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This paper reviews a wave based prediction technique for steady-state acoustic analysis, which is being
developed at the K.U. Leuven Noise and Vibration Research group. The method is a deterministic tech-
nique based on an indirect Trefftz approach. Due to its enhanced convergence rate and computational
efficiency as compared to conventional element based methods, the practical frequency limitation of the
technique can be shifted towards the mid-frequency range. For systems of high geometrical complexity,
a hybrid coupling between wave based models and conventional finite element (FE) models is proposed in
order to combine the computational efficiency of the wave based method with the high flexibility of FE
with respect to geometrical complexity of the considered problem domain. The potential to comply with
the mid-frequency modelling challenge through the use of the wave based technique or its hybrid variant,
is illustrated for some three-dimensional acoustic validation cases.

1. INTRODUCTION

At present, the main deterministic numerical modelling techniques for steady-state acoustic anal-
ysis are based on element based techniques, such as the finite element method (FEM) [25] and
the boundary element method (BEM) [5]. These element based methods describe the dynamic re-
sponse variables with approximating shape functions, which are not exact solutions of the governing
dynamic equations. A major drawback of the methods is their restriction to low-frequency appli-
cations because of the excessive size and computational load of the resulting numerical models at
higher frequencies [8, 13]. A major advantage is that there are almost no modelling restrictions
regarding the geometric complexity of the considered problem. For high-frequency modelling, some
alternative, probabilistic techniques such as SEA have been developed [16]. However, there is still a
wide mid-frequency range, for which no adequate and mature prediction techniques are available at
the moment. In this mid-frequency range, the computational efforts of conventional element based
techniques become prohibitively large, while the basic assumptions of the probabilistic techniques
are not yet valid.

In recent years, a deterministic wave based method (WBM) has been developed at the KULeuven
- Noise and Vibration Research group for steady-state acoustic analysis [4]. The method is based
on an indirect Trefftz approach [24], in that the dynamic response variables are expanded in terms
of wave functions, which are exact solutions of the governing dynamic equations. In this way, the
unknown wave function contribution factors are merely determined by the boundary conditions.
This results in small numerical models, which exhibit an enhanced computational efficiency, as
compared to the element based methods [20, 21|, and, as a result, the WBM is able to tackle
problems at higher frequencies (i.e. in the mid-frequency range). A drawback of the WBM is that
the geometrical complexity of the considered problem should be moderate, in order to fully benefit
from the enhanced computational efficiency.

Hybrid FE-WB methods [9] try to combine the strengths of both the FEM and the WBM. The
total problem domain is partitioned into two types of subdomains, namely, large, geometrically
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simple subdomains and smaller, geometrically more complex subdomains. The former are modelled
with the WBM while for the latter subdomains, the FEM is applied. Expressing continuity conditions
along the resulting interfaces between the WB and FE models, yields a hybrid FE-WB model. This
hybrid model exhibits the fast convergence characteristics of the WBM and has no restrictions
regarding the complexity of the geometrical description of the considered problem [10, 11].

This paper illustrates the potential of both the WBM and the hybrid FE-WB method for some
three-dimensional (3D) acoustic validation cases. The WB and the hybrid prediction results are
compared with results obtained with the conventional FEM. No comparison is made with respect to
the BEM since, due to the densely populated, complex and frequency dependent system matrices,
the BEM can hardly compete with the FEM for solving interior acoustic problems. However, the
BEM does become an efficient alternative for tackling problems in unbounded domains, especially
when taking into account some recent developments which increase the computational efficiency of
the method, such as the fast multi-pole BEM [7, 23], the wave boundary elements [17] and the wave
number mdependent BEM |2, 3, 12].

2. THE WAVE BASED METHOD

This section outlines the basic concepts of the WBM for the analysis of a bounded, steady-state
acoustic problem and illustrates the performance of the method by means of a 3D acoustic cavity
analysis.

