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In the paper a general survey of existing finite element (FE) models is presented using a conceptual
description in diagram form, which was initiated in paper [1]. The analysis is focused on the description of
FE models, which is uniform in its concept but specific for each FE type. All FE models are associated with
certain variational principles (and their stationarity conditions) in their original or modified versions. The
diagrams are used to visualize the equations which are satisfied inside an individual FE and on interelement
boundaries. The use of conceptual diagrams is very convenient in the presentation of finite element method
(FEM), it simplifies the understanding and teaching of this method.

1. INTRODUCTION

In paper [1] a conceptual description of a set of equations of the boundary value problem
(BVP) of elastic equilibrium was presented in diagram form. The structure of basic matrix trans-
formations for the FEM was given, but only for displacement and some mixed FE formula-
tions.

The present paper is a survey of variational principles which provide a basis for different types
of FEs, in particular for compatible displacement, equilibrium, mixed (two or three fields), hybrid
displacement, hybrid stress and mixed/hybrid models. The paper is devoted to a systematic pre-
sentation of energy functionals with appriopriate variational principles, for the derivation of which
we must assume suitable equations to hold.

After the choice of FE approximation has been made all variational principles are transformed
into FE formulation and in the next step matrix equations describing an individual finite element
are presented.

The employment of conceptual diagrams is a very convenient metodology in presentation of
FEM. For brevity the relations between all variables are presented in a matrix or differential op-
erator form. On the other hand, the diagrams show expressively the similarities or differences be-
tween various types of FEs. The first section covers the local formulation of a boundary value
problem of elasticity. The seven subsections in the second section describe the main types of FEs
in a similar style. The specifications of the models are limited to corresponding equations and
diagrams with only most important remarks about the structure of FE equations and their inter-
pretation.

It is stressed that in the teaching and application of FEM the deep knowledge and understanding

of different types of locally or globally formulated boundary value problems and their FEM solutions
are very important.
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1.1. Locally formulated boundary-value problem

The strong form of BVP is defined by the following set of differential and algebraic equations (ralated
to domain 2 and two virtual subdomains {21, 2> — Fig. 1):

— constitutive equations (in stiffness and compliance form) (1), kinematic relations (2), equilibrium
conditions (3):

g = C¢; t=Clg (1)

€ = 0u, (2)

"o + p=0, (3)
for x € £2;

— geometric (kinematic) and static boundary conditions, given on parts of boundary 92, and 02
with prescribed boundary displacements and/or loads:

My=rM — =% for x¢0ik, (4)

ty =n"(r, B

=+

=t, for x € 862; (5)

in some cases the boundary conditions are related to selected or modified variables 1, t, using
matrices R, and R, respectively:

and the sign “=” above a symbol denotes selected and/or modified components of vectors uy
and typ;

— continuity requirements (compatibility conditions) for displacements and equilibrium conditions
for tractions along interdomain line 82(; 9):

uz(,l) =n%uV, u1(,2) =n*u® - aW=u® for xe€ 082(1,2), (6)

tgl) =n%c), tl()z) =n’c® - W 4+i®@ =0 for x€ 082(1,2)- (7

The set of equations is presented in the first diagram (Fig. 1). Equations (1)—(3) must be satisfied
at point P, boundary conditions at Py, P,p. The fields p(x), o(x), €(x), u(x) are related to each
other and equilibrium equations described by displacements

oTCOhu+p=0 (8)

can be introduced. In Fig. 1 continuity conditions (6) and (7) on line 02(; o) between two areas {2,
and (25 are presented among other objects and relations.

In Fig. 1 and in the following diagrams we distinguish by different kinds of arrows: i) static
boundary load or traction between subdomains are marked by arrows with full heads and ii) pre-
scribed boundary displacements or displacements on the contact surface are marked by arrows with
empty heads.
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Fig. 1. Domain §2 for an elasticity problem, equations and notation used on various analysis levels: 2 (do-
main), (21,2, (subdomains), 352 (boundary), 8§21 2) (interdomain line), P, P,t, Pus (points in the domain
and on the boundary)

1.2. Description of basic relations for FEM

In FEM we represent the problem domain {2 as a sum of a finite number of elements domains {2,
(Fig. 2a). To abridge the paper the designation of main objects is presented in this subsection. In
Fig. 2a the division of region {2 into the set of FEs (2., with e = 1, ..., E, is shown

E
0= Z 5
e=1

but in Fig. 2b we limit our interest to two FEs 2, and {2;. In general, a boundary of FE can be
a sum of external and internal parts, i.e. a sum of external boundary parts with described loads and

displacements and of interelement lines

E(e)

002 = 0925 U 02 = (00250 U 02ue) U Y 02cy).

f=1
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Fig. 2. a) Domain 2 as a set of FEs, b) domain represented in a particular case as a sum of two
subdomains (2., £2¢

In single-field or multifield models the FEM approximation is represented by functions Nz(e) (x)
(e)

and Pl(e) (x), and generalized physical or mathematical degrees of freedom qge) ore; ’,fori=u,o,e.
The approximation in various FE models is related to fields u(x), o(x), £(x), defined in 2,

ux) =NP)e, ox)=NPx)q®, ex)=NEx)q®, xe,
ux) =PP@af, ox)=PP®«P, ex)=POx)a, xec.
In some cases we must describe the displacement or stress field in the vicinity of the domain

boundary, using transformation matrices n“, n° and shape functions NS,C), N((,e), transferring suitable
point P from domain {2 to point P, on boundary 82 and changing coordinates x into s € 912

u? =n'u(x) =n* (Nu@)a®), ¢ =n"0(x) =07 (N;()al’)  x—s, scon.

