to be evaluated in the integral form

/' (t4 - tB)ds =o, (40)
Si

which is numerically computed as

Z/ tdSzZZtiwi:O, (41)
e Vi e b



Trefftz functions in FEM, BEM and meshless methods 425

if the nodal displacements are the Gaussian integration points on the inter-element boundaries. The
upper indices A and B correspond to neighbor elements. The nodes on the inter-domain boundaries
have to be Gauss integration points. The other way is to write

Z/ sutdsS = 0. (42)
e VSi

Instead of having tractions in the Gauss integration points at the inter-domain boundaries, there
are displacements at nodes on the inter-domain boundaries and the displacements u are expressed
by their nodal values and by corresponding shape functions, N, so as it is known from FEM and
BEM formulations.

Eliminating all unknowns except the displacements in the nodal points on the inter-domain
boundaries at the sub-domain level, the following system of equations is obtained,

DM (B T U U T T = T 5, ) U
e

= Z M (T, U7 Uy T3y — Ty T35) (43)
e
or
Ku; = b; (44)
where
52 = Ty — Ty, Uy Uy (45)

and the unknown T-intensities and tractions are given by
=1 g *—1 —1 2l ~1g
c; = (U + U U T3 ' Ty U ) w; - UR'U LT3R,
¢z = T3y ' (- Ty Upl'y,), (46)
t; = Taici+ Tascs.

The singular value decomposition plays an important role in the formulation when any inversion
matrix in then expressions above has more columns than rows. It enables to increase the accuracy
and has similar effect as the higher order integration schemes in the weak forms.

6. CONCLUSIONS AND REMARKS

Use of Trefftz functions for hybrid FEM, reciprocity based FEM and meshless method has been
shown for linear elastic problems. The Trefftz functions enable to obtain stiffness matrices by inte-
gration over the element boundaries only. The elements can be large also for complicated problem,
they can be even multiply connected. The Trefftz functions can be conveniently chosen so that the
integrals are non-singular and neither special computational models, nor high order quadratures are
necessary.

Special T-functions enable to increase the computational efficiency. Functions which model local
effects (holes, cracks) in infinite continuum are very convenient also for finite domains as the in-
terpolation or approximation functions. For example the Bussinesq—Cerruti functions can be used
to model local loads, or local contact; they can improve the local approximation of displacements
and tractions near crack tips, or corners. The asymptotic solutions of the infinite problems are good
candidates for this purpose.

The meshless methods using T-functions are very simple to obtain and are fully meshless and
integration-free, but problems with stability require using a multidomain formulation with a weak
inter-domain equilibrium definition. The formulation is then not fully meshless and boundary
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elements and numerical integration are necessary on the inter-domain boundaries and the meshless
form is kept on the domain boundaries only.

All, the second variant HTD FEM, RB FEM and MD BMM, lead to similar structure of resulting
matrix defined by boundary elements on the inter-domain boundaries, while the domain boundaries
and boundary conditions are treated in different ways.

Only basic displacement formulations of T-elements were presented here. Many other possibilities
were shown in the review on T-elements |7].

Important application of T-functions is in the post-processing phase by computing stresses from
displacements obtained e.g. by classical FEM. They enable increase the accuracy of stresses and to
obtain smoothed stresses over the mesh of elements [15].

The application of T-functions to non-linear problems [12] is also an interesting field and can
contribute to increased rate of convergence. As the equilibrium equations expressed in Cauchy
stress and deformed coordinates are same for small and large displacements, T-stress polynomials
are useful in post-processing from stresses in Gaussian integration points and boundary tractions,
which is one of challenges for the next research.
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