Computer Assisted Mechanics and Engineering Sciences, 13: 3—-19, 2006.
Copyright © 2006 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Application of thermographic fields in identification
of structural properties and defects

Krzysztof Dems
Department of T echnical Mechanics, Technical University of Lodz
Zeromskiego 116, Lodz, Poland

Zenon Mroz
Institute of Fundamental Technological Research, PAS
Swietokrzyska 21, Warsaw, Poland

(Received in the final form February 15, 2006)

The detection of defects as well as their location, orientation and size is performed using measurements
of surface temperature either at some selected points or on selected surface areas or lines. The response
temperature of a structure is caused by statically, quasi-statically or dynamically applied thermal load
on some structural boundary parts or within its domain. On the basis of results of measurements, an
inverse heat transfer problem is formulated for a model structure and next solved. The inverse solution
is constructed by minimizing the properly defined distance norm of measured and model temperatures.
The model temperature distribution is calculated using the finite element model of a structure, while in
minimizing the distance norm functional the gradient-oriented methods are used. The proper sensitivities
of introduced identification functional are also derived. Some simple examples illustrate the applicability
of the proposed approach.
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1. INTRODUCTION

The prediction of structural properties, and in particular of location and size of voids, inclusions
or any other kind of possible damage in existing engineering structures is of great importance from
the point of view of their serviceability and safety. There exist many different approaches to analyze
and identify the structural behaviour during service life of engineering structure. For instance,
visual inspection and extensive testing can be employed to locate and measure the degradation of
structure by non-destructive techniques such as acoustic emission, ultrasonic methods, modal testing
or thermographic methods. There are numerous papers devoted to these classes of problems. An
extensive review of damage identification techniques in structural and mechanical systems, based on
dynamic response of a structure, was provided by Doebling et al. [6]. Nowadays, the most promising
techniques of damage identification seem to be steady or transient thermographic methods based on
temperature measurements. Using the thermographic methods, the temperature distribution within
structural element, constituting the basic information for this approach, can be caused by both
steady-state and transient thermal fields applied to inspected structure as well as by impulse or
periodic thermal loading.

In the present paper, we shall study the detection of inclusion or voids by the analysis of steady-
state or transient thermal response of structure, in particular the temperature distribution along
its external boundaries caused by applied heat sources within structural domain or applied tem-
peratures on some parts of its boundaries. In fact, temperature distribution varies with structural
conductivity and its variation can be used in order to identify the variation of conductivity matrix
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associated with void or defect location, orientation and size. The thermal loading in the form of
pointwise or volumetric heat source as well as fixed temperature at some points or surface areas can
be caused by thermal process within structure subjected to service load (passive thermography) or
this loading can be forced exclusively for identification purposes (active thermography).

Two most typical identification problems that should be of interest are: (i) specification of a single
void or defect with its size, location and orientation as unknown parameters and (ii) specification
of distributed defects within a structure regarded as a distributed conductivity reduction when
compared to homogenous structure or to the structure at its initial working conditions. Thus, one
can observe either the forming of new defects or the progress in their growth during service life of
structure as the result of non-destructive inspection based on thermal measurements.

The case of active thermography will be assumed in the present analysis and then the thermal
load is applied exclusively for identification purposes. However, in the case of passive thermography,
the identification procedure will be quite similar. The detection of surface, subsurface or internal
inclusions, voids or cracks as well as their location, orientation and size can be performed using
infrared measurements of surface temperature either at some selected points or on selected surface
areas or lines. In order to increase the number of available measurement data, the thermal multi-
loading case is considered. The several thermal loading cases are implemented either in the form
of consecutively applied several increasing steady-state thermal loadings or in the form of transient
loading and measurement of temperature within assumed time period (t, ¢ ) or at consecutively
selected time instances. On the basis of results of measurements, an inverse heat transfer problem
is next formulated and solved. In order to determine the location, orientation and size of single or
multiple defects, the properly defined distance norm between measured and model temperatures is
formulated. Minimization of this norm will result in estimating location, orientation and size of void
or defect.

Since the measurements are available mainly on the boundary surface of a structure, the identifi-
cation functional will be constructed either on the whole surface or on its portion, as well as at some
selected surface points or along specified surface lines. Performing the thermal analysis of a struc-
ture with void or inclusion, its finite element model is constructed and the predicted temperature
distribution is next used in the identification procedure. The inverse solution can be constructed by
minimizing the introduced distance norm of measured and model temperatures.

In simple examples verifying the applicability of presented approach, the infrared measurements
will be numerically simulated. However, to make the simulation more realistic, some random error
will be introduced into simulated measurements in order to model the unavoidable tolerance of real
measurement.

