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in porous medium by Trefftz method
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This paper presents numerical solution to a problem of the transient flow of gas within a two-dimensional
porous medium. A method of fundamental solution for space variables and finite difference method for
time variable are employed to obtain a solution of the non-linear partial differential equation describing
the flow of gas. The inhomogeneous term is expressed by radial basis functions at each time steps. Picard
iteration is used for treating nonlinearity.
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NOMENCLATURE

® — porosity

W — viscosity [Pa s]

k - permeability [darcys, m2], related to hydrodynamic conductivity coefficient K|m/day]

by k = %K

— mass density of the fluid [kg/m3]

~ gravity acceleration [m/s?]

— pressure |Pa

- superficial fluid velocity [m/s]

~ temperature [K]
y - geometry variables |m]
b,c — geometry parameters [m)]

— time

- individual gas constant

— dimensionless time parameter
X,Y - dimensionless geometry variables
D,E - dimensionless geometry parameters
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1. INTRODUCTION

Trefftz method can be understood as a method in which a differential equation is satisfied exactly
whereas the boundary condition are satisfied in an approximate way. There are two basic ways of
choosing sets of functions that are satisfying the differential equation. The first one uses T-Herrera
function and the second one uses the fundamental solution of the differential equation. The version
of the Trefftz method with the second choice is known as the method of fundamental solution. For
the case of non-linear equations the set of functions that fulfils exactly this equation is usually
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unknown. Then the Trefftz method and, in frame of it, method of fundamental solution cannot be
used in a straight way for non-linear Boundary Value Problems (BVPs).

However, it does not mean that the Trefftz method cannot be used in any way for non-linear
BVPs. The first case when it can be used is BVPs with a linear equation but with non-linear
boundary conditions. Examples of such applications of this method are given in papers [5, 10]. The
second case known in the literature is BVP with non-linear Poisson equation in the form [1, 2, 4, 7, 8]

(1)

: ou  Ou
V2'u,=j<m,y,u, )

dz’ dy

where « is an unknown function, and f is a known function in which the same arguments are
unknown.

In the paper [4] the non-linear thermal explosions problem was solved by the method of funda-
mental solutions. The radial basis functions were used for interpolation of the right hand side and
Picard iteration method was used to tread non-linearity. In the paper [2] a method called “particular
solution Trefftz method” was used. Really it is an extension and improvement of ideas proposed in
the paper [4]. Another version of Trefftz method for solution of non-linear Poisson equation was
presented in the paper [1]. For the non-linear thermal conductivity problem by Kirchoff transfor-
mation the nonlinearity exists only in boundary conditions. The non-linear algebraic equation was
solved by the stabilized continuation method. Kita et al. [7] considered steady state heat conduction
problems for functionally gradient materials. For overcoming the difficulty with non-linear Poisson
equation they presented the combination scheme of the Trefftz method with the computing point
analysis method. Also steady state heat conduction problem with temperature dependent conduc-
tivity was considered in the paper [8]. Combination of the method of fundamental solutions with
Picard iteration was used for non-linear Poisson equation. Evolutionary algorithm was applied for
optimal determination of method parameters. More complicated application of Trefftz method was
presented in the paper [3] where the method of operator splitting with the method of fundamental
solution was used for transient non-linear Poisson problems. These problems are widely encountered
in modelling of many physical phenomena and the governing differential equation has the form

% = Vu + f(u) (2)
where ¢ is time.

The purpose of the present paper is application some kind of Trefftz method to a problem of the
transient flow of gas within a two-dimensional porous medium. Unsteady gas flow through semi-
infinite porous medium was considered in the paper [6]. In such a case the problem is described
by an ordinary differential equation. In the case of finite porous region the governing equation
for pressure of gas as unknown has a form similar to Eq. (2). In our proposition the method of
fundamental solution for space variables and the finite difference method for time variable are
employed to obtain a solution of the non-linear partial differential equation describing the flow
of gas. The inhomogeneous term is expressed by radial basis functions at each time step. Picard
iteration is used for treating nonlinearity.

2. PROBLEM DESCRIPTION

The considered region of porous medium with flowing fluid is presented in Fig. 1. The porous
medium is filled with gas under uniform pressure. The edges of considered reservoir are insulated,
except one piece of edge which is opened. Pressure outside the reservoir is lower than the pressure
in porous medium.

The reservoir is a rectangle with edges of lengths 2a and b. The open edge has length equal to 2c.
The geometry of the considered region is presented in Fig. 2.
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Fig. 1. The porous region with flowing fluid Fig. 2. The geometry of the considered region

To investigate gas flow in porous medium we introduce the following assumptions:

e The flow of gas follows the Darcy law;

The only phase flowing is a gas of constant composition and viscosity;

The gas is perfect and the gas flow is isothermal,

Permeability of the porous medium is constant and uniform;

Gravitational forces are neglected.

