Computer Assisted Mechanics and Engineering Sciences, 13: 457-471, 2006.
Copyright © 2006 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Contact analysis using Trefftz and interface finite elements

Ke Y. Wang, Manicka Dhanasekar
Centre for Railway Engineering, Central Queensland University, QLD 4702, Australia

Qing H. Qin
Department of Engineering, Australian National University, ACT0200, Australia

Yi L. Kang

Department of Mechanics
Tiangin University, 300072, PR China

(Received March 17, 2006)

Hybrid-Trefftz (HT) finite element (FE) analysis of two-dimensional elastic contact problems is addressed
with the aid of interface elements and an interfacial constitutive relation. This paper presents the formula-
tion of a four-noded HT finite element for discretizing the contacting bodies and a four-noded interface ele-
ment that could be embedded in the prospective contact zone for simulating the interaction behaviour. Due
to the superior performance, the Simpson-type Newton-Cotes integration scheme is utilized to compute
interface element formulation numerically. In order to evaluate the applicability of the present approach
two benchmark examples are investigated in detail. Comparisons have been made between the results by
the present approach and analytical as well as traditional FE solutions using ABAQUS software.

1. INTRODUCTION

Contact problems have attracted much attention due to their inherent complexity and frequent oc-
currence in engineering practice. A variety of numerical approaches for calculating contact zones, and
dividing them into stick and slip subzones, as well as determining the contact stresses, are available
in the literature. Amongst these approaches the interface element (IE) methodology, due to its ease
of numerical implementation, has been investigated by many researchers. Goodman et al. [5] pre-
sented the pioneering work on such an element for evaluating the behaviour of jointed rock mass.
However, the kinematic inconsistency associated with this element usually has resulted in spuri-
ous oscillations of tangential traction. To circumvent this difficulty, the Newton-Cotes integration
scheme was used by several authors instead of the widely adopted Gaussian quadrature [2, 16, 24].
Day and Potts [2] argued that the reduced Gauss integration used by Gens et al. [4] could not
avoid the oscillation of the traction profile. Lei [16] illustrated the performance of Newton—Cotes
integration scheme through two examples of a smooth footing on elastic sub-soil and a pull-out
problem. Schellekens and De Borst [24] specially discussed this integration scheme and provided
an explanation for some numerical results. They pointed out that, for either linear or quadratic
interface elements, the aforementioned oscillations can not be recovered in the case of high gradi-
ent tractions. Therefore, other types [7, 14] of interface element were subsequently proposed in the
literature. Herrmann [7] assumed each pair of matching nodes has been linked through fictitious
springs - one normal and the other tangential to the interface. Although such treatment overcomes
the disadvantage occurring in Goodman-type element, the uncoupling between links does not accord
totally with the practice and often leads to unreliable normal response. In the light of this, Kali-
akin and Li [14] have developed an improved type of element which possesses the normal response
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characteristics of the Goodman element, and eliminates the kinematic deficiencies by employing
tangential response similar to the Herrmann element [7].

As a promising technique for the numerical solution of a variety of problems encountered in
engineering, HT FE approach assimilates the merits of the conventional FE and boundary element
(BE) methods and, moreover, discards some of their drawbacks [19]: Firstly, the element formulation
calls for integration along the element boundaries only, and secondly, some problems with singular
or local effects can be treated easily if exact local solution functions are available. A general purpose
HT FE formulation was first developed by Jirousek and Leon [10] who studied the effect of mesh
distortion on thin plate elements. Since then, the HT element concept has become increasingly
popular, attracting a growing number of researchers into this field [19]. So far, HT elements have
been successfully applied to numerous problems such as elasticity [12, 13|, elastoplasticity [3, 23],
plates [9, 18], transient heat conduction analysis [11] and piezoelectric materials [20, 21]. According
to authors’ knowledge, there are only a few papers [8, 27] reporting application of HT FE technique
to contact problems in the literature. Hochard [8] dealt with frictionless contact between an elastic
domain and a rigid support by transforming the equations of contact to a problem of minimization
under linear constraints. Recently, Wang et al. [27] developed a HT FE interface model for contact
problems with the aid of direct constraint approach.

