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In this paper, we present finite element formulations for general three-dimensional convex polyhedra for use
in a common finite element framework that are well suited, e.g., for modeling complex granular materials
and for mesh refinements. Based on an universally applicable interpolant for any convex polyhedron,
different interpolation schemes are investigated in the context of nonlinear elastostatics.
The modeling benefits and the numerical performance regarding the mechanical response and the

computational cost are analyzed by several examples.
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1. INTRODUCTION

For today’s simulations the finite element method is a very powerful and well-established method
for the approximate solution of partial differential equations. The known standard element for-
mulations are very robust and efficient at low computational costs, but usually limited to simple
geometries like triangles and quadrilaterals in 2D and tetrahedra and hexahedra in 3D, respectively.
In this paper we aim at extending the available element geometries to arbitrary convex polyhedra
in 3D.

This new class of polyhedral finite elements is very powerful for different applications. Providing
great flexibility for technical meshing problems, these elements may cover a huge range from struc-
tured polyhedra, e.g., for mesh refinements (Fig. 1a), up to complete random crystalline shapes
mimicking polycrystalline granular microstructures (Fig. 1b). Those structural characterizations
of real grains may be obtained, e.g., by a focused ion beam-scanning electron microscope (FIB-
SEM, [5, 6]) or computed tomography (CT, [23]). Polyhedral elements can also be applied onto
optimal meshes generated by the adaptive Delaunay tessellation (ADT) proposed by Constantiniu
et al. [2]. An additional benefit of our polyhedral elements is the enclosed formulation on the el-
ement level leaving the surrounding finite element discretization unaffected by, e.g., suppressing
multi-point constraints for hanging nodes.

Due to the unavailability of analytic shape functions for arbitrary polyhedra, alternative inter-
polation schemes are necessary. For irregularly scattered datasets, many mesh and element-free
interpolation schemes exist in the field of scientific visualization. The most known group is formed
by natural neighbor interpolations proposed by Sibson [16, 17] that have been modified by Wat-
son [28]. Sibson interpolations were first introduced by Traversoni [22] and Sambridge et al. [14]
in the Galerkin-type natural neighbor, also known as natural element method (NEM), extended
by Sukumar et al. for continuum mechanical problems [19, 20]. A different approach named Lapla-
cian and non-Sibson interpolants were used by Belikov et al. [1] and Hiyoshi and Sugihara [7],
respectively. The polygonal finite element interpolants developed independently by Sukumar and
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a) b)

Fig. 1. Applications for polyhedral finite elements: a) transition elements for mesh refinement near singular-
ities (color indicating nodes per element: 8 (blue), 9 (green), 13 (orange)), b) granular material discretization

(8 (dark blue)-38 (dark red) nodes per element).

Tabarraei [21] and Sukumar and Malsch [18] are also based on the Laplacian and non-Sibson in-
terpolation.
Another group are generalized barycentric coordinates, for which the first fundamental idea for

the usage in a finite element framework was already made by Wachspress [24]. Generalized rational
barycentric coordinates on arbitrary polygons and polyhedra have been developed, generalized
and analyzed in the works of Warren [25, 26], Meyer et al. [11], Floater et al. [4, 8], Lipman [9],
and Warren et al. [27]. A very general approach for the construction of 2D interpolants has been
presented by Malsch and Dasgupta [3, 10] that are also suitable for non-convex domains with holes.
On the topic of two-dimensional polygonal finite elements Sukumar et al. [21] have con-

tributed significant work, and also boundary element based approaches exist on polygons, see,
e.g., Weißer [29].

2. PROBLEM DESCRIPTION

We consider a general nonlinear elastic problem for 3D continua, Fig. 2.

Fig. 2. 3D elastic body.