2.1. Acoustic problem definition

Consider a bounded acoustic cavity V', excited by an acoustic volume velocity point source q at
position rq. Pressure, normal velocity and normal impedance boundary conditions are imposed,
respectively, at {2, 2, and £2z. Assuming that the system is linear, the fluid is inviscid, and the
process is adiabatic, the steady-state acoustic pressure p(r) inside the domain is governed by the
inhomogeneous Helmholtz equation

V2p(r) + k*p(r) = —jpow §(r,1q) g (1)

(r)z
01~+8 2

acoustic wave number, w the angular frequency, ¢ the speed of sound, j = /=1, py the ambient
fluid density and ¢ a Dirac-delta function.
The acoustic boundary conditions are formulated as

with r the position vector {z,y,2}, V2= + the Laplacian operator, k = % the
P W c

e pressure boundary conditions
refy: Ry(p(r))=p(r)-—p=0 (2)
with p the applied pressure,
e normal velocity boundary conditions
ref,: Ry (p(r)) = Lu(p(r)) — 9, =0 (3)

with ©,, the applied normal velocity, £,() = —%91 () the normal velocity operator and z- the
derivative in the normal direction,

e and normal impedance boundary conditions

p(r)

refs: Ryp(r) = Lo(p(e) - B

=0 (4)

with Z, the applied normal impedance.
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2.2. Basic WBM concepts

It has been shown by Desmet [4] that the WB methodology converges towards the exact solution,
provided that the considered problem domains are convex. In case of non-convex problem domains,
partitioning into convex subdomains is required, yielding subdomain interfaces. At these interfaces,
continuity conditions are applied [18]. In the formulations described in this paper, the WB domains
are considered to be convex.

The steady-state acoustic pressure field p(r) in the bounded, convex acoustic cavity V is approx-
imated as a solution expansion

p(r) ~ p(r) = ipa Do(r) + Po(r) = B(r) pa+Py(r), TEV. (5)
a=1

Each function ®,(r) is an acoustic wave function, which exactly satisfies the homogeneous Helmholtz
equation

Dy, (z,y, 2) = c08(kza, T) CO8(Kyqa, y) €T Hxar s
Py(e (o4 2)) =< g (wsy,2)2 cos(kpa; ) e Ikyasy co8(kya; 2)5; (6)

Pz, 1, 2)= e 7" cos(kye,y) cos(kap2).
Since the only requirement for the wave number components in (6) is that

v 2 2 2
k.’%ar 1.4 k;ur g kgar = kazr:as i kyas 2.8 k?as = k:ca[, - = * kza,t - k27 (7)

yat
an infinite number of wave functions (6) can be defined for expansion (5). It is proposed to select
the following wave number components,
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with a1, ag, a3, a4, a5 and ag = 0,1,2,.... The dimensions L,, L, and L, represent the dimensions
of the (smallest) rectangular box, enclosing the convex problem domain V.

The wave function contributions p, in (5) are the unknowns and form the vector p,. The corre-
sponding wave functions (6) are collected in the row vector ®.

Pq(r) represents a particular solution resulting from the acoustic source term in (1), with source
strength ¢ and located at position (z,, ¥4, 2), and is chosen as

: jpwq eIk : ; ‘
Pq(r(z,y,2)) = zgw—q o with:. .7, = \/(:1: —2)2 +(y— yg)? +(2 = 20)2. 9)
q

With the use of the proposed pressure expansion (5), the Helmholtz equation (1) is always
exactly satisfied, irrespective of the values of the unknown wave function contributions p,. These
unknown wave function contributions are merely determined by the acoustic boundary conditions.
Since the boundary conditions are defined at an infinite number of boundary positions, while only
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finite sized prediction models are amenable to numerical implementation, the boundary conditions
are transformed into a weighted residual formulation

[ srapan+ [ pR@)de - [ L) Ry5) a2 =0. (10)
20 J 0y 2

Like in the Galerkin weighting procedure, the weighting function p is expanded in terms of the
same set of acoustic wave functions used in the field variable expansion (5). Substitution of the field
variable expansion (5) and the weighting function expansion into the weighted residual formulation
(10), yields a square matrix equation in the n, unknown wave function contributions

Ap,=b. (11)

2.3. Model properties

Degrees of freedom: In the WBM methodology, the degrees of freedom (dofs) are the unknown
wave function contribution factors pa .