2. FORMULATION OF HEAT TRANSFER PROBLEM

Since the identification procedure will be based on thermal measurements on structural surfaces, let
us formulate the basic equations describing heat transfer problem within inspected structure. Con-
sider therefore a two-dimensional structure, Fig. 1, occupying the domain © bounded by the external
boundary I' = I'p UL, UT),. Let us assume, that at any time instant ¢ the temperature 7" is prescribed
on the boundary portion I'r (Dirichlet condition), whereas the heat flux ¢, proportional to normal
gradient of temperature field (Neumann condition) is specified on the boundary portion T q- On
the remaining boundary portion I'j, the heat convection with environmental temperature T (third
type or Henkel condition) is assumed. Moreover, the initial temperature distribution at time ¢ = 0
is also assumed to be known within structure domain. Thus, the temperature distribution within
a model of inspected structure will be calculated considering the transient heat transfer problem
described by the following set of heat balance and conduction equations,

—div q(xvtvb) o f(X) e C(X,b) T(X,t,b) :
Q(X, t) b) &F —A(X, b) ' VT(X, t, b) } in Q2 x (07 tf)v (1)
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Fig. 1. Identified structure with internal defect subjected to thermal loading

supplemented with boundary and initial conditions in the form

T LB =Tx 1) on I'p x (0, ),
gal2.thl =0:8=q¢(x1 on I'y x (0,ty), (2)
gn(x,t,b) =n-q = h[T(x,t,b) — T (x,1)] on T’y x (0,tf),
and
T(x,0,b) =To(x)  in {2x (0)} U{T x (0)}, 3)

where T'(x,t,b) and q(x,t,b) denote the temperature field and heat flux vector within problem
domain § bounded by the external boundary I' = I'r UTy UT,, cf. Fig. 1, T' denotes the temper-
ature rate, A(x,b) and ¢(x,b) are the material conductivity matrix and material heat capacity,
respectively and h(x,b) is a convection coefficient. Moreover, we assume that the boundary and
initial conditions of the problem considered are given in advance and are design independent.

A structure with voids or cracks can be treated as occupying the multi connected domain £, for
which the heat transfer phenomena are described by Egs. (1)—(3). On the other hand, the inclusion
or material defect within structural domain can be modeled by introducing two subdomains £; and
9, so that 2 = Q; U and §2; is a structure domain with conductivity matrix A; while subdomain
29 with conductivity matrix Ay represents the inclusion or defect within structure domain. In such
case we should assume that two-phase domain of structure is considered and then the set of state
equations (1) together with boundary and initial conditions (2) and (3) have to be supplemented
with additional conditions, which are satisfied on the interface separating two subdomains ; and
Q9, cf. Fig. 2, namely

(T5(x,,b)) = 0 )

(gn(x,1,b)) = n-(q’(x,1,b)) =

and ¥ noni Byl (0,7 ) (4)
(VT*(x,t,b)) = n- (T%,)

(q*(x,1,b)) = — (A) - ViT* - n- ey

Here (x) denotes the jump of enclosed quantity on interface I'y, calculated as its difference on both
sides of I'y, VpT*? is a gradient of interface temperature 7 in plane tangent to interface and 5
denotes the normal gradient of the temperature field on I';.

The identification of location, orientation and size of structural defect correspond to the case
of shape modification of external or internal boundaries of structure and therefore the techniques
applied in structural identification procedures are similar to those applied in problems of structural
boundary modifications and associated optimization problems. The detailed analysis associated with
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Fig. 2. Two-phase structure with internal defect subjected to thermal loading

shape modification and optimal design for problem described by Egs. (1)-(3) was performed in [4],
whereas the steady state problem for structures with interfaces was discussed in [2, 3|. In the present
paper we will follow the analysis presented in [2-4] for the case of structural shape optimization
with a particular form of the objective functional playing now the role of identification functional.
Some specific forms of this functional will be discussed in the next Section.

3. IDENTIFICATION FUNCTIONAL

In this paper the identification problem associated with shape and thermal properties of the in-
spected structure is considered. To identify the shape (within the assumed class of shapes) and
location of defect, the identification functional in the form of proper distance norm between tem-
perature fields within the model and real structure should be introduced. In particular, the size,
position and orientation of defect can be identified using this procedure. In general, the identification
functional can be assumed in the form of time and space integral, given in the form, cf. [5],

I(T,T",b /L / 8),T" (¢, )] dTsdt - min, (5)

where @ is an arbitrary functlon depending on the predicted and measured temperatures 7'(¢, b, s)
and T"(t, s) within assumed time period (tp, ¢7) and ', denotes the boundary portion on which the
non-vanishing space functional is defined with s denoting its boundary coordinate. The set b of time
independent design parameters specifies the structural shape. In particular the design parameters
can specify the position, orientation and scale change of optimized or identified structural boundary.
Thus, we use the time window of bandwidth ¢; — ¢, in order to gather the information required for
the identification procedure. Both the initial and final times ¢ and ¢; can be the same or different
from the initial and final times of considered transient heat transfer problem. The extension of our
analysis to the case of more general form of functional (5) involving also the functional defined
within the structural domain 2 is straightforward and will be presented in consecutive papers.