3. MOTION EQUATIONS

Darcy law is the filtration equation for fluid flow in porous media and in 2-D case it has the form

o .. k.0p
Qa:——;%,
e
Q?/—_/_jg,lj-

The continuity equation for porous media is

0 0 0
gz (Pe=) + 5 (pay) = =5 (0p).
The gas equation for isothermal phenomena is
o ol
T

and the temperature 7" is constant.
Applying Eq. (4) and Eq. (5) to Eq. (6) gives

e BN 0 (D kD _53_( -
0z \RT poz) " oy \RTpoy) ~ kot \YRT)"

Rearranging Eq. (7) yields the equation

0 (o), 0 () _nd
oz \P o Ay pay T ko ¥

(3)
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The region presented in Fig. 2 is considered. Because of the symmetry in the geometry, the half
of the original region is taken into account. The initial condition says that there is uniform pressure

in porous medium,

p(:L',y, t) =Po

fri2 g <cannid<y<h

The boundary condition at the open edge {(z,y) | (0 <z <¢)N(y =0b)} is

p(at,y,t) =p1 < Po

for 0 < t < o0.
For the other reservoir edges

{(z,y) | (0<z<a)N(y=0)U((c<z<a)n(y=0b)U((z
the insulated boundary condition is

Jp
b AT
on

a)N(0<y<b))}

and for {(z,y) | (z =0) N (0 <y < b)} the symmetry condition is applied

dp ..
%—0

for 0 < t < o0.
The dimensionless variables are introduced

sief s ohe gl Lp e g el g ool o gt Bl
a a a a Po Po

Therefore Eq. (8) has the dimensionless form

0 oP 0 oP oP
o= (P%) & (%‘) =%

and the initial condition is
P Y. =1

for 7'=10;:0:< X < HO<Y <F.
The boundary conditions are:

e the boundary condition for the open edge
BlX . Yos) =B 50
for+=10,0&< X D, y=1FE,
e and insulating and symmetry condition is

8P .
on
for the boundary

0

_ kpo

) v

(11)

(12)

(17)

{(X,Y) | (0<X<)N(Y=0)Uu((D<X<)N(Y=E)U((X=1)N(0<Y <E))}.
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4. ALGORITHM FOR SOLVING INITIAL-BOUNDARY PROBLEM

Assuming that the time derivative term can be expanded using finite difference

OP pn+l) _ p(n)

or AT (18)
forn=0,1,2,..., Eq. (14) can be approximated as
92 p(n+1) £ 92 p(n+1) - pn+1) _ p(n) s 1 opP™) # i opm) " (19)
X2 Y2 POAT"" " P 0X oY
with the initial condition
POX Y, 7)=1 (20)
for7=0,0< X <1,0<Y < E, and boundary conditions
Pt = pintD) o (21)
for0 < X < D,Y =FE, and
6P(n+1)
e 0 (22)

for the boundary

{(X, )] (0 < X <1}0(Y 20 (P X < Y (Y = E))
U((X=0NO0<Y<E))U(X=1)N(0<Y < E))},
where P(™) is dimensionless pressure at n-th time step, P("*1) is this pressure in the next time step.

For the first time step the dimension-less pressure P is uniform. Therefore Eq. (19) may be
treated as the Helmholtz equation,

pAp R

T e P E=XY) (23)
where P = P("+1) k2 = 1/(POAT), f(X,Y) = —1/(AT1).

The boundary conditions for Eq. (23) are

P=P <1 (24)
for0 <= Y ="FSand

oP

5;-—0 (25)

for the boundary
{(X,Y) | ((0<X <)Nn(¥=0))u((D<X <1)n (Y =E))
U((X=0NO<Y<E)U((X=1)N(0<Y < E))}.
The calculation of pressure in the next time steps is based also on Eq. (19). However, the

pressure distribution is not uniform any more (as the result from the first time step), the equation
is transformed into Poisson equation,

32P("+1) a?P(n+1) i 1 pm) 1 8P(n+1) 4 8P("+1) 2 e
9XZ T T 9YZ ~ Ar  P@DA; | P ) g e S
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with boundary conditions (24)-(25). The equation is strongly non-linear with respect to P"+1)
therefore, it is solved in an iterative fashion,