The purpose of this paper is to develop a HT FE model and apply it to elastic contact problems
with the help of Kaliakin-Li (KL) interface elements [14]. In the model, a 4-node HT element has
been formulated and applied for discretizing both contacting bodies; 4-node KL elements have been
embedded for simulating the potential contact zone. To assess the reliability of the KL elements
for predicting the contact behaviour, an interfacial constitutive relation, namely penalised normal
contact and tangential friction law, has been adopted. In addition, the Simpson-type Newton-Cotes
integration scheme [6] is recommended to evaluate the formulation of the KL element in this analysis.
Two benchmark examples have been presented to illustrate the applicability of the overall model
to contact problems. Good agreements have been achieved between the results from the present
approach and analytical as well as the conventional FE solutions obtained from ABAQUS software.

This paper illustrates how to construct the contact model via ABAQUS user element subroutine
UEL. Applications show that this approach can save more time on UEL than on programming
the whole in-house FE code. Therefore, it may be a promising way to the analysis of practical
engineering problems.

2. HYBRID TREFFTZ AND INTERFACE ELEMENT MODEL
2.1. HT element formulation

Figure 1 shows two linear elastic bodies £2* Yand 278 in closer contact. The boundary I'® of each body
2% (a = A, B) consists of three disjointed portions I'{'= I and I'. I'Y and I'Y* are prescribed
displacement and traction boundaries respectively, I'{* represents the prospective contact surface
of each body which should be assumed large enough to contain the actual contact surface after
deformation. The basic equations of HT FE model in the global Cartesian coordinates X; (i = 1, 2)

are summarized as follows,

0ijj+bi=0 in, 25105 (1a)
0ij = Djjriex

eij = CijkiOki in RAUNB, (1b)
€ij =g {1+ 55)

Ui =% o FRCRS. (1c)
G e te e AW (1d)

Ujq = Usp on Ty (le)
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Fig. 1. Graphic representation of contact problem

tia +tip =0 on I'yN Iy, (1f)

Equations (la-d) are the fundamental relations of conventional FEM, while Eqgs. (1e-f) are addi-
tional inter-element continuity requirements for HT FEM. o4 and ¢;; are respectively the stress and
strain tensors, Djjr and Cjjx; — the stiffness and compliance coefficient tensors, u; , ¢; and b; denote
respectively displacements, tractions and body forces and overhead bar stands for prescribed value,
nj stand for direction cosines of the outward normal at a given point on the boundary, subscripts
“a” and “b” represent any two adjacent elements.

To establish the formulation for a particular HT element “e”, two groups of distinct displacement
fields [13] (see Fig. 2):

(i) a nonconforming intra-element displacement field (Trefftz field)

™m
u, = 0, + Z Nejcej = U + Nece in {2, (2a)
Jj=1

(ii) an exactly and minimally conforming auxiliary frame field
Hg=Nady onial; (2b)

are assumed on the basis of the Trefftz method. Where u, and N, are, respectively, the particular
and homogeneous solutions (so-called Trefftz functions) to Eq. (1a), ¢, is a vector of unknown
parameters, m is the number of Trefftz solutions, N, are the shape functions (frame functions)
defined in the customary way, the tilde appearing in Eq. (2b) indicates that the frame field is
defined on the element boundary only.

A complete system of Trefftz functions N, may be generated with the aid of Muskhelishvili’s of
complex variable formulation. The results presented in [13] are listed in Appendix A. It is important
to determine the optimal value of mwith respect to accuracy and computational effort in HT FE
analysis. Wang et al. [27] stated that the choice of m = 9 can produce robust 4-node plane HT
element so that
1 [(k=1)z vy —x —2KzY (k —2)x2 — (K + 2)y?