This situation occurs when the continuity and/or compatibility conditions on boundaries are pos-
tulated.

On interelement lines parametrised by coordinate s, the approximation concerns the boundary
displacements and/or tractions:

ul(s) =NEN(s)qlEN,  teN(s) = NN (s)ql), s 80

1.3. Energy functionals

Variational problems related to mechanics may be classiffied according to the following aspects:
e number of independently approximated fields which are subjected to variation,
e type of constraints imposed on particular functions,
e enforcement of boundary conditions in an explicit or implicit manner.

In the next section the well-known primary and modified energy principles are presented, assum-
ing the sum of energy for a set of FEs:

E
2 B L
e=}1
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Now, we describe the appropriate energetic components for FE (e), from which various types of
functionals will be constructed:

e strain energy, complementary energy and total energy functionals:

Ul = / [%e(u)TCE(U)] e, U® = / [%GTC_IG] dn, U@ = / [¢"o] 402,

e

e external work of body forces and boundary loads:
whe) = / [pTu]dR, Wi = / [tTus] d(812),
e ana,e

e external work done by prescribed boundary displacements:

wile) = / [tTa) d(02) or W) = / [(n”0)T0] d(802),
Oy e u,e

e work of interelement tractions on appriopriate displacements taken into account in the analysis
of individual FE (e):

wt® = / [tTu] d(002).
002

The constraint equations associated with the continuity of displacements and equilibrium of
tractions can be introduced into modified functionals by including respective Lagrange multiplier
terms:

HED = / [£(s)T < a>]d(692),
ey

where < 1 >= u® — a(/) denotes discontinuity of generalized displacements,
Glen = / [a(s)T < & >] d(692),
e

where < £ >= {(¢) 4+ {(/) denotes the sum of interelement tractions. Then the Lagrange multipliers,
which are functions of the interelement boundary coordinate, are treated as additional variables.

If the displacement field does not affect the prescribed boundary displacements and/or the stress
field does not satisfy the static conditions, we must modify the energy functionals adding suitable
components:

HY = /a . [#97(a— w)] a@2) and/or G = /

5 [ﬁ(e)T(f 3t £)] d(09).

In the above equations the Lagrange functions are applied according to mechanical interpretation.
They are treated as additional functions, approximated on the boundary, but in certain cases they
can be inferred from the inside of FE on the grounds of domain approximation, using two following
expressions:

Hée) = /an,,,e [(n"o'(e))T(ﬁ - ﬁ)} d(82) and/or G,(,e) = /E) i [(nau(e))T(f = E)] d(042).

Finally it is worth emphasizing that integration is performed over the FE domain {2, on external
boundaries 925, 0§2, ¢ and along interelement lines 92, y).
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1.4. Martices and vectors for various FE models

In order to obtain a more compact form of the description of FE models we will introduce the
following abbreviations of designations:

e CD-FE — a Compatible Displacement FE model,

e ES-FE — an Equilibrium Stress FE model,
e DS-FE — a Displacement-Stress (mixed/two-field) FE model,
e DE-FE - a Displacement-strain(E) (mixed/two-field) FE model,

e DSE-FE - a Displacement-Stress-strain(E) (mixed/three-field) FE model,
e HD-FE — a Hybrid Displacement FE model,
e HS-FE — a Hybrid Stress FE model,

e HDSC-FE - a Hybrid (mixed) Displacement-Stress model with the satisfaction of displacement
Continuity in a variational way on interelement lines,

e HDSE-FEM - a Hybrid (mixed) Displacement-Stress model with the assurance of Equilibrium
of interelement tractions in a variational manner.

In the next sections we introduce many functionals as products of suitable FE matrices and
vectors of unknown degrees of freedom for adequate fields. In integral expressions we find: matrices
from physical and kinematic relations C, 9, respectively; shape function matrices N;, P;, i = u, 0, ¢;
matrices of boundary transformations n%, n? and prescribed loads P, t and displacements @. The
integration is carried out over domain {2, and lines 082, ¢, 042y ¢, 08ef)-

Now, we define the matrices used for single-field or multifield models:

K( = [ [oNg)Tceng)] ae,
e

Al = — / [Nge)TC—lNge)] e,

FE = / [Nge)TCNge)] e,

&

) — / [POTCPY)] ar,
2.