Problem discretization & approzimation functions: Unlike the FEM (see Section 3.1), the construc-
tion of a WB model does not require a problem domain discretization into small elements. The
only requirement is a partitioning into convex subdomains. However, these convex subdomains
can be large and their sizes are independent of frequency, since the wave functions (6), which
are used to describe the dynamic response variables inside the subdomains, are exact solutions
of the governing dynamic equations. With increasing frequency, the number of wave functions is
increased.

Accuracy of secondary variables: For the WBM, there is no additional loss of accuracy for the
higher-order derived quantities (e.g. the acoustic velocity) compared to the primary response
variables (e.g. the acoustic pressure), because the derivatives of the wave functions are wave
functions with identical wavelengths as the primary wave functions.

System matriz properties: The WB system matrices are non-symmetric and fully populated with
complex frequency dependent coefficients.

Computational performance & applicability: The small model size of the WBM, together with the
high convergence rate, make it a computationally efficient method, which creates opportunities
to tackle problems also in the mid- and even high-frequency range [19]. A sufficient condition
regarding the problem domain geometry for the WBM to converge, is convexity of the considered
subdomains. This restricts application of the WBM to problems with a moderate geometrical
complexity. More complex geometries could be modelled, provided that many subdomains are
introduced. This would have a disadvantageous effect on the computational efficiency of the
method.

2.4. Numerical results

Figure 1 shows a car-like cavity. The air-filled cavity (c = 340 %, po = 1.225 rl;%) is surrounded with
concrete walls 2y, which are acoustically rigid. Inside the cavity, two loudspeakers are positioned.
The front loudspeaker is used to excite the system and is considered in the numerical models as
a normal velocity boundary excitation of 1%, applied on a small surface {2,, corresponding to the
loudspeaker membrane. The second loudspeaker is not activated and considered to be rigid in the
numerical models.

To compare the performances of the WBM and the FEM, several models of the considered
problem are solved. The FE models are solved with LMS/SYSNOISE Rev. 5.6. The WBM routines



A hybrid finite element — Trefftz approach 431

Fig. 1. Concrete car-like cavity, excited by two loudspeakers

are implemented in a C++ code. All calculations are performed on a HP-C3000 UNIX workstation
(400 MHz single processor, 2.5 Gb RAM memory, SPECint95 = 31.8, SPEC{p95 = 52.4).

Table 1 shows the FE model information for a pressure response calculation at 198 Hz. fg and fg
indicate the upper limits of the frequency ranges for which the FE mesh includes at least 6 and 10
linear elements per wavelength respectively. tskyline denotes the CPU time needed for solution of
the FE matrix equation using a direct Skyline solver, while tqumr denotes the CPU time for solution
with a QMR iterative solver. ¢ is the relative prediction error of the pressure amplitude in a response
point inside the cavity (z,y,2z) = (1m, 0.3m, 0.8 m).

g pprediction(Pa) = preference(Pa)
Preference (Pd)

(12)

The most detailed FE model (model 5) is used as reference. Table 2 shows the corresponding data
for the WB models. The computational load ¢ for the WB models includes both assembly time and
solution time of the system of equations, since the WB system matrices are frequency dependent,
while the computational loads tgkyline and tqumr include only the time for solving the FE matrix
system.

Table 1. FE model information at 198 Hz Table 2. WB model information at 198 Hz
f nodes | fs fio | tskyline | tQMR € i wave i convex t €
(Hz) | (Hz) (s) (s) | (%) functions | subdomains | (s) | (%)
1. 1886 145 87 0.8 61 1 666 L7 7| 27
2 3301 1931115 2.1 1.0 | 46 2 852 17 13 18
3| 10341 238 | 143 29 6 20 3 1116 17 26 7
4:1 25890 367 | 221 82 23 12 4 1674 17 80 2
9 HT2780 [ 5314 313 1900 210

The pressure convergence plots in Fig. 2 illustrate the enhanced computational efficiency of the
WBM in that it exhibits a higher convergence rate than the FEM.