52 pn+Li+1) i 92 p(n+1,i+1) e pn)
0X?2 9Y2 ~ Ar  PO+L)AT
1 opnt1i) 2 opn+1,) 4
i P(n+1,i) X e Sy NGE (27)

with the boundary conditions (24), (25), where P("t14) is the i-th iteration result at (n+1)-th time
step. We introduce an initial condition for iterative procedure, e.g. trial equation in the Laplace
form, which is the modified version of Eq. (27),

aZP(TH-l,H-l) 82P(n+1,i+1)
£

X7 B 0
with trial boundary conditions
prtbl) — p <1 (29)
for0< X <D; Y =F and
opn+L)
 SlE AR :
o (30)

for the boundary
{(X,Y) | (0<X<1)N(Y=0)U((D<X<1)N(Y =E))
U(X =0)n (0 <Y <E)) U(X=1m{0 <Y < E)}.
One extra boundary condition is added,
pn+L1) — p(n) (31)

for {(X,Y)] (0 < X <1)N(Y =0)}, to combine the previous time step pressure distribution with
the solution at the next time step.

Equation (28) is solved by the fundamental solution method, including the appropriate boundary
conditions into calculation.

Solutions at the second and next iteration steps are found by the Trefftz method, based on
Eq. (27) with its boundary conditions. Therefore, in one time step we obtain the sequence of
solutions: P(m+1.1) pr+12)

The iterative process is terminated when the difference between solutions of two successive iter-
ation steps is quite small, less than a chosen small parameter. We introduce m, which points the

iteration step number, at which the solution is taken as the solution at n-th time step, denoted as
pntim) — p(n+l)

5. TREFFTZ METHOD TO SOLVE THE BOUNDARY PROBLEM
The partial differential inhomogeneous equation

Lu = f(z,y) (32)

is considered in the region Q. The operator L is a partial differential operator, which includes Laplace
operator.
The boundary condition has the general form

Bu=f{z, % (33)
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where B is an operator imposed as boundary conditions, such as Dirichlet, Neumann, and Robin.
Let us denote by {P; = (u,yi)}i[\il N collocations points in Q U 9Q of which {(z;, ;) {Vz’l are
interior points; {(z;, ?/i)}iN:N,+1 are boundary points.
The right-hand side function f is approximated with Radial Basis Functions (RBFs) as

l

N )
Nz, y) = aio(rs) + Y bepr(z,y) (34)

j=1 k=1

where r; = \/(z — 7;)> + (y — y;)2 and ¢(r;) : R* = RT is a RBF, {px},_, is the complete basis
for d-variate polynomials of degree < m — 1, and C;fb 4q1 1s the dimension of P, . The coefficients
{a;}, {br} can be found by solving the system

N !
> ajo(rii) + Y bipi(zi, i) = f(zi,3:), for. T €5 <N, (35)
g=1 k=1

!
Zajpk(ﬂﬂj,yj) =0 for 1<k<I, (36)
=i

where 7j; = \/(zi — ;)% + (yi — v;)?, {(rni,yi)}ﬁ:l are the collocation points on £ U 99).
The approximate particular solution u;, can be obtained using the coefficients {a;} and {b;} by

N !
up =Y aj d(rj,rs) + Y b i(z,y) @)
i=1 k=1
where
Ly =, (38)
Lpk = py . 39)

The solution of differential equation (32) can be given now as
U=1Up+0 (40)
where v is the solution of boundary value problem in the form
Lv=0 in £, (41)
Bv'= g(z,y) — Bu, on 0N2. (42)

The method of fundamental solution is used to solve the problem presented above, which means
that

N

v(z,y) = Y ¢ fs(ry) (43)

i=]

where fg(r;) is the fundamental solution function. Putting Eq. (43) into the boundary condi-
tion (42),

N
> ¢; B fs(rji) = 9(xi, i) — Bup(zi, )~ for 1<i< N, (44)
i=1

coefficients ¢; are obtained. The solution of the boundary problem (32) and (33) is calculated by
Eq. (40).
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5.1. Numerical implementation

For Helmholtz equation, the differential operator is
L =gyt (45)

where V is the Laplace operator and k is constant real number.