Gl = [ [NeTENg)]a,

e

¢l =- [ [™NE)NG)an,

e

El® = — £ NETNE 30,

R = / [NETC(OND)] ae,

2

R(®) = / [PSj)TC(aN,(f))] an.
£
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To continue the definitions the following matrices for hybrid models are introduced:

Ee)
L =3 [ [eeNe)™NED]dom),
F=179%ep)
Fip
LY = -3 / [(n“Ngf))TNgef)] d(692),
e=1"9%)
E(e)

M)

S [ [@eN©)TNEN] aon)
f=179%¢s)
The following vectors will be used as the nodal representation of static and kinematic loads:

£7(e) :/ [Nge)Tf,] an,
2

0 = [ [Ny aen)
0825,¢

file) — / (0" NE)Ta] a(a0).
Oy e

In some cases we will analyse an isolated FE, involving an interelement nodal action vector rgf),
which appears in the discrete work:

WHE) = r(OTg(®.

1.5. Concept of description of FEs in diagram form

The presentation of each FE model will contain a short description and a diagram. To represent
a particular FE type the following issues will be pointed out in the same order:

I) appropriate variational principle with the specification of equations which are satisfied in the
formulation a priori or are used to eliminate a particular field during the definition of a functional,

II) applied finite element approximation,
III) interpretation of matrix equations describing a certain FE model,
IV) conceptual diagram and its short description.

In each figure three levels are introduced: structure, FE and point. For a single-, two- and
three-field models one isolated FE (2, is shown in the diagram. In hybrid models we exhibit two
neighbouring elements {2, and {27, and additionally we consider the boundary displacement and/or
traction components over the respective sides of the common boundary 082,

At point P inside FE the relations between u, o, € fields are marked in special boxes (using
numbers of equations introduced in Subsec. 1.1). From nodal vectors appriopriate arrows are plotted
in the direction of approximated fields and of matrix equations defined for each FE model. The
structure of FE equations results from the links of particular fields, represented by vectors of degrees
of freedom of several types.



216 M. Radwarnska

2. FORMULATION OF EQUATIONS FOR VARIOUS FE MODELS
2.1. Compatible displacement model — CD-FE

I) The compatible displacement model is derived from the principle of minimum potential energy,
which depends only on displacement field u and loads p, t

L[u] = /Q E(au)TC(au)—pTu] dn - /a % [tTu] d(092).

To construct this functional equation (1) and (2) as subsidiary ones are used.

II) In CD-FE displacements u occur as the only independent field and they are represented by

interpolation functions N,(f) and generalized nodal displacements q&e) for each element

u(x) =N®(x)-ql®, xe 2.

For the variational functional Ip[u] to be definable, the interpolation functions should satisfy: i) dis-
placement continuity conditions in each element, ii) displacement conformability conditions on in-
terelement boundaries, iii) kinematic compatibility on external boundary 012, ..

For a set of FEs and for an individual element the potential energy functional can be written as

I[u]—ZE:I(e)[u]-zE: / F(@u)TC(Bu)—-“Tu] ap= /
' —e=1 - = 1 Va. 12 s 9

e=

[tTu] d(an)} .

2,e

After applying FEM, the potential energy is represented by generalized nodal displacements and
suitable matrices and vectors, defined for CD-FE

E
LlaJ =) I1{?[q{9),
e=1

s : 5 1 y . e
190u] = U9 — WO - WO _ t® = Lyorkigld — @7 (569 4 £10) — o020,

From the principle of minimum potential energy (stationarity conditions with respect to variations

of q,(f)) the following equations for individual CD-FE are derived

(e) (e) >
(nge) N aaIlze) 3 qu(te) e 81’26) =0 KSfJ 1(18) = fg(e) + fth(e) + I‘&é).
qQu oqu

IIT) The last equation above and
KuuQu = Fﬁ g - FZ = lSu

can be interpreted as equilibrium equations of an individual FE and of an assembled structure. It is

worth noticing that the vector of nodal interelement action r&é) disappears on the whole structure
level. On the other hand, the vector of external nodal loads P, is taken into account for the whole
structure.

IV) The diagram for CD-FE model is presented in Fig. 3. For every internal point in FE three fields
u, 0, € are connected by Egs. (1),(2) in the grey box in Fig. 3. At nodal points only generalized
displacements are introduced, which are unknowns in the final equations. In additional boxes the
continuity displacement requirement along interelement lines and kinematic admissibility of the
displacement field are pointed out.
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STRUCTURE P,

EQUATION FOR 2.
K(ql®) = £ 4 £i© | 1@
3)

K{)(N., C,0)

ASSEMBLY

=

} EQUATION FOR STRUCTURE
...................................... KuuQ.=F?2 +F + P,

Fig. 3. Diagram for compatible displacement model - CD-FE

2.2. Hybrid displacement model — HD-FE

I) Relaxing the requirement of displacement continuity to be satisfied by trial functions along
interelement boundaries

(S) u(f ( )a s € a~Q(ef)»
the hybrid displacement model can be formulated on the base of modified potential energy functional
Iymu, t] = I[u] + H[u, t].