Figure 3 compares the prediction results for the pressure frequency response function (FRF) in
the considered point, calculated with the FEM (Skyline solver)(top figure) and the WBM (bottom
figure), with the reference solution (dashed line). Both models involve a similar computational load
(i.e. 25 CPU seconds per frequency line). The figures indicate that the WBM, unlike the FEM,
does not suffer from substantial numerical dispersion [14], in that there is no (significant) shift
between the resonance frequencies of the reference solution and the WBM solution, even at higher
frequencies [22].
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Fig. 2. Pressure convergence plots at 198 Hz
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Fig. 3. Pressure FRF (amplitude): comparison of FE model 3 — Skyline solver (solid line, top figure) and
WB model 3 (solid line, bottom figure) with a reference solution — FE model 5 (dashed line)
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3. THE HYBRID FE-WB METHOD

A restriction for efficient application of the WBM for general acoustic problems, is the required
moderate complexity of the geometrical description of the considered acoustic problem domain. This
section discusses the development of a hybrid FE-WB method, which overcomes this shortcoming.
After a short description of the FEM basic concepts, the basic principles of the hybrid FE-WB
method are discussed. In conclusion, a validation example illustrates the potential of the novel
hybrid method.

3.1. The finite element method
3.1.1. Basic FEM concepts

In order to apply the FEM for the acoustic problem described in Section 2.1, the considered acoustic
cavity V' is subdivided into a number of non-overlapping finite elements = UZ;I Ve with
VIiOVI =0,Vi # j), as is shown in Fig. 4. Corresponding to each element, a number of n¢ nodes is
defined at some particular locations in the element. The total number of nodes in the discretization
is nq. The boundary £2¢ = 9V¢ of each element V¢ is composed of four non-overlapping parts
(B = 25U 02U 2% U 2¢), namely those parts, which are intersections of the element boundary
£2¢ with the problem boundary (Qﬁ =02°N10y, 25 = N°N 2y, 2% = N°(22), and the common
interface £2f between two adjacent elements.

v=Uv
o WA

Q= UQULUQ ’ 5
Q=QUa Ao

Quoua /

Fig. 4. A finite element discretization

Within each element V¢, the exact solution of the Helmholtz equation (1) is approximated by a
linear combination of n¢ simple (polynomial) element shape functions

p(r) = p(r) = S OpINEE),  reV,. (13)
a=1

Based on the element shape functions N¢, which are locally defined in one element Ve, some global
shape functions N, may be constructed, which are defined in the entire acoustic cavity V. In each
element V. to which node a belongs, the global shape function N, is identical to the corresponding
element shape function N¢, while it is zero in all other elements. In this way, a global pressure
expansion may be defined as

p) =~ p() = 3 pulNalt) =N() pro, e V. (14)
a=1

The contribution factors p, , stored in the element vector Pfe , are the unknown element dofs. In
general, the unknown dofs are nodal pressure values. The associated shape functions N, are stored
in the row vector N.

Assume that the global pressure expansion (14) satisfies a priori both the pressure boundary
conditions along {2, and the pressure continuity between two adjacent elements along their common
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interface 2f (conforming elements). The pressure approximation violates the governing Helmholtz
equation (1) within the acoustic cavity V, the normal velocity boundary condition along (2, , the
impedance boundary condition along {27 and the inter-element velocity continuity between two
adjacent elements on £27. The involved residuals on these relations are forced to zero in an integral
sense by application of a weighted residual formulation. Contributions of the enforcement of the
inter-element velocity continuity cancel out each other in this formulation, yielding the following
weighted residual expression,

W, (V2p + k*p(r) + jpow 6(r,rq) q) AV

JV

+ / Jpow W, Ry ([3) df? + / Jpow W, RZ(ﬁ) dik= 0, (15)
2 27

where W, represents a weighting function. A Galerkin approach is adopted in that the weighting
function W, is expanded in a linear combination of the same shape functions N, .

Substitution of expansion (14) in the weighted residual formulation (15) and application of
integration by parts, yields an FE model

Z o Pte = fa with  Za = —w?M, + jwCa + K, , f. = jw(q.— Vi), (16)

with M, , C, and K, the acoustic mass, damping and stiffness matrices. q and v, represent loading
vectors resulting from the acoustic point source ¢ and the prescribed normal velocity v,, . The vector
Pre is the solution vector, collecting all unknown dofs, being the nodal pressure values. The pressure
boundary conditions along {2, are taken into account by assigning the prescribed values directly to
the nodal dofs, such that these dofs are no longer unknowns of the FE model and can be condensed
out of the FE system matrix Z, .