The inhomogeneous boundary problem (32) with the operator (45) is solved by numerical im-
plementation of the solution given by Eqs. (37), (43) and (40). The function f is approximated as
is presented in Eq. (34). The radial basis functions are [9]:

Case I

o) ={ st 720 19
Case II

il {84 Inr igi : ; 0 (47)
Case III

o0 ={ o1ar tor 120 ()
Case IV

o0 ={ e 1 o ()
Case V

o) ={ P 750 2

The solutions of the problem (39) with the right-hand side function given by Eqs. (46), (47),
(48), (49) and (50) are, respectively,

Case I
: r2inry 4
—gt (Kolkr) +1nr) — T3+ — for >0
o) = | 7 Falbr) +1nr) — 582 - g e
%(W+ln§)_% for r=0
Case II
d(r) = + 85 (Co(hry olnny = B0 (lppd) 2 80 =20 for £ >0 (52)
%('Y"FIn%)_Z_g R
Case III
_2;1':2& (Ko(kr) +Inr) — iklzfﬂ <5T74§ i 3222 +7"4)
i @) - for r>0 (53)

2 (y+mk) - 234 =y
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Case IV
[ 2 3 2 4
_14k71406 (Ko(kr) + lnr) — £ kl;xr (36/?('64 n 2324417« i Gﬁ.’z . ,,.6)
2 002 2 &
o(r) = e (33,?436 + —13231’" + 7"4) 30/51200 for r>0 (54)
147456 307200 SR
e - (7+ln ) =551 for =0
Case V
. 147;15600 (Ko(kT) +1In ,,.)
2 A 6
o kl;lr (3683300 n 2301(30, i 64091 n 100r i r8)
p(r) = r2 (4730880 | 180480r> | 2880r 33669120 (55)
_F( =+ d + T2 + 20r ) ——km_ for »>0

14745600 (y+1Ink ) = 336}?9129 for ¥ =10

where Ky (r) is the Bessel function of the second kind.
The fundamental solution for Helmholtz equation with the operator (45) is the Bessel function,
therefore:

fs(r) = Ko (kr) (56)

The solution of the Poisson inhomogeneous equation is presented in [11]. However, main parts are
included in this paper for reader’s convenience.
In the Poisson equation the differential operator is the Laplace operator

L ¥, (57)
The radial basis function are:

Case I

p(r)=1+r _ (58)
Case II

o0 ={ Vo o 130 (59)
Case III '

p(r) = V2 +C? (60)

Case IV

p(r) =r’+1 (51)
Case V
0 for > a
p(r) = { (1 %) (1 A 4’) for 0<r<a ($2)

where C'is a parameter.
Appropriate solutions of Poisson equation with given above radial basis function are:

Case I

,,.2 ,,,3
o) ="+ (63)
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Case 11
rilnr 7t
i oY 1 64
o) = 27 - (64
Case II1
C?In (C’-\/r2 +C?% + 02) (r2 +4C?) V72 ¥ C?
Br) = - ‘ + &
3 9
Case IV
ph B
#r) = =~ 5 (66)
Case V
%4_%111 %) for r>a
P(r) = @ g ATk 58 576 47 1)
s e s by dof US¥FS ¢
The fundamental solution for Poisson equation is the function
fs(r) = In(r). (68)

6. NUMERICAL EXAMPLE

The example solved by the combination of the methods described above is presented. For first time
step, AT = 1.3333, the Helmholtz equation (23) with the boundary conditions (24)-(25) is solved
using algorithm presented in the previous section. The right-hand side function is interpolated by
RBF given by Eq. (46). For the solution of Eq. (39), the function (51) is applied. Moreover, to find
the function described by Eqs. (43) and (44), the fundamental solution (56) is used.

Figure 3 shows the relative error of the right-hand side function interpolated by RBF. Error of
the order 2 - 107° points a very good approximation of the right-hand side function.

Fig. 3. Error of the approximation of the right-hand side function in the first time step

Pressure distribution in the first time step is presented in Fig. 4. The pressure is within the range
(0.5,0.75) (Fig. 4a), which confirms the outflow of gas. Moreover, the isobars shown in Fig. 4b, have
the exponential function shape.

The next two time steps results are shown in Fig. 5 and 6 — the gas flows out from the reservoir.

The pressure distribution at the next time step is shown in Fig. 7a. Values of pressure inside
the considered region are very close to the value of pressure at the open edge. However, the isobars
close to this open edge are exponential function like (see Fig. 7b), as it is expected.
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a) b)

Fig. 4. Pressure field at the first time step: a) pressure, b) isobars

o 0.z 0.4 0.6

Fig. 7. The solution at the fourth time step; a) pressure distribution, b) isobars
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7. CONCLUSIONS

In our paper, the Trefftz method is used to solve time dependent phenomena. The finite difference
method is implemented to approximate differential equations with respect to the time parame-
ter. The technique for obtaining solution of an inhomogeneous Helmholtz equation is applied. The
inhomogeneous nonlinear Poisson equation given in an implicit form is solved using the iterative
technique. To find the solution of the one-iteration-step equation, the Trefftz method for the inho-
mogeneous Poisson equation has been implemented. The obtained result shows gas outflow from
the reservoir which is a porous medium.
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