IT) The displacement field and boundary tractions are independently interpolated, using as un-

() (ef).
el

knowns nodal displacements q,’ and forces q

u(x) =N{(x)-qf, xe,

A(s) =t (s) = Ngef)(s) -qgef), 8 € 08(cy), where (@) = () = ¢leN),

Integration over interelement lines must be performed with care, according to the following formula:

E E
Lym[u,t] = Y IO + 3 HEN MO, 1)

e=1 e=1
E [E(e)

=3 1@uE) 4 t(ef)T @ den
=L B33 [ [T aen)

=1

&

—Zﬂe [l I+Z / [T (5 - a0)] o)

aﬂ(en
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For now we assume that the structure contains only two elements (e) and (f). Then a suitable
functional can be written in the following manner:

Do, q, ¢ = :I,(f)+fé”] + HE)

_ [10 4 I(f)] i / EENT (@© — 5)|d(60)
P ; e )

[ ; ; 1
= 2q(e)TK( Aqle) — g7 (fg(e) 5 f’i(e)) 5 _iqgf)TK%)qgf)

_ghT (f5<f) ¥ f5<f))]
+a*N7 (Lo + L)

From the stationarity condition of I,(,,e,’,{ ) the following equations are obtained

ol 0y m oI,
(e,f) _ pm (e) (f) e
Oy’ = qu(f) d0dy” + —5 aqt %) s Mt dq! (ef) 0
Olpm (@ q(€) 1 1,6) (&) _ gile) 4 gile)
8()_0 = Koy’ +Lyq " =% +£°, xe€f,
Qu
O0lym (N gl () (Ef) (f) 4 £iF),
a(vf)_() - K§ + Ly =f\) +f, X € f£2;.
qu
oI, T (s
aql(lef) S L‘S;) q( ) (f) ( e 0 s € 6Q(ef),
S Ty e
9 o 1 || g (=] o
o 1 x| | o] | @00

IIT) The set of three equations contains: two equilibrium conditions for FE (e) and (f)
K©ql® + L(e) (ef) = £P(e) 4 fﬁ(e)’ K{Dql) + Lg{)qgef) = £7U) 4 fi(f)’

represented by nodal displacement vectors q, taking into consideration nodal interelement actions
(ef ) , and the additional equation

LEaf9 + L)

which denotes a variational satisfaction of the requirement of displacement continuity.

IV) In the diagram for HD-FE (Fig. 4) the interelement line is distinguished and additional un-
knowns q( °f) are connected with it. Two equilibrium equations for FEs (e) and (f) and the equation
for boundary 9£2.y) are exposed. On the interelement line we introduce the approximation of trac-

tion t(¢/)(s) (shown as full arrows). The requirement of displacement continuity (6) includes parts

of vectors ¢, qf’ and matrices Lit), Lift), which are related with 042(.). The contents of FE (e)

box in the diagrams for CD-FE and HD-FE models is identical, but now the equilibrium equation

(3) for FE (e) gives the connection of q(e) with qgef ) 1t is worth emphasising that in the HD-FE
model two types of unknowns exist: displacements and interelement actions.
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STRUCTURE

EQUATION FOR FE 2.

KS;ZQ(C)‘FL(e) (ef) _ fP(e) +f¢(€)
(3)

A
5:’;2 (N,,|C,d)
TN, NNy

St t(ef)(s) <N(e—f) qgef)) EQUATION FOR 6Q(ef)
f e e
:t:.:.-::::::::::::::::ﬁ::::::::::::::::?&:&@—'g——m Lf‘t)TqSL : < LS‘{)TQ&I) =0
tihamy s (ed) 8Q(ef) (6)
‘_J_/_ ..................... . i e P -9
FE B.Qf LL{)T(NS‘f),NSef))
&)
K{)(N.,C,d)

EQUATION FOR FE  §2f
KDal) + LGN = g2H 4 gl

s R e e e e i 7 3)

Fig. 4. Diagram for hybrid displacement model - HD-FE

2.3. An equilibrium stress model — ES-FE

I) The equilibrium stress model is based on the principle of minimum of complementary energy

I[o] = - /Q [-;-UTC‘lcr] de + /8 o [(n70)Ta] d(092).

In this case the equilibrium equation and static boundary conditions are satisfied a priori. The
constitutive relation is used in the construction of complementary energy.