3.1.2. Model properties

Degrees of freedom: The dofs in an FE model are the nodal values pge , usually representing nodal
pressures.

Problem discretization & approximation functions: The FEM requires a discretization of the prob-
lem domain into small elements. Within these elements, approximating shape functions are used
to describe the dynamic response variables. In order to yield prediction results with reasonable
accuracy, element sizes have to decrease with increasing frequency, because wavelengths shorten.

Accuracy of secondary variables: Due to the fact that the primary response variables in the FEM
are most commonly approximated with simple polynomial shape functions, the higher-order
derived quantities are less accurate than the primary ones.

System matriz properties: The system matrices in the FEM are large and sparsely populated with
real coefficients (unless complex model properties are introduced). They have a banded structure,
are symmetric and can be decomposed into frequency independent submatrices (16). All of these
properties allow computationally efficient storage and solution of the FE system of equations.

Computational performance & applicability: Because of the fine discretization of the FEM, the
method has almost no restrictions regarding the geometrical complexity of the considered prob-
lem. However, due to the very large models at higher frequencies, computational resources restrict
the use of the FEM to low-frequency applications.
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3.2. FE and WB model properties comparison

Sections 2.3 and 3.1.2 describe the different model properties of the WBM and the FEM. Table 3
summarizes the main characteristics of the different methods, regarding their computational per-
formance and general applicability.

The small model size of the WBM, together with the high convergence rate, make it a less
computationally demanding method than the FEM, which creates opportunities for the WBM to
tackle problems also in the mid- and even high-frequency range, while the FEM is restricted to
low-frequency applications. However, because of the fine discretization of the FEM, it has almost
no restrictions regarding the geometrical complexity of the considered problem, while the WBM
is restricted to problems with a moderate geometrical complexity because of the recommended
partitioning into large convex subdomains.

Table 3. Performance properties of different models (for acoustic analysis)

FEM WBM
matrix size large small
matrix building time low high
matrix system solution time | medium / high low
convergence rate medium high
applicable frequency range low low, mid, (high)
problem geometry complexity high moderate

3.3. The hybrid FE-WB method

The hybrid FE-WB method attempts to combine the strengths of both the FEM and the WBM,
namely the enhanced convergence properties of the WBM and the ability of the FEM to model any
geometry, without restrictions on geometrical complexity. Applied to a general acoustic problem,
large homogeneous acoustic domains are modelled with the WBM, while the geometrically more
complex regions are tackled with the FEM.

In the following sections, a direct coupling approach is described. The term direct relates to the
direct introduction of continuity conditions in both the FE and WB model along the common inter-
face 2p7. An alternative coupling approach is to apply an indirect coupling through the application
of auxiliary frames [9]. Figure 5 introduces the fundamental notations for a direct hybrid coupling.

Three different direct couplings are identified, mutually distinguished by the applied continuity
conditions:

e With a pressure-velocity coupling, the applied continuity conditions are formulated as
(Vr € 2q)
'Ufe(l') = _UW(r)a

Pw(r) = pre(r). E)

WB domain -~ FE domain
Q,
i - )
P —
J /

Fig. 5. A direct FE-WB coupling
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The interface 2y between the WB and the FE domain imposes a velocity boundary condition
on the FE domain and a pressure boundary condition on the WB domain. Extension of the
weighted residual formulations (10) and (15) with the continuity conditions (17), yields the
following matrix equation,

Za g‘gvV) { pfe } - fa + pE‘SVV) (18)
(e gy Wil o Lack i G- S Gt
with Qg’v") and Qiffv ) coupling matrices, with pg’vv) a loading vector resulting from an acoustic

point source ¢ located in the WB domain, and with Cgpv) and cgpv) WB back-coupling matrices.

e With an impedance coupling (equivalent velocity coupling), the applied continuity con-
ditions are formulated as follows (Vr € 2y),

Vte(r) — Pre(r)/Z = —vy(r) — pu(r)/Z,

= = (19)

'Uw(r) = pw(r)/Z e _'Ufe(r) B pfe(r)/Z7
with Z a coupling impedance value which can be chosen freely. Equations (19) are a linear
combination of Egs. (17). Previous research addressed the application of a similar impedance
coupling for the coupling of two WB domains [18]. It was shown that the particular selection of
the characteristic acoustic impedance Z = pyc yields good results.