Instead of time integral in Eq. (5), also the summation of space integral over some selected time
instants £ can be used in formulation of the behavioural functional, namely

I(T,T",b) = ng / Tl s), T, A oot (6)
I'(b)

where the summation in Eq. (6) is applied on assumed number of time instances t; (k= 1,...,n)

and ¢ denote some weighting factors. Also, instead of calculating the surface integral in Eq. (6),

the temperature at some selected points P(s;), where s; (j = 1,...,m) denotes the boundary

coordinate, can be used in defining this functional. In this case, instead of Eq. (6), we can write

I(T,T",b ka ZCJ [Ty (b Tkr]-] 815000 (7)
J=
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where Tj; denote the calculated temperatures at point P(sj) of boundary I'; in time instant t
and ¢; denote the weighting factor associated with a point P(s;).

Let us note that in case of numerical integration of Eq. (5) in time or in time and space, the
expressions (6) and (7) are equivalent to standard integration formulae. For instance, using the finite
element approach in numerical analysis of structural response, the Gaussian integration procedure
is typically used for integration in space and the trapezoidal rule can be used for time integration.

In particular, the following two forms of functional (5) can be considered. The first one is asso-
ciated with distance norm of measured and calculated temperature fields and can be expressed in
the form

LT 1B /ltf \//F(b) a(s)[T(t,b,s) —T7(t,s)]>dl'y dt — min, (8)

where «a(s) is a weighting function, which can magnify or weaken the difference between the model
and measured temperature on some portion of structural boundary. The other form of identification
functional can be based on measurement of temperature differences for structure or its model at
initial and actual conditions, induced by the change of thermal properties of structure during its
service life due to possible damage. Denoting these differences by AT" and AT, respectively, the
following identification functional can be introduced,

Jro) AT (2, b, $)AT (£, 5) T,

Lty
5o o i
( / \/7 PRIt RS dl fr A b a7 dl,

dt — min. 9)

The space integral in Eq. (9) indicates the correlation between measured and model temperature
differences for actual and initial (perfect) structures. The value of this integral lies between —1
and +1, where —1 indicates the exact match, 0 corresponds to no correlation between model and
measured temperature changes and +1 indicates the antisymmetric correlation between model and
real structure at given time instant £.

The equivalent discrete form of functional (8) and (9), corresponding to general expressions (6)
and (7), can be written as

N8 ka\//r( s) [T'(tk, b, s) — T7 (tx, s)]2 AT,

n m
=Z Zgu,a [T6; (B “ T2 5 “min, : (10)

and
is ' AT tk,b,s) ATT(tk,S) dr
I(T, Tr,b) e Z jI‘(b)
\/fp(b) {AT(tx,b,5)}2dT, [fiyp) {AT" (tk, b, s)}2 dT,
] 1 (j ATkj(b) ATk-
L/ G {ATky(0))2 T, G {AT])?

-3

— min. (11)

To identify the defect position, size and other parameters, the identification functional (5) has to
be minimized. Using any gradient oriented minimization techniques, there is a need of calculating
the desired sensitivities of functional (5) with respect to a set b of parameters defining location,
orientation and other parameters of defect within structure domain. In performing this calculation,
a direct or adjoint approach to sensitivity analysis for transient heat transfer problem can be applied.
The detailed analysis for this case was discussed by Dems and Rousselet in [4] and we can recall
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here the obtained results. In particular case of void translation or rotation within structure domain,
a new class of path-independent sensitivity integrals will be also derived. This class of sensitivity
integrals will allow for integration of desired sensitivity expressions along paths situated far from
areas of rapid changes of temperature gradient caused by voids or cracks within structure domain.
In particular, these sensitivity integrals can be calculated along external boundary of a structure,
where the measured temperature distribution is easily available.

4. SENSITIVITY OF IDENTIFICATION FUNCTIONAL

Let us assume that the functional (5) is defined within varying domain Q of, in general, a multi-
phase structure with internal surfaces I'y bounded by external boundary I'. The thermal properties
of structure are assumed to be design independent, and only the shape, size, location and orientation
of external and internal structural boundaries can undergo modifications. The infinitesimal variation
of structural domain is described by a set b of design parameters as follows,

Q> Q: x* =x+vP(x,b)db,, (12)

where vP(x,b) denotes a transformation velocity field associated with shape parameter b, and
satisfying proper boundary conditions. In the case of external boundary modification, the normal
component of transformation velocity field should vanish only on fixed part of external boundary,
allowing for shape modification of remainder boundary portion. On the other hand, in the case of
interface modification, the normal component of transformation velocity field should vanish on the
entire external boundary, allowing only for modification of interior of structural domain and as the
result for modification of shape of structural interfaces.
The first-order sensitivities of functional (5) with respect to components b, of design vector b
describing the variation of structural domain can be written as
"‘f
y f— G, dt, D=2 P (13)
0

where the sensitivity G, is expressed in the form, cf. [3],
g / BT (t,b,s),T"(t, s)]dT,| = / [® 7T, + ®(divpv? — 2Hv? -m)]dT,,  (14)
I'(b) Jrm)

and Tj, denotes the sensitivity (total material derivative) of temperature field, whereas divp(x)
denotes the divergence of enclosed quantity in plane tangent to I' and 2H denotes the mean curvature
of. Ey.