IT) The set of stress functions
o(x) =N®(x)-q¥), xe 2

can be taken as admissible functions if they satisfy the following requirements: i) they are continuous,
single-valued and satisfy the equation of equilibrium in each FE, ii) they satisfy equilibrium condi-
tions on interelement boundaries, iii) they ensure the compliance with static boundary conditions.
The complementary energy for a set of FEs can be written in the following manner

E

Liol=%4- /Q [%aTc-la] a2 + /8 o) s a@a) .

e=1
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E
= 1 «
Llao) = Y- 10alf), where 10fas] = ~U) + W) = LT AGGE) 4 o750
e=1

and from its stationarity condition we obtain the matrix equation for the ES-FE model:

(e) (e)
e sa =0~ Zoio L AlqW - i)

8I() =
0qs dq;

I1I) The FE equations express the compability of strains which result from the stress field represented

by qf,e) with prescribed boundary displacement introduced by nodal vector ff;‘ 5

IV) All relations connected with the ES-FE model are shown in Fig. 5. The traction compatibility
conditions (7) and static boundary conditions (5) are pointed out in additional boxes.

STRUCTURE

AN, C™Y)

EQUATION FOR FE {2,

AL = g5
(©))

b

Fig. 5. Diagram for equilibrium stress model ES-FE

2.4. Hybrid stress model — HS-FE
I) The traction compatibility condition
f(e)(s) 2 f(f)(s) =0, 8€ Bﬂ(ef)

is enforced through a modification of complementary energy, using as Lagrange functions the dis-
placements appearing along interelement lines

Iemlo,u] = I[o] + G[o, u].
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IT) The stress field in each FE and the displacement functions assumed along interelement boundaries
are approximated as follows:

o(x) =NP(x)-af?, xe€,
As) =ulD(s) = NEN(s) . qe), se 085y, where ul® = ul) = uleh),

The following formulae are obtained, from which three equations for a two element set can be derived

E E
I.mlo,u] = ZIc(e)[o-(e)] 4 z G(ef)[()'(e), u(ef)]

e=1 e=1
E [E(e)
= Z 1€ G(e)]+z (Z / QW) u(ef)T 0(6)0(6))]d(60))
E
= Z e)[o. e)] b Z/ ef)T (6)0-(6) + n”(f)o-(f))] d(aﬂ),
e=1 ( f)

taking into account appriopriate matrices and vectors defined for the HS-FE model

1D, o, 6] = [19 + 1) + G

= [0+ 10)+ [
- 0

= -2q5,e)T ALBGE) 4 q@Tgie) 4 L qgf)T ADqY) + q(f)Tf“(f)]

g [u(ef)T( o(e) g(e) 4 noN g )] d(892)
(ef)

+q{eNT (M(e) q® + M(f)qgf)>

alcm 5qge)+aIcm 6q§,)+ aIcm

Sq =0 -
il dqs’ 9"

=0 — Al M) = _£4) x e 0,

=0~ e +MQEH = -, xen,

6Icm
8q(€f )
Al MR o at” =g
MaT 0 MET || o | =] 0
o Mf A® | | o] | e
III) The three equations above can be written in the following order
(E)qge) & M(e) (ef) = _fﬂ(e), Af,f:,)qf,f) Ex MSQqu” - _f:;i(f)’
M(E)T (e) +M(f) ( =0

0 M+ MY =0, se oy,

Unlike the ES-FE model, matrices M,(;iz, Mt(,{‘) now appear. They link vectors q,(,e) and q‘(,f ), since

the third equation ensures in a variational way the interelement action compatibility. The two other

equations related to FEs (e) and (f) connect the stress degrees of freedom qg), q((;f ) and gener-

alized displacements q,(ff ) at a finite number of boundary nodes and vectors f; (e), fa(f )

, ensuring
compatibility of strains.
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STRUCTURE

AY)(N,,C™Y)

EQUATION FOR FE (2.

: 3
ASaS + MEqE = g2 i P
© £ON,, ) §
E 092; 1\
.:—-—v——--—-—-—-—-—--~--—»--—4--.—-; ---------------------------- 2. A
MM, NED NED(s) 74
EQUATION FOR  92(c§) P e P e = A =ul(s)
T (e nT Mou \Ne I} =
M e + MU TqY =0 —_—
©) MEOTINGD N 0%ep) 78
 ME(NY, NED) V%
AN C7Y = 22— e —— i it
s a(f) N
EQUATION FOR FE 2, fo N . \
e U \
Afal) + MPqlD = g0 \
) FE {2

Fig. 6. Diagram for hybrid stress model — HS-FE

IV) The diagram for HS-FE model (Fig. 6) should be analysed in comparison with the ES-FE
diagram in Fig. 5.

2.5. Displacement-stress (mixed) model — DS-FE

I) By enforcing the stress-strain relation in a strong sense we pass from the Hu-Washizu functional
to the two-field Hellinger—Reissner one

Ing[u, o] = / [—%a’fc*o + oT(u) - f)Tu] dn- /
P} 082,

The integration by parts leads to the alternative expression for the Hellinger-Reissner functional

Iyglu, 0] = — /!2 I:%O'TC_IO‘:I dn - /Q [(0To + p)Tu] d2 + /(ma [(n%0 — t)Tu] d(012)

[£Tu] d(82) - /6 _ [(n)"(u - )] (002,

+ /anu [(n?0)Ta] d(82),

with assumes the continuity of displacements u and equilibrium of tractions t on interelement
boundaries.
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IT) The displacement and stress fields are assumed as independent variables inside each individual
FE

ux) =NP(x)-qf), xe,

o(x) =NP(x)-qfY, x€2.