NemNeloW) =36 | (s-1y &y (x4 22— (x— 207 25y

2ty y?—z? (3-3K)rly+ (k+3)y° (k—3)2® — (3K + 3)ay?

3
2 —y? 27y (k+3)z® - 3k —3)zy? (3k + 3)xly — (k — 3)y? 3)
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Fig. 2. Four-noded HT element

where G = E/(2 + 2v), k = 3 — 4v for plane stress whereas k = (3 — 7v)/(1 — v) for plane strain,
E and v are respectively Young’s modulus and Poisson’s ratio and (z,y) is the local Cartesian
coordinate system which originates at the element centroid

4
r=X-Xo=X-1Y X,
=1

4 (4)
y=Y-Yy=Y -1y,
=1

where Xy, Yy and X;, Y; are, respectively, the global Cartesian coordinates of centroid and nodes
of the element. In HT FE implementation, additionally, a so-called Trefftz dimensionless coordinate

system (&, 1),
g g 5
5 =5 le ) "7 le ) (a)

together with

4
1 % 2
le:z;\/fLi+?/i7 (6)
=

has to be used to ensure a good numerical conditioning of the element flexibility matrix H, defined
below. Where [, denotes the average distance between the element nodes and its centroid (termed
element characteristic length). In practice, replacing z and y in Eq.(3) by ¢ and 7 and extracting [,
produces

N = Ne(z,y) = Ne(&,n) Le (le) (7)

where L. (l.) is a diagonal matrix with respect to the element characteristic length; for m = 9,
L.(l.) :dia,g(le Lo lo 21245 B 2 lz)
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According to the concept of isoparametric element, N, is given as

N_N10N20N30N49 ®)
stk 0 Nl olNae IV 10 0ol 2
for 4-node HT element. Here, N;(¢,7) = 1 Q! +E&) (1 +m;) (6 =1,2,3 ,4), (€,7) stands for isopara-

metric coordinate system for the frame. Altcmatlve form of N, which is equivalent to Eq. (8) is
used by Qin [19].

For numerical computations, it is convenient to rewrite N,(&, 7) in terms of ¢ and 7 by a simple
relation [26]

4

2 X i~,~Xi SE e
é X (&) E=f =Xk
e % el e = it v % (9)
h Y = LMY, in s -
i=1
and then
Ne = Ne(£,7) = Ne(z,9) = No(&,7) (10)
The corresponding traction field t. can be derived from Eqgs. (1b,d) and (2a) such that
m
=Ee+ZchCj =Ee+Qece (11)
j=1

where Q. = ADLN,, in which A, D and L are transformation, constitutive and differential operator
matrices, respectively [19].
According to the modified variational principles presented by Qin [22]

HmZane = Z [He— /rt(ti—t_,-)ﬂ.idl”— /Pltiaidf], (12a)
e R s e

<

Wiy, =T [\I/ S / (u; — @) t; dI" — / it dF] , (12b)
i3 e Jleu Jler
where II, and ¥, are, respectively, the minimum potential and complementary functionals, I', =
Tey UTet Uler, while I'eyy = I'yN T, I'ey = Iy N T, and Iy is the inter-element boundary of
element “e”

Taking the vanishing variation of Eq. (12a) or (12b) we can readily obtain the customary force-
displacement relationship, i.e. the element stiffness equation as

K.d. =P, (13)
where

Ky =Gl H;'G;, (14a)

P, =GIH 'h.+g.. (14b)

The derivation of the element stiffness equation from Eq. (12a) and the expressions for auxiliary
matrices He, G, h, and g, can be found in [22].