Its weak form and finite element discretization is based on the equality of the internal and
external virtual work δWint = δWext. We describe our problem in the reference configuration, thus
with the deformation gradient

F =
∂x

∂X
= I +

∂u

∂X
(1)
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we obtain the internal and external virtual work in terms of the Green-Lagrange strain E =
1

2

[
F TF − I

]
and the second Piola-Kirchhoff stress tensor S as

δWint =

∫

Ω

δE : S dΩ (2)

and

δWext =

∫

Ω

ρδu · b dΩ+

∫

Γσ

δu · t dΓ (3)

with the virtual displacements δu, the prescribed displacements u on the Dirichlet boundary Γu,
the external surface stresses t on the Neumann boundary Γσ, and the body forces b.
Together with the constitutive equation S = S(E) and the material tangent operator

C =
∂S

∂E
, (4)

the problem is closed.
Considering an isoparametric displacement-based discretization into ne elements,

Ω =

ne⋃

e=1

Ωe, (5)

and with the still to be determined shape functions N I for the I element nodes, the variation δE

in (2) can be arranged in Voigt notation in terms of the BI -matrix,
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, (6)

where N I
,i =

∂N I

∂Xi
with i = 1, 2, 3, as

δÊ = BIδuI . (7)

With the corresponding second Piola-Kirchhoff stresses Ŝ in Voigt notation, this leads to the
element’s internal nodal force vector

f I
int =

∫

Ωe

BI Ŝ dΩe. (8)

The linearization of (8) results in the associated local tangential stiffness

KIJ =

∫

Ωe

[
∂N I

∂X
· S ·

∂NJ

∂X
I +

[
BI

]T
ĈBJ

]
dΩe, (9)

which is needed for the iterative solution of the nonlinear system of equations.
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3. POLYHEDRON CONNECTIVITIES

Standard conventions for the representation of elements are only available for a few special polyhe-
dral configurations, e.g., hexahedra or tetrahedra. In contrast to two-dimensional polygons, where
we can simply settle a clockwise or counter-clockwise numbering of the nodes for any polygon, the
description of arbitrary 3D polyhedra is more challenging, as there are no limitations or rules for
the connectivities between nodes, edges and facets. For an arbitrary convex polyhedron, Fig. 3, the
set X I consists of all polyhedral nodesXJ that are connected by flat facets with the nodeXI . The
set FI includes all adjacent facets F to node XI with the cardinality nI = #FI , see Fig. 4a. For
the node-to-facet connectivities we apply a polygonal counter-clockwise numbering with respect to
the associated outward pointing polar facet normal vector nF .

Fig. 3. Sets of polyhedral representation for the node XI : connected nodes in X
I indicated with squares,

adjacent facets in F
I shaded, counter-clockwise node numbering on each facet (here shown for FI(2)).

a) b) c)

Fig. 4. Geometric connectivities and measures for node XI and evaluation point X: a) nomenclature of
adjacent facets for node I , b) nodal volume ∆I(FI), c) point-to-facet volume rF .

With the facet-to-node connectivities FI a classification of polyhedra is possible. We obtain for

max
(
nI

){ = 3 simple

> 3 complex
(10)

polyhedra. As we do not limit our approach to simple polyhedra, we have to cope with the problems
caused by complex polyhedra for three dimensional interpolants.

In the following sections, superscribed Roman letters indicate a variable directly linked to a
node I or a facet F , calligraphic letters belong to geometric sets like sets of the adjacent facets.
Index notation for spatial components of vectors and tensors are usually avoided by the usage of
bold and bold capital letters, respectively.
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4. GENERAL THREE-DIMENSIONAL INTERPOLANT ON ARBITRARY POLYHEDRA

The challenge for the creation of polyhedral elements is to gain control of how to interpolate given
nodal values inside a convex polyhedral domain.

4.1. General Interpolation Properties

In any domain, the function value at an interior point is evaluated as the sum of the weighted
function values f at the given discrete nodes XI ,

f(X) =
∑

I

N I(X)f(XI). (11)

Thereby, the interpolant and its weights N I have to fulfill several basic properties:

• partition of unity: the sum over all interpolation weights equals one
∑

I

N I = 1,

• nodal function value interpolation: the evaluation of the interpolant at given node locations XJ

provides the corresponding nodal value, thus

N I(XJ) = δIJ ,

• smoothness: the derivatives of the interpolant exist,

∃
∂N I

∂X
,

• linear completeness: The interpolant exactly reproduces linear functions in the domain.