Based on the stationarity condition of Iyr we obtain the following equations for the DS-FE
model:

E
Iyrlqu,a0) =Y )
e=1

rle ! i p(e i e u(e
Ik = ol T AL + o TEEa + aPTSIIG — T (120 + £10) + gl e

7(e) 7(e)
sile. — Olyg & (e)+3IHR 5q (e) S —

HR — ((78) a (e)
7(e)
aII-(IR =0 - A(e) (e) k3 G(e)q(e) . St(e) (e) = —fg(e),
oqy)
7(e) ) A
(ZI( : =0 - égiqug‘e) £ Sfy(z)Tq‘(re) — fg(e) + fz(e)’
qu

AL (G + 51 g aifiio 5180
(é£2T+s(e’T) 0 o A - i

IIT) The connection of stress and displacement fields, represented by q.(7 ), q,&) in the first equation

ALal) + (G2 + S1D)a) = £
means the consistence of the strains, obtained from the stresses as well as from the displacements,
additionally taking into consideration prescribed boundary displacements 1 and loads t. The second
equality

(GET +SX9T)q = ££6) + 9

(e)

has the interpretation of equilibrium conditions formulated by qg
loads p, t.

and the nodal representation of

The employment of the second form of Hellinger-Reissner functional Iy r[Qu,qs] (ensuing from
integration by parts), as a starting point has consequences in the appearance of matrix Sf;(ﬁ) apart
from vector fft(e).

IV) The connection of all fields and nodal representatives in diagram (Fig. 7) is clarified for the
case when boundary loads t and displacements G disappear.
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STRUCTURE

¥

EQUATION IIFORFE 2.
Gl = £20
3)

AN, C™Y

EQUATION IFORFE {2

Alle + 68q —a
(1)+2)

Fig. 7. Diagram for displacement-stress (mixed) model — DS-FE

2.6. Hybrid /mixed displacement—stress models

Various continuity requirements for the displacements and the stresses at interelement boundaries
are considered and there is a great number of versions of the Hellinger-Riessner modified functional.
In this section a boundary static and kinematic loads are omited.

2.6.1. Hybrid/mized displacement-stress model
with satisfaction displacement continuity
in variational way - HDSC-FE

I) If the conditions of kinematic compatibility

1l®(s) = al)(s), se€

are introduced as constraints through Lagrange multipliers (which turn out to be interelement
tractions) a respectively modified Hellinger-Reisner functional is used

Igpmu(u, 0,t] = Iyg[u, o] + H[u, t].

II) The three fields (displacements and stresses in FE, and interelement action) are approximated
u(x) = N®¥(x) - SR Y W
o(x) =NP¥(x)-q¥, xe 2,

A(s) = tE(s) = N{¥(s) . ), s €8,y
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As previously, a set of two FEs is taken into consideration. The energetic term H(¢/) defined in
Subsec. 1.3 is added to functional I'yzg

Ig’}{,{nH [qge)1 g_e), quf)) qc(rf): qgef)] = [I}—ISR =+ I}—{I){] + H(ef)

= LoTA@G@ 4 g@TGEE

ago

1
+ 50D + " GHalh — o TE)
T (L0 + 1)

and from the stationarity condition the following equations for the HDSE-FE model are obtained

_ OIgpmH OIgRmH OInRmH OIHRmH
s mi,  sale) S g Bl TR ()
P T T e dqy’ aqd)
OIgRmH (ef)
oD hae &
6IHR,mH =y A(e) (e) G(e) (e) =0 02,
W'— N ools T G5y’ = X € Ize,
g
OIHRmH _ AN G L aDad =0 0
Misatt Lo . ADa) + Gl =0, xem,
Olthan Gl +LGal -, xen,
qu
IR mH =0 — GUTEY +LWG) =) xe 2y,
quf)
OIypmu 555 LETq@ + LT = ¢ on
6—(1(8?)__ — ut qy . 2 ut q; =Y, RS (ef))
t
wg Gl o) -0 a2 | T el
L W A SR BERS ot £)
o 1" o W oo || g0 || o
3% #(f)
g e g q b
0 0 0 G((;J;) Ag{r) qf,f ) L 0 i

III) Analysing the similarities and differences between the DS-FE and HDSE-FE models, in the

latter case we become aware of the appearance of matrices Lftt), L(f ) in equilibrium conditions
written for FE (e) and (f), and an additional equation which has the interpretation of kinematic

compatibility condition.

IV) In Fig. 8 in five boxes the appriopriate equations are demonstrated (two equations for each FE
(e) and (f) and an equation connected with interelement line 942 )).