{2 imposes an impedance boundary condition on both the FE and WB domain. The weighted
residual formulations of both the WB model and the FE model, (10) and (15) respectively, are
extended and yield the following matrix equation,

Za+jwCE™ QY { Pre }= fatpp (20)
05 BRRRAY WEN L e N 3 (B biey ™, [

with C?mp) an FE back-coupling matrix.

e With a mixed impedance-pressure coupling, the applied continuity conditions are formu-
lated as (Vr € 2p)

Ufe(r) I pfe(r)/Z = _Uw(r) o= pw(r)/z

(21)

Pw(r) = pre(r)
Equations (21) are also a linear combination of equations (17). £ imposes an impedance bound-
ary condition on the FE domain and a pressure boundary condition on the WB domain. The
weighted residual formulations of the FE and WB model are extended and yield a matrix equa-
tion similar to (20).

The advantage of the two impedance based coupling approaches (the impedance coupling and the
mixed impedance-pressure coupling) as compared to the pressure-velocity coupling, is the possibility
to artificially introduce damping in the system by the impedance coupling factor Z. [18] has shown
that artificial introduction of damping can increase the model convergence speed and has a beneficial
influence on the stability of the solution, particularly at frequencies corresponding to the resonance
frequencies of the bounding boxes applied in the WB wave number selection (8). However, the
impedance based coupling approaches require the calculation of an extra FE back-coupling matrix.

Efficient solution of the resulting matrix equations (18) and (20) is obtained through a three-step
solution procedure:
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L. First the FE dofs are eliminated from the system of equations by application of a sparse matrix
solver. For Eq. (18), this yields

[—QS&}V) HEY 1 A 4 CPY ] fpidns {b +c{PY) — QP PV>} (22)

where the auxiliary matrix H®Y) and the auxiliary vector h(P¥) are obtained by solving the
following sparse linear systems,

ZuHOY = QP and Z, V) = £, + pE". (23)
2. In a second step, the remaining, dense, but much smaller, matrix equation is solved with a dense
solver to obtain the wave function contribution factors.

3. After solution of the dense system, the FE dofs are retrieved by simple matrix multiplications
pte = —H®Y) p, + h(PY), (24)

Such a condensation approach is common for hybrid Trefftz methods |6, 15], where the dofs related
to the interior field description are eliminated and a smaller system, consisting of the applied
Lagrangian multipliers, is retained for solution.

3.4. Numerical results

Consider the interior acoustic cavity of a car, shown in Fig. 6. The air-filled (¢ = 340 2, po =

1.225 —%) cavity is surrounded by acoustically rigid panels. The system is excited by an acoustic
point source g with a power of 1 W, located at the right firewall panel.

The performances of the FEM and the hybrid FE-WB method are compared for this validation
case. Figure 6 shows the full car cavity as it is modelled with FE. The applied FE models consist
of 4-noded linear tetrahedral elements and the solution code is MSC/Nastran2004. Figure 7 shows
a hybrid model of the same car cavity. A large, geometrically simple, convex volume is now modelled
with a single WB domain, while the remaining fraction (11%) of the cavity, located near the firewall
panels, is modelled with FE. The hybrid FE-WB routines are implemented in a C+-+ code. To
compare the computational performance of both methods, all calculations are performed on the
same 3 GHz Intel Pentium 4 system, running a Linux operating system.

To illustrate that the interface continuity conditions are met, Fig. 8 shows the pressure amplitude
contour plot at 150 Hz, calculated with the direct pressure-velocity coupling. This figure illustrates
that the pressure field is continuous over the coupling interface 2. Furthermore, the rigid outer

Fig. 6. An interior car cavity Fig. 7. A hybrid FE-WB model
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Fig. 8. Contour plot of the pressure amplitude at 150 Hz, calculated with the direct pressure-velocity
coupling

panels are correctly taken into account, since the pressure contour lines are perpendicular to the
rigid panels.