By using Egs. (7) and (10) and making some manipulation, we obtain the following expressions
of K, and P,,

Kc = K(’(’I;ay) o3 Ke(é‘?n)a (154)
P, = Pe("l'.ay) =% Pe(fﬂ?)- (151))

It is obviously noted that K, and P, remain truly unchanged in their magnitude from the local
Cartesian coordinate system to the Trefftz dimensionless one. Therefore, we can use the right hand
side of Egs. (15a,b) to evaluate the HT element stiffness equation directly.
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2.2. KL interface element formulation

KL interface element not only possesses the normal response characteristics of Goodman-type el-
ement but also eliminates the kinematic inconsistencies of the tangential response by employing
the logic of Herrmann-type element [14]. Since our paper focuses on the application of HT and KL
elements through UEL to contact problems rather than on KL interface element itself, the formu-
lation of KL element is briefly reviewed. A representative 4-node KL interface element is depicted
in Fig. 3. Such element possesses zero thickness before deformation.

n

Fig. 3. Four-noded KL interface element

In order to derive the element formulation KL element 1-2-3-4 (denoted by (1)) is decomposed
into two sub elements 1-5-3-6 (denoted by 2)) and 5-2-6-4 (denoted by (®)) i in Fig. 3. Adopting the
idea of Goodman et al. [5], the relative displacement vector, W = { 4, 1, }’, at any generic point
of interface with respect to the local system (7,n) may be defined as

~ tOP bot
. Wy —u o
we{ o = T } -
where
P R Y SR W L L (17a)
0 ma 0 mo
alc = {U’IT Ulp U2r U2n U3r U3p Udr Udn }T (171))

in which my = %(1 —C(),mg = %(1 + (), the superscript " stands for variables of the interface.
Accordingly, the traction vector, & = { 6, 6y, }T, is readily expressed as

& = Dw = D&d/, (18)

where D = diag( k; k, ) is the interfacial constitutive matrix, k; and k, are, respectively, the
tangential and normal penalty stiffness parameters of the interface.

By using the virtual work principle, the stiffness equation of the Goodman-type element in the
local system is defined as

& (e e (19)
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together with

: W S p
ke 5/ D& dc, (20a)
J—1
T T e
P, == P od 201
¢« =3 ./_1 & d, (20h)
*d! = from Eq. (17b). (20c)

It is worth noting that the integrals appearing in above equation are performed by the Simpson-
type of the Newton-Cotes integration scheme [6]. Next, using standard assembly procedure the
stiffness equations of elements (2) and @) can be combined into a form

*kYrl Kk 31 kxpP/
G - (21)
where
*% 3/ A ¢
de = { Ulr Ulp U2r U2n U3r U3n U4r U4p Usr Usy Usr Uey } . (22)

Equation (21) can also be written in terms of submatrices as

Krr IA<rc ar - Pr ¢
{Kcr chjl{&c}_{pc} (23)

where subscript ¢ stands for variables associated with nodes 5 and 6 whilst » with nodes 1, 2, 3
and 4. A
The solution of the second submatrix equation of Eq. (23) for d. yields

d. =K} (Pc - K”&'") : (24)
Substituting Eq. (24) into the first submatrix equation of Eq. (23) to eliminate d. leads to

K d =P, (25)
where

K. =K, - K. KIRT, (26a)

T A R ik o (26h)

The elimination process from Eq. (23) to Eq. (25) is completed by static condensation [28]. Here,
K'e and 15; are, respectively, the equivalent stiffness matrix and nodal force vector of KL interface
element.

For solution purpose, the KL element stiffness equation (25) must be transformed into the form
in the global Cartesian coordinate system (X,Y’) so that

K, =P, (27)
together with

K. = R K'.R*, (28a)

P feREgE. (28)

de = {wix wy upx upy usx usy usx Usy ) (28¢)
in which

R* =diag[RRRR]  with R:{ PEL.. Sad } (29)

—sinf cosf
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2.3. Interface model and numerical implementation

Figure 4 shows a contact interface model, where a prospective contact zone 2¢ may be bounded by
the boundaries ', I'B | I'j and Iy . 4-node KL interface elements are embedded in the prospective
contact zone for simulating the behaviour of interaction.