M. Radwarnska

226

[PPow g I-ASAH 10} weiderq ‘g ‘S

(€)

7 mn
B = g HT+ (SPLHD

{5 904 11 NOILVNDE

(SN‘e' (SN (5D

(-0 ANDZEV

9 (SN (SN (5D

V

()N (AND 1 (HT

()

0= P, It P

1T
(f2)z5e  ¥O4 NOLLYNOHA

\

1 13
()N SN 1 5T

@+(1)

0= SPHD+ SPHY

{5 404 1 NOLLVNOHA

e -
(N (AN (T V o A m m

¢ n \ (#2 (£2)* <5
(42NN 5T \«\« C (2N i

(IN‘@‘SNIED

(€)
@@ = PHT+ PO

U ¥od I NOLLVNO™

A

@+
0= LD+ PV

20 ¥0d 1 NOLLVNOd

HINILONYLS

(-0 SNV




A survey of various FE models with conceptual diagrams for linear analysis 227

2.6.2. Hybrid (mixed) displacement-stress model with assurance equilibrium
of interelement traction in a variational way — HDSE-FE

I) If the condition of equilibrium of interelement tractions
t@(s) +t(s) =0, s€ 82

is introduced as a constraint condition through a Lagrange multiplier field (which turns out to be
displacement), another modification of the Hellinger-Reissner functional is introduced

Inrmac(u, 0] = Igg[u, o] + Glo, u.

IT) Besides the approximation of the displacement and stress fields we now introduce a discretization
of the displacements on interelement boundaries

u(x) = N®(x)-ql¥, xe 2,
O'(X) =S N(e) (X) : q¢(rE), X '€ ‘Qea
As) = ulD(s) = NEN(s)- i), s€00y.

Adding G¢f) (term defined in Subsec. 1.3) to Ig we consider another modified Hellinger-Reissner
functional, different from that in Subsec. 2.6.1

©) q©),ql), qP, qgef)] = [I§§}2+ Iﬁf}z] + gleh)

I}I}%,)mG [ u
= %qt(re)TAz(regqc(f) +q@TGE ) — gTgP(e)

1 .
+ 2T AD QD + AP CYalf - o)

e (METQ®) + MGG
From the stationarity condition

f) _OlHrRmG s (o) OHRmG s (5  OHRmG ¢ (o) , OIHRmG s (f)
6IHRmG 5 ‘(Te) 6qa & aqgf) (Sqa' + aqg) 6qu s 6q1(f) 6qu

OluRrmG sqlef)

3 8q£ff) e
THRm
: ;It =0 > AP £GP+ MEq =p, xen,
Qo
g1 G
i 0 e Al Gl Mgl ~0, xe
(o}
BIHR mG 0 G(C)T (e) — gple) (9]
Gq(e) oE iy e
s >
a;ﬁ}w =0 - Gi'q =£9, xeuqy,
OIgRmG

u
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the set of five equations is obtained

ET R 0 N R e e G T e
g 00 B 0 q ££()
oo R T O L
87l oD, @ Gl o AL
o e T e B
III) In this case we introduced matrices MS,‘iZ, M((,—’;) . They must be taken into account in equations

which represent the strain consistence conditions, written for two isolated FE (e) and (f). Addition-

ally, by matrices ME,iE, ME,Q we express the condition of equilibrium of interelement tractions on

line 8Q(ef).

IV) In Fig. 9 we can see five boxes which contain the above equations related to the set of FEs (e)
and (f) connectes with line 92(.y).

2.7. Displacement-strain (mixed) model — DE-FE (enhanced assumed strain EAS)

I) Starting from the three-field Hu-Washizu functional a another version of Hellinger-Reissner func-
tional can be considered

Iyglu, €] = /Q [—%ETCE, + ¢TC(0u) - f)Tu] dn

- / [tTu] d(092).
00,

According to the assumed strain concept two independent fields are introduced: displacement field
u(x) (notice that strain field £*(u) is related with it) and an additional strain field &*

Igpms(u, €*(u), %] = / [—%aO‘TCz:" 3+ e*ICH - f)Tu] dn
7

= / [iTu] d(092).
902,
II) According to the above statement the following FE aproximation is used
u(x) = N‘Sl.e) (X) : ’Ete)’ X € 'Qe’
£ix) = P,(f) . a§e>, X € $2e,
with the additional relation
e'(u)=0u=B- qgf).

IIT) Now, we can write the modified Hellinger-Reissner functional using the matrices defined for
DE-FE

Fapmslas’ ol —al TR0 ol ol REIGED a0 - o)7L

and the following set of equations results

R Loalhl e O
Sl ¥ £2a8Y
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A reduction of the number of DOFs at the element level is possible by relating nodal displacements
q,(f) with strain degrees of freedom age)

) = (FE) - R ol

and performing a condensation. We then obtain the equilibrium equation with an unknown nodal
displacement vector

Rual) = £ + & where K = RET(FE)RE.

IV) In Fig. 10 a diagram for the DE-FE model is shown.