In order to illustrate the enhanced convergence properties of the hybrid FE-WB method com-
pared to the FEM, and in order to compare the performance of the three different direct coupling
approaches, a pressure convergence analysis (12) is performed for a point near the centre of the
cavity. Tables 4 and 5 summarize the model information of the numerical models applied in the
convergence analysis. fg and fio indicate the upper limits of the frequency ranges for which the FE
mesh includes at least 6 and 10 linear elements per wavelength, respectively.

Table 4. FE model information at 300 Hz

element size [m] | f nodes | f elements | fo [Hz| | fio [Hz]
0.15 4850 24362 223 134
0.10 11147 58280 283 170
0.06 36929 202254 495 297
0.05 54789 303276 462 277
0.04 95558 534066 611 367
0.035 135098 762070 646 387
0.0275 252216 1440912 949 570
0.02 509817 2927228 1021 613

Table 5. Hybrid FE-WB model information at 300 Hz

FE element | f nodes | § elements | fg fio f wave
size |m] [Hz] | [Hz] | functions
0.15 591 2268 221717132 112
0.075 3399 16246 464 | 279 288
0.05 8056 40920 661 | 397 288
0.0275 31940 171740 962 | 577 586

Figures 9(a)-(d) compare the convergence rates of the FEM and the three direct hybrid ap-
proaches. All figures plot the relative prediction accuracy for the pressure amplitude of a single
point near the centre of the cavity at 300 Hz, with respect to the CPU time. The most detailed
FE model (element size = 0.02m, about 25 elements per wavelength at 300 Hz) is taken as refer-
ence model for the convergence analysis. Each figure plots the FE convergence curve (dashed line),
and the hybrid FE-WB convergence curves obtained with hybrid models of which the FE part has
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a fixed element size (cfr. the first column of Table 5) and of which the number of wave functions is
increased. The hybrid FE-WB curves have an elbow shape. The number of wave functions listed in
the last column of Table 5, denotes the number of wave functions at the hinge of the elbow. Note
that all the indicated CPU times for the frequency independent FE models include only the time
for solution of the system, while the CPU times for the frequency dependent hybrid models include
both the times for assembly and solution of the system of equations.

Element size = 0.075m

Element size = 0.15m
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Fig. 9. Pressure convergence curves at 300 Hz for hybrid models with different FE discretizations: FE element
size = (a) 0.15m, (b) 0.075m, (c) 0.05m, (d) 0.0275m (O: FEM, O: FE-WB pressure-velocity coupling,
A: FE-WB impedance coupling, x: FE-WB mixed impedance-pressure coupling)

These figures show that

e for a fixed FE discretization, with increasing number of wave functions, the accuracy of the
hybrid models stagnates because of the accuracy limit of the involved FE part,

e prediction results become more accurate when refining the FE part of the hybrid models,

e the convergence rate of the hybrid methods is higher than the convergence rate of the FE
methods, as long as the accuracy limit of the involved FE part is not reached,

e the pressure-velocity coupling and the mixed impedance-pressure coupling yield similar conver-
gence curves,
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e the impedance coupling has a similar convergence rate as the two other direct couplings, but
stagnates before the other couplings do,

e the choice of the coupling impedance value Z to be the characteristic acoustic impedance pyc,
yields good results for the mixed impedance-pressure coupling.