The total material derivative of temperature field 7' with respect to any components b, of a set b
equals

T, =Ty £ VT VP (15)

where the local derivative T, = 9T'/0b,, is calculated for a fixed space position x. Using (15) in
Eq. (14) the equivalent expression for sensitivity G, can be obtained, namely

g, = / [®7(Tp + VT - v?) + ®(divpv? — 2Hv? - n)] dT, . (16)
Jre)

The sensitivity I, defined by Eq. (13), with G, expressed by Eq. (14) or (16) can be, in general,
calculated using the direct or adjoint approaches.

The direct method of sensitivity analysis results in direct calculating the total or local sensitiv-
ities of temperature field and then using these sensitivities in expressions (14) or (16) in order to
calculate G, and next, by means of Eq. (13), to calculate the desired sensitivities I, of identifica-
tion functional (5). To derive directly the sensitivities of temperature field T, the state equations
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defining the primary heat transfer problem within structure domain should be differentiated with
respect to the components of design vector b, constituting the state equations for the set of addi-
tional heat transfer problems, each associated with particular component b, of design vector b and
independent of a particular form of the identification functional (5). For the case of modification of
external structural boundary, differentiation of state equation (1) together with boundary and ini-
tial conditions (2) and (3) with respect to design parameter by, yields the following set of equations
describing the additional transient heat transfer problem. The conduction equation, following from
differentiation of Eq. (1), has the form

~divqy = cT)p } :
: in Q x (0,%y), 17
i ST (0,5) (17)

whereas the boundary and initial conditions, following from differentiation of Egs. (2) and (3), will
be expressed as

T’p =-VT-vP on 'y x (0, tf),
np=n-qp=—Vg, v?+q- Vroh on 'y x (0,t), (18)
Gnp=1n-dp=hTp -Tk), T& =-%ar-Vrvh  on T} x (0,tf),
and
T,=-VTy-v? in {Qx (0)} U{T x (0)}. (19)

In the case of a two-phase structural domain considered, the primary heat transfer equations are
supplemented by the interface conditions (4), and the equations of additional heat transfer problems
have to be supplemented with conditions following from differentiation of Eq. (4), namely

(T3) = —{(Ta)vn }
(qi,p) —{qnn )“n (Qf) - Vb

The solution of problems described by Eqs. (17)-(19) or (17)-(20) yields the sensitivity fields T',,
and the desired sensitivities of identification functional can be calculated. The detailed analysns
of direct approach to sensitivity analysis is presented, for instance, in [2-5]. However, one should
note that the main disadvantage of such approach is a need of solution of a number of additional
transient heat transfer problems that equals to number of design parameters used to identification
of structural defect.

Much more challenging approach for deriving the sensitivities of identification functional is of-
fered by the adjoint method of sensitivity analysis. Here, apart from solution of primary problem,
one adjoint heat transfer problem should be formulated and solved in order to calculate the sensi-
tivities (13). This adjoint problem, associated with particular form of identification functional (5),
is defined by the following conduction equation, cf. [4],

on Fs X (O,tf). (20)

~divg®(x,7.B) = TY(x,7,b)

qa(x77-a b) o= “A 3 VT”’(X, T,b) } s % (0’ f)’ (21)

supplemented with boundary and initial conditions in the form:
T (%, 7,b) = T°%x,7,b) =0 on I'r x (0,tf),
Fixrbl=n¢= qgo(x,'r, b) = -® ¢(x,t,b) on I'y x (0,%y),
gn(x,7,b) = n-q°* = h[T%(x,7,b) — TS (x,7,b)]

'y x (0,t5),
TS (x,7,b) = L& 1(x, 1, b) on" T, x (Gftp)

and

T%(x,0,b) = T¢(x,b) =0 in {Q x (0)} U{T x (0)}, (23)
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where the time coordinate 7 of adjoint problem is related to time ¢ of primary problem through the
relation

T=t;—1 (24)

and (x)" = 0(x)/01 = —90(x)/0t denotes the differentiation with respect to adjoint time 7.