As already shown in Sec. 1, various approaches for 3D interpolants exist, which are often limited to
simple corner connectivities. For our aim to construct efficient finite elements in 3D, two drawbacks
exist: first, those 3D interpolants are very expensive in comparison with usual interpolants used
for standard elements like trilinear shape functions for a hexahedron, and they are often limited to
simple corner connectivities.

4.2. Extension of Malsch interpolant to convex three-dimensional domains

Our interpolant shall also be suitable for complex corner connectivities and we therefore refer to
the 2D interpolant proposed by Malsch et al. [10] that is the foundation for our extension to 3D.
It provides a generally applicable interpolant for any polyhedron with any internal facet and nodal
configuration.
For the interpolant, we resort to geometric measures that are arranged in functions that are

zero or minimal on facets or nodes. Those minimum functions are then combined to define linearly
independent interpolants. The needed measures are all of geometric nature and can be classified
as invariant measures inside the polyhedral domain (facet area AF , nodal volume contribution kI)
and variable measures depending on the evaluation point (point-to-facet volume rF ).
The interpolation at the interior point X is defined on the discrete nodal data and geometric

measures. It can be generally established as

N I(X) =
kIsI(X)∑
J k

JsJ(X)
(12)
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with the auxiliary boundary functions sI(X) and the constants kI . The purpose of the functions
sI is the consideration of the boundary behavior: for an evaluation on a boundary facet F , (11)
merely depends on all N I of the adjacent nodes to F . Otherwise all weights of non-adjacent nodes
vanish. Thus, sI can be constructed as

sI(X) =
∏

F /∈FI

rF (X) (13)

with the product of different facet functions rF where each vanishes on its associated facet F .
With the conditions kI > 0 and rF ≥ 0, (12) renders a smooth and bounded interpolation. Besides
this, the only restrictions for rF are C∞ continuity inside the domain and C0 continuity on its
boundaries.
To specify this general approach for convex 3D polyhedra, the constant kI is the nodal volume

contribution that is defined by the volume of the convex hull of the node with its adjacent nodes
∆I

(
FI

)
, see Fig. 4b, as

kI = κI∆I
(
FI

)
, (14)

where κI penalizes the nodal cardinality by

κI =

[
1

nI

]3
. (15)

Furthermore, the point-to-facet volume can be used as the facet function rF in (13), see Fig. 4c.
Introducing the abbreviations

bI :=
kIsI∏
rF

=
kI∏

F∈FI rF
(16)

only in terms of adjacent entities, (12) may be re-written as

N I(X) =
bI(X)∑
J b

J(X)
. (17)

On convex simple polyhedra, bI corresponds to the definition of the barycentric coordinates in [25].
In contrast to (12), this simplification is not valid on the boundary where the denominator of (16)
equals zero.

4.3. Analytic derivatives

For our interpolant we can directly compute the derivatives and do not need approximative finite
difference approximations. With (17) the derivatives are given by:

∂N I

∂X
=

∂bI

∂X

∑

J

bJ −

[
∑

J

∂bJ

∂X

]
bI

[
∑

J b
J ]2

, (18)

where with the gradient of bI follows

∂bI

∂X
= −bI

∑
F∈FI


∂rF

∂X

∏

G∈FI\F

rG




∏
F∈FI rF

. (19)
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The derivative of the volume
∂rF

∂X
can be computed by the decomposition into tangential and

normal directions with respect of the facets’ orientation, see Fig. 4c. Therefore, we obtain with
Cavalieri’s principle for the pure volume shearing in tangential directions tFi

∂rF

∂tFi
= 0. (20)

With a Taylor expansion in normal direction

rF (X + dnF ) = rF (X) +
∂rF

∂nF
dnF +O2, (21)

the known pyramidal volume definition and the facet area AF , we can identify the derivative of the
facet volume function in normal direction as

∂rF

∂nF
=

AF

3
nF , (22)

which consistently applied in (19) and (18) leads to the the overall derivative
∂N I

∂X
in terms of the

local facet’s
[
nF , tF

1
, tF
2

]
-coordinate system which can easily be mapped to the global coordinate

system.