————————

P2

H : A
QC : FB \ 4
| n
KL IE-mes ¢ /
I h\\ ok E v
1
1

Yi 5 HT FE-mesh

—> 5 i
) B

Fig. 4. Two HT element subdomains in contact with KL elements

In order to evaluate contact non-linearity, an appropriately interfacial constitutive relation,
namely normal and tangential stress-relative displacement curves, is established for the KL ele-
ment (see Fig. 5). In accordance with Fig. 4, the corresponding stresses o, , 0y, in Eq. (18) can be
rewritten as follows,

* = if w, >0 separation
T {kn'wn otherwise contact (30a)
0 if 4, >0 separation
o, = { krwr if w, <0 and |w,| < —/x,%f'wn stick (30b)
—pkywy,  if w, <0 and |wy| > —uﬁ—":wn slip
(2 o (v g
— pk,w, -
K, 2kt
K % W, 1
0 T — 0 i | —
1 w, ‘\A W,
" T
pk,w,

Fig. 5. Schematic representation of interfacial constitutive relation; (a) normal direction, (b) tangential
direction

For clarity, the algorithm is described as follows:

Step 1: Assume all integration points of current KL element are in stick status
and set k, and k;
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Step 2: Check for wy, and w, for every integration point of current KL element
and determine what status occurs

IF w,, > 0 (separation) THEN
Set kn = k; =0, compute 0, = 0; =0
ELSE
Compute o, = k,w,, .
IF |w,| < —pf2w, (stick) THEN
Keep k;, and k, unchanged, compute o, = k,w,
ELSE (slip)
Keep k;, unchanged and set k, = 0, compute o, = —kpwy,
END IF
END IF

Step 3: Output the contact pressures and shear stresses.

It is clear from Eq. (30b) that the classical Coulomb friction law is considered for tangential
behaviour of the interface. In addition, special attention must be paid to the choice of the opti-
mum values of penalty parameters k; , k;, . Excessively high values tend to provide ill-conditioned
numerical problem whilst too small values could not prevent the penetration between the two con-
tacting bodies. Although automatic calculations of the penalty parameters have been reported in
the literature [1, 17|, these approaches have some limitations, such as not taking into account of
the separation mode or frictional effects across the interface in the analysis. Therefore, in the next
section a parametric study on k; , k, will be carried out in detail through numerical examples.

The HT FE-interface model for contact problems has been implemented in ABAQUS via user
element subroutine (UEL) including both HT and KL elements. The iterations for calculating the
stresses of Eqs. (30a,b) at the interface are completed within the UEL.

3. NUMERICAL EXAMPLES

In order to assess the HT FE-interface contact model developed in this paper, two benchmark
examples were considered. The assumption of plane strain condition was made in the subsequent
analyses. It should be noted that all results obtained from ABAQUS are based on the contact
property options: “hard” contact pressure-overclosure and penalty friction formulation.

Example 1. A block resting on a substratum

As shown in Fig. 6, a block is pressed on a substratum with the pressure of ¢ = 100 MPa on its top
surface. The geometry and boundary conditions are also shown in the figure. Material properties
of both bodies are the same with Young’s moduli E4 = EB = 2000 MPa and Poisson’s ratios
vA =B =0.3.

Three different meshes used in the analyses are illustrated in Fig. 7. Fine mesh was uniformly
used in the vicinity of singularity point P and potential stick-slip boundary. Table 1 shows the
mesh properties, the CPU time and convergence of displacements and shear stress at point . Since
the interface penalty stiffnesses k; and £, play a significant role in the numerical analysis, their
influence on the contact behaviour was first examined.