STRUCTURE
e e o e
i o,e t - —
| FE 02, £1O(N,, 3)
i H 0 A
: § 554 (Nu1 P) RS.‘.ZTa?) = ff(e) 4 ff:(z)
i 6)
®
i
1 .
|| RIT(P,C,0) ;
i 892 : EQUATION FOR FE 2.
- | R = RET(FE)-IRE)
FE(P,C) 0%e ) RE)(P, C,0) K& (f;")"’ +£.©
<
FE Qf ani
~FQo? +REq =0 o = (F&2) " REq(
(13)

Fig. 10. Diagram for displacement-strain FE model — DE-FE

2.8. Displacement-stress-strain (mixed three-field) FE model — DSE-FE

I) In the general Hu-Washizu principle all variables u, €, ¢ may be varied free from constraints

Igw[u, ¢, 0] = /n [—i—%sTCs —oT(e—0u) - ﬁTu] dn — /an [tTu] d(092).

The above functional is used not only for the derivation of DSE-FE model but it also gives the
theoretical background for many various concepts (described in previous subsections)
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IT) The formulation of DSE-FE is based on the approximation of three fields

u(x) = NO(x)-qf), xe€ 2,
e(x) =NP(x) - o, xe,

o(x) = N((,e) (x) -qff), X € (2.

According to the standard procedure

E
IHW[q'u.’qE)qO'] = ZIS%V1

e=1

1 = -
I}?W = iqge)TFg‘é)qge) +q9TE®G® +q©¥TGEq, — T (fg(e) g3 ftt‘(e)) :

aI(e) aI(e) (9I(e)
SLgy = —HW . 5q) + —HW .5q) 4 —HE .5q0) =0 -

6q§e) ane)
aI(e)
B}fg' =0 — F¥q® +EQTq® =0,
e
aI(e)
¥ =0 - Efq®+Gel =0,
aQU
A7y (©T . (e) — ghle) . gile)
e g =0 = G WY B R
qQu
© goT o 1 [ 0
0 € |- o | = 0
0o GR' o G, 20 4 6

we obtain a set of three equations describing the last model

F9q + E&Tq® =0,
Eq® + Glql =0,

GUTaft) = £ + £10)

I1I) In the beginning we assume that fields u, €, o are independent. The appriopriate Euler equa-
tions are responsible for: i) the physical equation relating q. and qg, ii) the kinematic equation -
compatibility condition for strain and displacement fields represented by qe, qQu, iii) the equlibrium
equation described by qg, f, ft.

IV) In Fig. 11 we can see that no connections are present in the box related to the inner point P.
These constraints are transferred to the FE level writing the relations in three boxes, which are
enforced on displacement, strain, stress DOFs.
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STRUCTURE
_______________ T_._T ___./A./_{_____-___.,J
T FE (2, Gt :
GET (N, 8, NE) £.9(N,, £)!
Eﬁi)(Nﬁ,e),Nge)) POINT ___ : se) = EQUATION 11l FOR .Qe‘
q¢ oo ek B (Nu,p): GET® = £ 4 gie)
N§ ; €)
® b 4
EQUATION 1 Fo;fr Q)e Ae Lo elx () (e)@é
F2q +EQTq =0 N : Ne
) ol
; 092 :
FOTNE 0 | ¢ B
EGT(NS, NOGE(NS, 0,N(P)
v ¥
EQUATION II FOR {2
E2qf” + GHlal? =0
@)
r —e
FE .Qj 3-Qf I

Fig. 11. Diagram for displacement-stress-strain (mixed) model - DSE-FE

3. FINAL REMARKS

The paper contains a presentation of nine FE models in a uniform manner. The description includes
the statement of basic relations and their graphic vizualization in diagrams initiated by N-E. Wiberg
in paper [1]. The diagrams give a possibility of confrontation of similarities and differences in the
formulations of various FE models.

In two-field, three-field and hybrid approximation we have to deal with larger size algebraic
problems. The equations resulting from these formulations have zero diagonal terms. In fact, the
structure of algebraic problem is connected also with the number of degrees of freedom for the
approximated fields, mesh density and boundary conditions. The mathematical criteria of solvability
are given among others in [5]. To avoid singularity certain necessary and sufficient conditions must
be complied with [5]. In some formulations the continuity requirements imposed on selected shape
functions are difficult to satisfy and the problem is solved in many ways. However, in mixed models
at the stage of functional formulation continuity requirements are relaxed and transferred from one
to another field, using Green’s theorem, i.e. integrating by parts [4, 5, 6].

The problem of convergence to the true solution (which is interesting for mathematicians and
engineers) is related to the type of variational principle (saddle-point or extremum of a functional).

In the paper the presentation of a set of formulations in diagram form has been proposed with
the aim of a better understanding which equations are incorporated in the functional to eliminate
certain fields, which are satisfied a priori, which by shape function, and which at the end — in a
variational manner.

In the description of some FE types the method of taking into account nonhomogeneous static
and kinematic boundary conditions is presented.

Last of all, it should be noted that the investigations of optimal finite-element approximation for
plates and shells still stimulate the development of mixed and hybrid/mixes FEs [6].
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