For the case of two-phase structural domain, when the primary heat transfer equations are
supplemented with interface conditions (4), the equations of adjoint heat transfer problems have to
be supplemented with conditions of the form

(T . 7.0} =0

(VNI x, 1. bli=8 <T",,’f(x, T,b)>
(gn’(x,7,b)) =n-(q*(x,7,b)) =0
(@*(x,7,b)) = — (A - VT*(x,,b))

on I'y x (0,tf). (25)

Using now the solutions of adjoint heat transfer problem (21)-(23) or (21)-(23), (25) and making
use of the relation, cf. [4],

. tf
—/ TpcT? d2 +/ {/ T,]L,q,‘;0 dl'y — / TehTpdly — / q@avT - vP dl'p
Q(b) 0 Iy (b) ' (b) JTr(b)

55 / f b (qF : VI"UZ = Vrgn - V{)‘ = qn,nvz) qu s /
JTq(b) JTh(b)

ty

to

i A dI‘h} dt=0, (26)

the term containing the derivative T, in Eq. (16) can be eliminated and expressed in terms of
primary and adjoint solutions. Thus, following the analysis presented in [4], the sensitivities (13)
for the case of external boundary modification can be finally expressed in the form

I, = - / VT - vP dQ2
Ja)

t=to

oty .
+ / {— / (7 +qp) (VPT - VIE > T,nvﬁ) dl'r — / T°(qr - VrvE — Vg, - vP) dry
0 P JTq(b)

+/ g 8 dPh+/ (@,n—zﬂé)vgdr+/
J(b) r(5)

(VD - s)dE} e o 1N
BbY .

where the function ® and primary fields 7', q and f are calculated at time ¢ and adjoint fields 7
and gy are calculated in the corresponding time 7 = ¢; —t. The last integral on the right-hand side
of Eq. (27) is expanded over all intersection curves of partially smooth surface I' and unit vector s
normal to % and tangential to I' is defined by

TG Y 00 Ele T B o (28)
where a denotes the unit tangent vector on X, while ()~ and (x)* denote the enclosed quantity
calculated along X on the left and right sides of I

On the other hand, when the interface I'y undergoes the modification with external boundary
fixed, instead of Eq. (27), we obtain

I, = - / cTVT -vPdQ
Jam)

=0

by .
+ / {/ (= (Tn) @’ + (gan) T*vh — T* (qf) - Vroh) dPs} dt. (29)
0 JTs(b)
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The above derived sensitivity expressions, apart from using sensitivity analysis approaches, enable
to conduct any gradient oriented identification procedure baseed on a particular form of identifi-
cation functional (5) and arbitrary modification of shape, size, location and orientation of void,
inclusion or defect located within structure domain.

Let us note at this point of analysis, that the transition of identification procedure based on
transient heat transfer problem to the case of steady-state or quasi steady-state case will require
neglecting time integrals and time derivatives in formulated state equations and derived sensitivity
expressions.

5. FUNCTIONAL VARIATION ASSOCIATED WITH TRANSLATION AND ROTATION
OF STRUCTURAL DEFECT

Consider now two most fundamental modifications of structure domain associated with presence of
void or defect, namely its translation and rotation. Let us derive the particular form of sensitivity
expressions of an arbitrary surface functional (5) associated with these modifications. Once again,
the first variation of (5) takes the form (13), where the sensitivities with respect to design parameters
for an arbitrary domain variation are obtained using the adjoint approach and are expressed, for
instance, by Eq. (27). Now we will particularize this expression for the class of above mentioned
domain variation. First of all, let us assume the homogeneous initial conditions for primary problem,
ie. T(x,0,b) = 0in {2 x (0)} U{T x (0)}, and write the expression (27) in the global Cartesian
coordinate system within given space-time, namely

oLy . j
By~ | {/ {[(r7e — T + )i (@5 + gt Tim] o
: Jr(b)

to

+ (nig;T* — @) (ngn; — dxy) ’Uz,[} dF} dt (30)

Consider now the translation of structure domain, Fig. 3. In this case the design parameters b,
are reduced to the two components of a constant translation vector a and then the transformation
velocity fields associated with components a,, are reduced to constant fields UZ = 0pj, over domain
and its boundary I'. Since the boundary conditions of primary problem (1) are also translated
correspondingly, then their variations vanish and sensitivity of functional (5) following from Eq. (30)
can be expressed in the form

ot
($k=/f@ﬂﬂt

to

tf 4
- / { / { [(f'T(l = 2eP % QITj) 51’1) 3y (QIT,; G & ql“T,,,) (51'1] n,,;} dl‘} dt. (31)
o | /re)

0

Fig. 3. Translation of structural domain



12 K. Dems and Z. Mro6z

X2

X

Fig. 4. Translation of inhomogeneity within a structure with fixed external boundary (a) and opposite
translation of external boundary with fixed inhomogeneity (b)

Following the analysis presented in [1], it is easy to show for a homogeneous domain Q and constant
source term f, that the integral (31) wanishes for any closed surface within the problem domain,
yielding (GZ)F =0 and (Ig)r =D p=123

For a non-homogeneous domain, the integral (31) represents the sensitivity of the functional I
due to infinitesimal translation of the boundary with respect to inhomogeneity. Alternatively, we can
consider the translation of inhomogeneity or internal void with external boundary fixed, cf. Fig. 4.
In Fig. 4a, the external boundary does not vary and the void of surface I'y translates through
the distance da within the homogeneous domain. The variation of I can now be calculated by
considering the integral (31) along the void surface I'g. For the surface I'y, on which ¢, = qs.=0,
the expression (31) is simplified, namely

e 'ty .
(Bypg = / (GD)rodt, - (GF)ny = /F o, T = T +aTp) nyar. (32)
to .