Figure 8 shows the penetrations of the KL elements along the interface for a wide range of the ratio

of normal stiffness to Young’s modulus ( Ek" ) in the frictionless case, where Ep,x = max(E4, EP).

max
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Fig. 6. A block resting on a substratum
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Fig. 7. Mesh convergence studies

Table 1. Mesh properties, CPU time and convergence for Example 1

No. of CPU time Horizontal Disp. Vertical Disp. Shear Stress
Mesh | Elements (s) (mm) (mm) (MPa)
HT | KL | Abaqus | Present | Abaqus | Present | Abaqus | Present | Abaqus | Present
1 396 | 28 21 20 0.835 0.836 | —0.685 | —0.682 | 36.466 | 35.452
1044 | 36 25 23 0.816 0.814 —0.689 | —0.687 | 31.075 30.764
3096 | 52 35 33 0.806 0.810 | —0.692 | —0.695 | 28.715 | 28.077
0.06 T T T T T T T T T T T
0.05¢ £ _g5
£ B
5: e N et v G e
F
S 0.03} | |
©
: \
R |
& \ /3 A 5oola50
L s fi /
0.01 T 4
Emm BT Y] R s e
Py
0.00%-- L

S SR AL T i £ BT
0 '5 10 15 20 25 30 35 40 45 50 55 60
Contact zone X (mm)

Fig. 8. Effect of k,, on the penetration in the frictionless case
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It can be observed that as the ratio +2— increases from 0.5 ~ 50 the penetration decreases. To

El'n ax

search an appropriate value of ky, , an error norm was defined as follows,

w w.
Error = max | S , ‘&2 x 100%, (31)
top ubot
Un n sp

where the subscript “sp” stands for the sampling (or herein Simpson) points.

From Fig. 9, it can be seen that for ﬁkn"a—x > 3 the maximum error has remained less than 2%
which is acceptable for most practical applications. Therefore, a reasonable choice for k, may be
postulated as

kn = (3 s 5) Emax . (32)

Note that Eq. (32) is just an equality in magnitude or an empirical relationship, the unit of the

coefficient is mm™!. In this paper we have chosen the relation kn = 5Emax for all the analyses.
Next a frictional case with a frictional coefficient ¢ = 0.1, as illustrated in Fig. 10, was consid-

ered. The penalty normal stiffness was chosen as k, = 10* N/mm? whilst three penalty tangential

Gy
o

Error (%)
Ql=a NG s, N N0 ©

0;4¢h«10:85: 120 26130+ 35::40 145::60 > 55~ 60
Contact zone X (mm)

Fig. 9. Error of penetration for different k, in the frictionless case
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Fig. 10. Effect of interface stiffnesses on the contact behaviour (p = 0.1)
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Fig. 11. Convergence study of different meshes (k,, /k- = 10; p = 0.1)

stiffnesses of k, were employed: 102, 10® and 10* N/mm? , namely 7 kx — 100, 10 and 1 in the HT FE-
interface analy31<; for investigation of optimal value. Companson of the results indicates that the
choice of —& = 10 can capture the contact behaviour accurately. In order to verify the convergence
of the HT FE- 1nterface model, numerical calculations have been carried out with different meshes
(see Fig. 7) for —”’- = 10. The results in Fig. 11 illustrate good agreement with the results of the
conventional FE modelhng obtained from ABAQUS with increase of the density of mesh.

Example 2. An inclusion inserted in an infinite plate

An inclusion problem subjected to a uniform tension of ¢ = 1000 MPa together with geometry and
boundary conditions is shown in Fig. 12. The radius r of inclusion with perfect fit to the hole of
an infinite plate was set as 25.4mm. Linear elastic material properties characterized by Young’s
modulus of 4000 MPa and Poisson’s ratio of 0.35 were taken for both constituent bodies.

