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Any direct boundary-value problem is defined in a certain area 2 by a system of differential equations
and respective set of boundary conditions. In structural inverse problems the above conditions can be
partly unknown. Instead, we can measure certain quantities inside the investigated structure and then
approximately define the whole boundary-value problem. Usually, the solutions of inverse problems are
connected with the minimization of a certain functionals, which results in optimization procedures. The
applications of the trial functions identically fulfilling governing partial differential equations of a discussed
problem (the Trefftz approach) can considerably improve these procedures.

The original idea of Erich Trefftz was based on modelling objects of simple geometry. In the case of more
complex structures the division of the whole object into sub-regions (Trefftz elements) is necessary. This
kind of formulation is presented in this paper and is illustrated by numerical examples. The properties of
the Trefftz finite elements allow the formulation of effective algorithms, which considerably shorten the
time of computer calculations in comparison to standard finite element solutions.

1. INTRODUCTION

The family of contemporary Trefftz-type methods of modelling, in which trial functions (T-functions)
identically fulfil governing differential equations of a boundary-value problem, can be divided into
two main groups, i.e. global-type formulations and sub-structuring methods. In the first group the
trial functions are defined in a whole investigated domain (2, while in the second formulation their
sets are formed in many sub-areas {2, with boundaries I, .

In the previous paper concerning the application of the Trefftz approach to inverse problems of
elasticity [5], the global version of the method was investigated. Three different concepts of inverse
problem solutions have been proposed showing a good convergence of results and encouraging the
authors to undertake further research. However, the shapes of considered areas {2 were rather
simple. If a form of an investigated structure is more complex, this global approach cannot be
applied because difficulties with conditioning of the final algebraic equations can appear. Therefore,
we are forced to introduce sub-structuring, for example in the form of the Trefftz finite elements
(T-elements) [3, 4, 6]. Application of such elements to inverse problems in 2D elasticity is a topic
of the present work.

The most popular T-elements follow the J. Jirousek’s ideas [1, 2]. In the HT-D formulation the
element stiffness matrix (2D elasticity) has a symmetric and positive definite form

k=G 'HG (1)
where
G=1] TINJr, (2)
e
H= | T'NAr ="f"Nr1Tdr: (3)
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The matrices N and T appear in displacements

u(x) = u(x) + N(x)c * € 82, (4)
a(x) = N(x)d el (5)

and tractions
t(x) = t(x) + T(x)e x€ I, (6)

where N is a matrix of the Trefftz functions, N is a matrix of polynomials defined along the
boundary I, , T represents respective tractions, c, d are unknown coefficients and 1, t are particular
solution parts of the displacements and tractions, respectively. The details of the element formulation
can be found, for example, in [2]. This element implemented into the FE system SAFE [1]| has been
used in this particular study.

In the HT-D element number of the inside Trefftz functions in N is strictly connected with the
number of the polynomial functions in N (see [3]). In the present investigations the authors used
quadrilateral elements and the number of T-functions was always equal Ny = 4p (p — degree of
polynomials) for each of the two displacements in u.

2. GENERAL FORMULATION OF DISCUSSED INVERSE PROBLEMS

Let us consider a 2D elastic plate loaded in a self-equilibrated way (Fig. 1). The load g(z) in its
upper part is unknown. Instead, we can measure stresses in a certain number of control points
placed in a distance ¢ from the “hidden” edge. In general, the measurement points can be situated
in different places, however, in this paper we restrict their positions to a straight line. The aim of
the calculations is a possibly accurate definition of the full, original boundary-value problem of the
investigated object.

If the unknown load is assumed to be linear along external boundaries of the particular finite
elements, then it can be defined by its values gx in the element corners along the object boundary.
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Fig. 1. Elastic plate; (z) are unknown boundary tractions
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Hence, the solution means minimization of the following functional with respect to the unknown
coefficients gy ,

N
P = [a,—6-2+ DA g a,—c_f,Q}—)min, 7
;(.E o)’ + (0y = 8y)° + (0ay = Tay)”| = mi (7)
where 5;; are known, measured values of stresses in the N control points. Additionally, the searched
load function should fulfill a global equilibrium condition. In the case of a vertical load (Fig. 1) it
can in general be written as

L

[ @ +aanaz <o ®
L

/ algla) + dla) ax = 0 (9)

The investigations of the present paper are focused on effectiveness of the Trefftz finite element
approach. Therefore, in the optimization procedures the authors applied standard gradient methods.
The proposed algorithms are presented below in a series of numerical examples.