Consider now an arbitrary closed surface I'y enclosing the cavity and connect it to the cavity
surface I' by the cuts I'y and I'y’. Since the integral G’ taken along the surface I'; U I'; Ul UTY

vanishes and the integrals along I'; and F;’ cancel, we obtain
(G;{')Fo 55 (G’{)Fl =0

R Y IS
(e = (G /F

(33)
|(FT* = B'T* + aT$) 8ip = (T + G Ty) 6 i .

The transition from I'y to I' can be performed similarly by cuts I'; + and I‘;“ . An alternate way to
calculate the variation of G and I is to consider the translation of the domain through the vector
—da with the cavity fixed in space, cf. Fig. 4b. The transition from the boundary surface I' to
an arbitrary closed surface I'y enclosing the cavity or to the cavity surface Iy is also obtained by
considering the cuts between these surfaces. Thus, it is shown that the functional (31) associated
with an arbitrary functional I can be taken along any arbitrary closed and piecewise smooth surface
within the problem domain providing always the same value. In this sense, the functionals G?; and I,?
are path-independent.

The similar property can be shown for the case of rotation of structure domain, cf. Fig. 5. Assume
then that the domain Qis rotated with respect to its primary configuration along z3 axis and the
boundary conditions of primary problem are also rotated correspondingly. Denoting the infinites-
imal rotation vector by dws, the components of transformation velocity field v3 associated with
infinitesimal rotation vector are expressed as vﬁ = eg370wsz. Thus, the sensitivity of functional I,
following from general expression (30) can now be presented in the form

A
(IF)r = / " (@B at

Jito

'ty : .
- / {ek:ﬂ /F(b) {[(jTa —cTT + qJTS) 0k — (q]T",t + q;Tk) :L-lé_jz] 'n,-} dF} dt. (34)

Lo
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Fig. 5. Rotation of structural domain

Assuming now that the source term f of primary problem is constant within the homogeneous
and isotropic domain €, it can be easily proved that the surface integrals (G5¥)r and (If)r defined by
Eq. (34) vanish for any closed surface within the structure domain. For the case of non-homogeneous
domain, Eq. (34) represents the sensitivity of the functional I due to infinitesimal rotation of the
boundary with respect to inhomogeneity. The transition of the integrals in Eq. (34) from external
surface boundary I' to an arbitrary closed surface within the non homogeneous domain € can be
performed similarly as for the case of translation and then the integrals (G¥)r and (I#)r can be
considered as path-independent.

Two additional remarks should be stated at this point of analysis. Firstly, the combined trans-
formation of problem domain consisting of simultaneous translation and rotation can be considered
as a pure rotation with respect to properly selected center of rotation. The proof of these prop-
erties for a general case of behavioral functional I will follow the steps similar to those presented
in [1]. Secondly, the transition of identification procedure based on transient heat transfer problem
to the case of steady-state or quasi steady-state case will require, as stated in the previous section,
neglecting time derivatives and omitting time integrals in presented formulation.

6. IDENTIFICATION PROCEDURE

The identification problem is thus formulated as follows,
minimize I(T,T",b), (35)

where temperature field T is specified by heat transfer equations (1)-(3) while 7" results from
measurements and the set of parameters b specifies the position, orientation and other parameters
of identified defect. The solution of problem (35) can be performed by means of any unconstrained
minimization procedure making use of the first-order sensitivity information, which can be derived
following the procedure proposed in two previous sections. This will require the solutions of primary
and adjoint structures at each iteration step. These solutions can be obtained using the finite element
model of identified structures and next the sensitivity calculations can be performed by calculating
the either the general expressions (16) or (27) or their particular forms (31) or (34) along external
boundary of a structure, where the measured temperatures are available for a real structure.
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7. ILLUSTRATIVE EXAMPLES

In order to justify the presented approach, two illustrative examples were considered. In the first
example, the identification of location of rectangular void in isotropic disk shown in Fig. 6 using
measurements of surface temperature along external disk boundary was performed. The prescribed
constant temperature 7° = 100°C was applied along both boundaries z; = const and convection
conditions were assumed along remaining boundary portions x5 = const with uniform environmental
temperature Too = 0°C. Thus, the identification procedure was performed considering the steady-
state case of heat transfer within structure domain and the proper forms of identification functional
and its sensitivities were simplified to this case. The conductivity coefficient X of disk material was
assumed to be equal to 1.0 W/mK, while the convection coefficient & was equal to 5.0 W/m?K. The
dimensions of disk were assumed as 8L x 4L, where L denotes the reference dimension, and four
different sizes of vertical or horizontal void were considered, namely 0.125L x 1.25L, 0.125L x 0.75L
and 0.0625L x 1.25L as well as 0.0625L x 0.75L. Two cases of void location within a ‘real disk’
were considered, namely location at z1/L = —1.8, zo/L = —0.2 and at z,/L = —1.8, z3/L = —1.2,
respectively, with the origin of coordinate system located in the middle point of disk, cf. Fig. 6.
The finite element model of disk consisted from 512 rectangular elements with total 2145 degrees
of freedom (nodal temperatures).