To illustrate the potential of the hybrid FE-WB methods for tackling mid-frequency applications,
Fig. 10(a) plots the FE (dashed lines) and hybrid mixed impedance-pressure (solid lines) convergence
curves for three frequencies (O : 50Hz, O : 100 Hz and A : 300 Hz). The hybrid mixed impedance-
pressure models have a fixed FE part with an FE element size of 0.0275m, while the number
of wave functions is increased. Table 6 summarizes the model information of the applied hybrid
models. NV denotes the relation between the physical wave number k£ and the maximum wave number
component kpyax occurring in the set of oscillating wave functions in the expansion (5),

kmaszk-=N%, (25)

ns50, n100 and ngep denote the total number of wave functions applied in expansion (5) at 50 Hz,
100 Hz and 300 Hz, respectively. Figure 10(b) is a zoom of Fig. 10(a).
These figures indicate that

e the hybrid mixed impedance-pressure approach has a significantly higher convergence rate than
the FEM,
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Fig. 10. Pressure convergence curves the FEM (dashed lines) and the hybrid mixed impedance-pressure
approach with a fixed FE discretization (FE element size = 0.0275m)(solid lines) at O: 50 Hz, O: 100 Hz
and A: 300 Hz

Table 6. Hybrid FE-WB model information (FE element size = 0.0275 m)

N | nso | m1oo | m300

it 32 [ 112
2| 32 66 | 288
3| 54| 112 | 586
4| 66| 166

6 | 112 | 288

8 | 166

12 | 288
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e with increasing frequency, the accuracy level of the FE predictions deteriorates, since the dashed
lines shift upwards with increasing frequency,

e with increasing frequency, the parameter N in Eq. (25) can decrease, while still yielding accurate
predictions. This behaviour illustrates the potential of the hybrid FE-WB method for tackling
problems in the mid- and high-frequency range. For the FEM, [14] and [1] have shown that
applying the rule of thumb of using a fixed number of elements per wavelength is only valid at
low frequencies and proposed application of the following rule at higher frequencies in order to
keep the prediction errors within acceptable limits

Cigf.1
F<siVim (26)

with h denoting the FE element size and L a characteristic dimension of the considered problem.

So, unlike with the FEM, where the model size has to increase more than linearly with frequency
in order to maintain reasonable prediction accuracy (26), the WB part in the hybrid models
prevents an excessive model size growth with the FE-WB method.

Figure 11 shows the pressure response spectrum for a point near the centre of the car cavity,
up to 250 Hz and compares prediction results calculated with the FEM (FE element size 0.075m)
(top figure, solid line) and with the hybrid FE-WB method (FE element size 0.075m) applying the
direct pressure-velocity coupling (bottom figure, solid line), with FE reference prediction results
(FE element size 0.04 m) (dashed line). This figure indicates that, in the low frequency range, both
methods yield the same prediction results.

In a higher frequency range (250 Hz 500 Hz), see Fig. 12, a shift in the resonance frequencies is
noticeable between the 0.075m FE predictions and the FE reference. This is due to the numerical
dispersion in the FE model [14]. Between the hybrid predictions and the FE reference model, the
shift is much smaller since, for the hybrid model, the WB part does not suffer from dispersion [22]
and the FE part, which does suffer from dispersion, is much smaller than with the pure FE model.
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Fig. 11. Pressure amplitude response spectrumn (Pa), dashed line: FE reference, solid line top figure: FEM
predictions, solid line bottom figure: hybrid predictions
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Figure 13 illustrates that, besides the reduced dispersion, the hybrid FE-WB model is also much
smaller than the corresponding FE model. The dotted line represents the model size of the FE
model with h = 0.075 applied for the prediction of the response functions in Figs. 11 and 12. The
solid line represents the total number of dofs of the hybrid FE-WB model with & = 0.075, which
consists of a constant number of FE dofs, i.e. 3399, and an increasing number of wave functions,
i.e. a minimum of 24 functions at 10 Hz and a maximum of 712 functions at 500 Hz.

4. CONCLUSIONS

This paper illustrates the applicability of both the WBM and the hybrid FE-WB method for interior
acoustic analysis.

In the first part of the paper, the enhanced convergence characteristics of the WBM are illustrated
by means of the acoustic analysis of a 3D cavity of moderate geometrical complexity.

A second part of the paper discusses the development of a hybrid FE-WB method. By combining
the high performance characteristics of the WBM and the ability of the FEM to model any problem,
regardless of its geometrical complexity, the hybrid method becomes an efficient, generally applicable
method. Mutually distinguished by the applied continuity conditions, three different direct hybrid
FE-WB methods are discussed and their performance is illustrated by means of the acoustic analysis
of an interior car cavity.
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