3. NUMERICAL INVESTIGATIONS

To investigate the inverse problems, the quadratic plate (L = H = 1.0) compressed along two
opposite sides by vertical tractions

q(z) = 100(1 — z?), (10)
g(z) = —100(1 = =?), (11)

was chosen as the first numerical example. Because of the symmetry condition with respect to the
axis y, only half of the plate was considered (symmetry with respect to z was not known a priori).
In this case the additional equilibrium equation can be written as

L K 7
i dk — 9k—1 o 2 200 ,
/0 g(z)dz = kE:Q G e (zp — Tf—1) = /0 100 (1 — z°) dz = 5 L. (12)

Table 1 presents a comparison of results obtained with the help of the hybrid Trefftz elements
(HT) and the conventional hierarchic p-elements (CH). The decrease of values of the objective
function in case of the T-elements is distinctly visible. The most characteristic results are also
presented in Fig. 2.

Table 1. Objective function (7) in example 1; HT - Trefftz elements, CH — conventional hierarchic
p-elements, p — polynomial degree, ycp, = 0.8, N = 21 control points

Mesh | Elements | p =2 p=3 p=4 p=2>5
= HT 21.9650 | 17.9381 | 11.0777 | 10.7043
CH 100.178 | 21.1059 | 201.806 | 205.458
scd HT 1.72964 | 0.20694 | 0.04121 | 0.01733
CH 4.03380 | 0.56192 | 5.79732 | 5.52918
8x8 HT 0.04917 | 0.00012 | 4.11e—6 | 4.28e—6
CH 0.51566 | 0.00764 | 0.00453 | 0.00450
16x16 HT 0.00899 | 2.15e—6 | 3.73e—T7 | 3.67e—7
CH 0.03744 | 0.00952 | 0.00962 | 0.00962
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Fig. 3. Example 1: error in coefficients ¢ ; ycp, = 0.8, N = 21
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In Fig. 3 we can observe the error in the coefficients ¢;, which define the unknown traction
boundary condition. In the case of the conventional p-elements, the errors are much larger.

Table 2 presents the behaviour of the T-element solutions (mesh 2 x 2) while changing the
distance of the control point line (N = 21) to the plate side with unknown tractions. The reference
values of ¢, and gz were obtained by least square fit of the know parabola and its piece-wise linear
approximation. The behaviour of the solution is not quite regular. The errors decrease up to Yep = 0.7
and then increase (see also Fig. 4). This results suggest that the relation of number N of the control
points to the number of T-elements along the “hidden” edge should be suitably chosen.

Similar investigations were carried out to observe sensitivity of the solutions to the number of
control points. Table 3 presents the results. In this case the behaviour of the solutions is very stable
and regular (see also Fig. 4). With a decrease in the number of control points the accuracy of the
results regularly decreases.

Table 2. Example 1: Sensitivity of traction solutions gr and objective function (7) to distance of control

point line; T-elements, p = 2, N = 21 control points, mesh 2 x 2

Reference | yep =09 | yep = 0.8'| yop =0.7 Yep = 0.5
103.642 103.821 103.984 104.776

@ | 104167 s | 0.352% | 0.176% | —0.584%
79.6856 79.5212 79.3374 78.8303

92 Te-InGe —0.655% —0.448 —0.216% | 0.425%
¢ 0 40.9004 21.9650 10.7990 64.0179

Table 3. Example 1: Sensitivity of traction solutions @4 and objective function (7) to the number of

control points; T-elements, p = 2, ycp = 0.8, mesh 2 x 2

Reference | N = 21 N =11 N-=5 N=3
103.821 | 103.574 | 103.100 | 102.851
« 104167 53355 1 0560% | 1.024% | 1.263%
791667 |_79-5212 | 79.7850 | 82.2901 | 84.4288
e ' —0.448% | —0.781% | —1.419% | —1.594%
@/N 0 1.04596 | 1.26022 | 1.96436 | 2.75804
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Fig. 4. Example 1: Objective function (7) vs. position y¢, and number N of control points
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Table 4. Objective function (7) in example 1: linear vs. parabolic approximation of the boundary loads;
T-element, yep = 0.8, N = 21, p — polynomial degree