¥ i T

Fig. 6. Rectangular disk with translated (a) vertical void and (b) horizontal void

The measured temperature along boundaries z; = const for ‘real’ disk was numerically simu-
lated and some random absolute error of measured temperature distribution was introduced into
simulation. To verify the usefulness of different identification functionals, the expression (8) or (9),
simplified to steady-state case, was selected as the identification functional and then the location of
void along z; and zo directions was identified. In each step of identification procedure the analysis
of primary and adjoint problems was performed using the introduced finite element model of disk
and sensitivity of respective functional were calculated using expression (31) simplified for the case
of steady-state heat transfer problem.

Figures 7 and 8 show the plot of functional (8) versus the actual location of internal vertical void
0.0625L x 1.25L within model disk for identification procedure based on temperature measurements
with different level of random relative measurement error. Figure 7 corresponds to the case when the
void in ‘real’ disk was located at z;/L = —1.8, z3/L = —0.2, whereas the case of real void location
at z1/L = —1.8, z9/L = —1.2 is depicted in Figure 8. We can observe that there exists a minimum
of functional (8) corresponding to void location in a model of disk, which is closed to void location
in real structure. However, together with increasing error in measurement this minimum becomes
more flat and then the identification of void location can be less accurate. Moreover, the quality of
identification results depends also on relative location of real void with respect to the boundaries
on which the measurement is performed. This phenomenon can be easily observed when Figures 7
and 8 are compared. It should be added, that the quality of identification depends also on the
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Fig. 7. Values of distance norm versus vertical void translation along z; axis (reference void
at £ = —1.8, z2 = —0.2)

error £0.50C

(T, Fm}
| error +0.20C

3.0

error +0.10C

2.0 no error

1.0

0.0 X1

-3.0 2.0 -1.0 0.0 1.0 2:0 3.0

Fig. 8. Values of distance norm versus vertical void translation along z; axis (reference void
at r, = —1.8, T2 = —1.2)

form and number of thermal boundary conditions applied to the inspected structure. In the present
example only one set of boundary conditions was used.

The identification procedure was performed using both above mentioned forms of identification
functional with the absolute pseudo-random error of magnitude £0.1°C and £0.2°C introduced
into measurement of temperatures. The results of one-parameter independent identification of void
location along z; and z9 axis for vertical void located in ‘real’ structure at z1/L = —1.8, zo/L =
—0.2 and z1/L = —1.8, 23/L = —1.2 are shown in Tables 1 and 2, respectively. The similar results
for horizontal void are presented in Tables 3 and 4. In all cases the quality of identification was
evaluated on the basis of percentage error in void location, 100% X (Ziden — Zreal)/%real - The error
not increasing 10% was assumed as the upper level of acceptable identification, and only results
satisfying this constraint are presented in Tables 1, 2, 3 and 4.

The result of identification, based on measured temperature affected by error, can be treated
as satisfactory in most cases. Particularly, for void location at z1/L = —1.8, 29/L = —1.2, which
is relatively closed to boundary part on which the measurement was performed, we obtain the
acceptable results even for high level of measurement error. However, for the case of void location
at z1/L = —1.8, z9/L = 0.2, relatively farther located from structure boundary, the results of
identification are burdened with greater error, and for greater error in measured temperature are
simply unacceptable. This is mostly due to the fact, that the changes in temperature distribution
along lower and upper boundary portions of a disk, caused by different location of void appearing
deep inside the structure domain, are relatively small. By increasing the number of applied sets of
different thermal boundary conditions we can probably help in better identification of void location
in such cases.
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Table 1. Identification of location of vertical void located at (z1/L = —1.8, 22/L = —0.2)

Relative percentage error in void location [%)]

Void size Direction of translation Direction of translation
for functional (8) for functional (9)
Zy I T T , T

Measured temperature maximal error 0.1°C

0.125 x 1.25 1.84 —8.25 0 —-0.05
0.125 x 0.75 4.27 - 0 -0.03
0.0625 x 1.25 2.38 —5.47 0 0.05
0.0625 x 0.75 5.29 = 0 -0.04

Measured temperature maximal error 0.2°C

0.125 x 1.25 3.77 - 0 —0.05
0.125 x 0.75 8.38 = 0 —-0.03
0.0625 x 1.25 4.86 =9.79 0 —0.03
0.0625 x 0.75 8.79 . 0 —0.05

Table 2. Identification of location of vertical void located at (z1/L = —1.8, z2/L = —1.2)