For numerical purpose a simplified finite element model was employed (see Fig. 12(b)). Due to
symmetry, only a quarter of the problem has been discretised. The simplified model consisted of
8231 HT elements and 40 KL interface elements (each of 0.52 mm long). To conform to the results

Matrix

. >
Inclusion \ﬂ>
P>

5D

>
D

>

>

>

a—

Infinite plate

(a) Infinite model (b) Finite model

Fig. 12. An inclusion inserted in an infinite plate and its simplified model
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clements

Detailed mesh near
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Fig. 13. Configuration of mesh for Example 2 (r/b = 0.083)

given in the literature [15, 25], the frictionless case was first considered. Based on the parametric
study of Example 1, k;, = 2 x 10* N/mm3was used in the following analysis and the corresponding
mesh is shown in Fig. 13.

Figure 14 presents the results with a range of relative inclusion-matrix ratios of b=l 0:5; 0.2,
0.1, 0.083 and 0.05. Numerical results presented in Fig. 14 reveal that the real contact arc and the
maximum contact pressure decrease with the reduction in r/b. A stable value of 19.62° and 609 MPa
predicted by Stippes et al. [25] was apparently achieved in this analysis as shown in Fig. 14. For
the ratio r/b = 0.083, the results do not change substantially. In this study, the fact that the ratio
of r/b = 0.083 represents an infinite model shown in Fig. 12(a) accurately, which has been proved
again after Knight et al. [15].

The results for a frictional coefficient of 4 = 1.8 are presented in Fig. 15. In the HT FE-
interface analysis the penalty normal and tangential stiffnesses were respectively chosen as &, =
2 x 10* N/mm3 and %k, = 2 x 103 N/mm3. Comparison of the results was made between the present
model and conventional FE model (ABAQUS) and only small deviations have been found. It is also

1600 T T T T T

1400|.

5
1200} “M”“"M\H\%‘/

1000}

800: / 0.1 ]

n

400

Contact pressure g (MPa)

0.083
200 Knight et al. [ 28]

0.05 sy
0 L L : ! o 8
0 5 10 45 20 25 30

Contact arc o (Degrees)

Fig. 14. Effect of r/b on the contact behaviour in the frictionless case
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Fig. 15. Contact behaviour of Knight model in the frictional case (/b = 0.083, = 1.8)

found that the maximum contact pressure decreases due to the influence of friction but the real
contact arc remains almost identical to that in the frictionless case.

4. CONCLUSIONS

An interface model for elastic contact problems using HT FEM has been developed in this paper.
Four-noded HT elements were formulated and used in the discretisation of the contacting bodies
whereas four-noded KL interface elements were formulated and embedded in the prospective contact
zone for simulating the behaviour of interaction. In order to ensure better performance of the
KL element in the analysis of contact problems, an interfacial constitutive relation, viz. normal
and tangential stress vs relative displacement curves, was appropriately facilitated. Additionally,
the Simpson-type Newton—Cotes integration scheme has been utilized for the KL element stiffness
equation.

The HT FE-interface model was implemented in the ABAQUS (via UEL). Two benchmark
examples were investigated and all computed results have proved their reliability with respect to
the relevant analytical or conventional FE (ABAQUS) solutions. Especially, the effect of penalty
stiffnesses on the results and the characteristic of convergence have been studied in detail.

Further extension of the model to 3D case is feasible once the 3D HT FE and interface elements
are introduced.

A. TREFFTZ FUNCTION MATRIX N,

According to Muskhelishvili’s complex variable formulation, a complete system of homogeneous
solutions, namely Trefftz functions N, can be generated in a systematic way. For conciseness, only
the results are listed below,

o 1 Re Zlk PR o =k—=1 .
Moy = 56 { Y 25 }, Zi = 1kz" + kizzZ" 7, (1a)
1 [ ReZy g oy
Wbl = 26 { I Zoy } , Zop = k2" —kzZ" ", (1b)
1 Re Z3y, .k
: = — Zar. = lc
Nc_j+2 2G { Im ng } ) 3k 1z, ( (/)
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1 Re Z4k dp
Nej+3 QG{ Tm Zyy, } e, =g (1d)

where z =21 +ize, Z =21 —tx2,i=+/—-1, k=1,2,....
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