Mesh D=2 p=3 p=4 p=4a
2x2 Lin | 21.9650 | 17.9381 | 11.0777 | 10.7044
2%2 Par | 3.89306 | 0.04723 | 0.01332 | 0.00505
4x4 Lin | 1.72964 | 0.20694 | 0.04121 | 0.01733
4x4 Par | 1.64684 | 0.01728 | 0.00277 | 0.00038
8x8 Lin | 0.04916 | 0.00001 | 4.11e—6 | 4.28e—6

Table 5. Objective function (7) in example 2; HT — Trefftz elements, CH - conventional hierarchic
p-elements, p — polynomial degree, yep = 0.8, N=21

Mesh | Elements | p =2 D=3 p=4 =)
s HT 726.266 | 510.024 | 486.474 | 479.211
CH 1136.00 | 380.432 | 1255.81 | 1233.08
¥, HT 15.9764 | 1.02215 | 0.91026 | 0.53362
CH 31.6897 | 13.4809 | 36.0473 | 33.3267
S5 HT 0.58881 | 0.00024 | 5.73e—5 | 6.68e—5
CH 2.86769 | 0.67536 | 0.67054 | 0.51835
16%16 HT 0.00658 | 3.41e—5 | 4.74e—7 | 5.24e—7
CH 1.76841 | 1.57793 | 1.67970 | 1.18200

Table 6. Objective function (7) in example 2: linear vs. parabolic approximation of the boundary loads;
T-element, yep = 0.8, N =21

Mesh D=2 p=3 p=4 P=5H
2x2 Lin | 726.267 | 510.025 | 486.474 | 479.211
2x2 Par | 71.2762 | 3.47814 | 1.91698 | 1.86285
4x4 Lin | 15.9764 | 1.02215 | 0.91026 | 0.53362
4x4 Par | 14.6613 | 0.17263 | 0.00883 | 0.00285
8x8 Lin | 0.58881 | 0.00025 | 5.73e—5 | 6.68e—5

Also the influence of approximation form of the unknown tractions were investigated in detail.
Instead of the linear approximation a parabolic form was used. Table 4 shows an improvement in
results, however, not as marked as it was expected.

Similar investigations were repeated in the second example, in which the plate instead of the
parabolic was loaded by following the vertical tractions,

q(x) = 100(cos(mz) + 1), (13)
g(z) = —100(cos(mz) + 1). (14)

In Table 5 and Fig. 5 we can see the effectiveness of the hybrid Trefftz solution in comparison
to the standard finite p-elements. Table 6 presents the influence of the parabolic approximation of
the unknown tractions.

The third numerical example was very different. Instead of searching for the unknown boundary
tractions the authors tried to identify the position of a hole inside a rectangular plate. This problem,
defined in Fig. 6a, was earlier investigated by N. Tosaka et al. [7] in 1995. The two coordinates and
the radius of the hole made three identification variables. The boundary conditions were known
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Fig. 5. Objective function (7) in example 2; yc, = 0.8, N = 21
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Fig. 6. Square plate for numerical simulation a) problem definition, b) final mesh from ANSYS® program,
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and, additionally, displacements in 6 points were measured. Starting from the central hole position
and minimizing the functional

6
TEM\ 2 §
gres Z (u; — ul ]‘M) — min , (15)

7/:1 Te,yYe,T
the authors investigated the convergence of identification variables to the known ones. The inves-
tigations were carried out with the help of the programs ANSYS® (mesh in Fig. 6b) and SAFE
with the T-elements (mesh in Figs. 6¢,d). Also in this case the Trefftz elements were more efficient,
which is visible in Table 7. The calculations were carried out in j iterations until the functional
norm 0 = ’(I)(j) — $U~1)| was less than € = 1075.

Table 7. Example 3: identification variables and objective function (15).

T Ye e 9

CH | 67.2 | 57.3 | 5.81 | 0.35511e—4
HT | 61.3 | 58.5 | 5.24 | 0.32556e—4

4. CONCLUSIONS

The Trefftz elements proved to be effective in solving structural inverse problems. This was presented
in several numerical examples. However, a simple extension of the object boundaries, which was
investigated in the global Trefftz approach [5], occurred to be more complex to apply in the finite
elements formulation. Therefore, the optimization procedure was chosen in this case.

The inside-element analytical solution resulted in more accurate and better convergent results
when compared to the standard finite element solutions. However, it should be noted, that the
calculation of the stiffness matrices in the case of the T-elements is more complex, and the final
gain in the computer time is less spectacular.
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