Relative percentage error in void location [%)]

Void size Direction of translation Direction of translation
for functional (8) for functional (9)
A l T T ‘ D)

Measured temperature maximal error 0.1°C

0.125 x 1.25 0.46 1.28 0 0.07
0.125 x 0.75 1.56 4.21 0 0.01
0.0625 x 1.25 0.65 1.69 0 0.06
0.0625 x 0.75 2.43 4.24 0 0

Measured temperature maximal error 0.2°C

0.125 x 1.25 0.93 2i72 0 0.06
0.125 x 0.75 3.63 4.37 0 0.01
0.0625 x 1.25 1.33 3.70 0 0.06
0.0625 x 0.75 5.52 4.35 0 0
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Table 3. Identification of location of horizontal void located at (z1/L = —1.8, z2/L = —0.2)

Relative percentage error in void location [%)]

Void size Direction of translation Direction of translation
for functional (8) for functional (9)
T 1 T Ty | i)

Measured temperature maximal error 0.1°C

0.125 x 1.25 —0.29 ~ 0 -0.73
0.125 x 0.75 1.35 = 0 =

0.0625 x 1.25 —4.76 = 0 _ 0.79
0.0625 x 0.75 —4.94 — 0 -0.81

Measured temperature maximal error 0.2°C

0.125 x 1.25 -0.37 -~ 0 -0.73
0.125 x 0.75 5.59 = 0 —

0.0625 x 1.25 4.96 = 0 —-0.81
0.0625 x 0.75 -4.99 = 0 -0.83

Table 4. Identification of location of horizontal void located at (z,/L = —1.8, z»/L = —1.2)

Relative percentage error in void location [%)]

Void size Direction of translation Direction of translation
for functional (8) for functional (9)
T l op! Zy l )

Measured temperature maximal error 0.1°C

0.125 x 1.25 —0.84 0.07 0 0.01
0.125 x 0.75 ~1.69 1.05 0 0
0.0625 x 1.25 —1.06 0.08 0 0
0.0625 x 0.75 2.25 1.26 0 0

Measured temperature maximal error 0.2°C

0.125 x 1.25 -1.72 D=l 0 0
0.125 x 0.75 —4.38 2.02 0 0
0.0625 x 1.25 —=2.18 0.14 0 0
0.0625 x 0.75 —4.98 2.39 0 -0.01
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l - Defect in a real structure :: - Starting position in a model
100 I I ] 100 200

100
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200
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Fig. 9. Angle disk with void subjected to uniformly distributed temperature (a) and uniformly-varying
distributed temperature (b)

Table 5. Identification of void located in angle disk subjected to uniform temperature along two external
boundaries

Relative error of identification [%]

Direction of translation Angle of
T | T rotation

Error free measurement
L5 o v ol A
Measured temperature maximal error 0.05°C
106 | 1587 | 1746
Measured temperature maximal error 0.1°C

%7 b 481560 1] 01612

Table 6. Identification of void located in angle disk subjected to uniform temperature along left external
boundary and varying temperature along lower boundary

Relative error of identification [%)]

Direction of translation Angle of
z1 | Zo rotation

Error free measurement
T o . 3.86
Measured temperature maximal error 0.05°C
s P R R o
Measured temperature maximal error 0.1°C

228 1 29 . | 3.86
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In second example, an angle disk with rectangular void within its domain, cf. Fig. 9, was con-
sidered. The disk was subjected to two different sets of thermal boundary conditions, shown in
Figs. 9a,b, respectively. The localization and orientation of the void should be identified, allowing
for its translation and rotation in model disk. Similarly as in the previous example, the identification
functional was selected in the form of ‘distance norm’ (8) and the measured temperature along ex-
ternal boundaries for ‘real’ disk was numerically simulated, introducing some random absolute error
of measured temperature distribution into simulation. The results of identification procedure are
presented in Tables 5 and 6. The obtained results indicate the similar nature of thermal identification
as in the previous example.

8. CONCLUDING REMARKS

The present paper is concerned with the defect or damage identification method using thermal re-
sponse of a structure. Particularly, the temperature distribution caused by internally applied heat
sources or prescribed temperatures on external boundaries can constitute the basis for identification
of location, orientation and size of internal voids and defects within the structure domain. Since the
proposed identification procedure is gradient-oriented, then the sensitivity analysis has to consti-
tute its essential part. The class of path-independent sensitivity integrals associated with arbitrary
behavioral functional in the case of steady-state heat transfer problem proposed earlier by Dems
and Mroz [1], was extended for the case of transient heat transfer problem and utilized for thermal
identification purposes. The detailed analysis of such approach will be presented in consecutive
paper.

The success of thermal identification depends on how the change of boundary temperature distri-
bution is sensitive to the changes in void or inhomogeneity location. This sensitivity can be influenced
by the proper selection of applied boundary conditions during measurement of real structure and
calculation of its model. These phenomena will be also analyzed in details in consecutive papers.
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