4.4. Interpolation examples

To test the constructed interpolant, we apply it to two different examples. The first domain is a reg-
ular hexahedron, Fig. 5. Figure 5a shows the results for shape function N6 and the corresponding
derivative plot, Fig. 5b, where the arrows are indicating both the direction of the maximal as-
cends and the magnitude by its size. Compared with the trilinear analytic shape functions merely
rounding errors have been observed both for the shape function and its derivative (normalized error
ε≪ 10−15).

a) b)

Fig. 5. Interpolants and gradients inside a simple hexahedron: a) interpolant N6, b) gradient
∂N6

∂X
.

The second example deals with the mentioned arbitrariness regarding the complexity of the
polyhedron: The given pyramid, Fig. 6, with a quadratic bottom facet is complex due to the four
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adjacent facets to the top node X5. The shown interpolant is also suitable for this group of polyhe-
dra: although no analytic comparative statement is available, the interpolant (a) and its derivative
(b) show a good behavior for qualified points. However, it does not fulfill the linear completeness
criterion exactly – for the investigation of the linear edge behavior on edges connected to complex
nodes (the observed maximal normalized error was below five percent) – as the formulation itself
does not imply this. Nevertheless, accepting this slight restriction for complex and without any
restriction for non-complex polyhedra, we can proceed to use the interpolant for our polyhedral
domains.

a) b)

Fig. 6. Interpolants and gradients inside a complex pyramid: a) interpolant N5, b) gradient
∂N5

∂X
.

5. POLYHEDRAL FINITE ELEMENTS

With our proposed three-dimensional interpolant on arbitrary convex polyhedra we have obtained
for each polyhedral element access to (8) and (9) where the interpolants N I and their derivatives
N I

,i on Ωe are essential. We can now devise a finite element formulation, where, at this stage, an
adequate quadrature strategy for the element domains Ωe is still missing.

5.1. Polyhedral interpolation

One possibility is based on the proposal by Sukumar [18, 21] extended to three dimensions. The
basic idea to handle each polyhedral domain Ωe is its decomposition into tetrahedral subdomains
Ωe. To obtain an adequate decomposition of the polyhedral domain, an auxiliary node is defined
with (17) by

XA =
∑

I

N I
(
XA

)
XI , (23)

where the choice of the position inside the polyhedral is arbitrary, e.g., at the barycenter, which
usually leads to a good Delaunay tessellation for the union of global and auxiliary nodes.
On the resulting tetrahedral subdomains, known quadrature rules like a Gaussian quadrature

can be used for the integration of a function f ,

∫

Ωe

f dΩe =
∑

G

f
(
X

G
)
wG. (24)
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The mapping J =
[
X1 | X2 | X3

]
with the physical element’s affine basis vectors Xi along the

edges of the physical subdomain Ωe projects the generic Gaussian quadrature points, given in the

Cartesian ξi-coordinates, to the points X
G
in Ωe with their modified weights w

G = |J |wG, Fig. 7.
To express the physical integration point as weighted nodal coordinates, the proposed polyhedral
interpolant (12) can be used for any convex polyhedral shape. This directly leads to a polyhedral
element stiffness according to (9) in terms of the global polyhedral nodes’ displacements.

ξ1
1

1

1

ξ3

ξ2

J

X1

X3

X2

X
A

Ωe

X3XX

X
A
XX

Ωe

Fig. 7. Mapping of quadrature point into physical polyhedral element.

5.2. Subelement technique

For comparison reasons we resort – besides standard hexahedral element formulations for adequate
(regular) meshes – to a subelement technique that uses the same basic idea of a domain decom-
position, but now not only for integration reasons but for a complete tetrahedral submesh. We

again introduce an auxiliary internal node X
A
that is interpolated by the global nodes by (23).

With the use of isoparametric concept, the displacement field at the auxiliary node is analogously
constrained,

uA =
∑

I

N I
(
XA

)
uI . (25)

Based on this set of global and auxiliary nodes inside the polyhedron, a tetrahedral submesh can
be established within the polyhedron by a common Delaunay tessellation, with the known linear
tetrahedral shape functions

N
1
= 1− ξ1 − ξ2 − ξ3,

N
2
= ξ1,

N
3
= ξ2,

N
4
= ξ3,

(26)

here given in the generic coordinate system, can be used for a local interpolation inside the submesh
alternative to (17); in this context (⋆) indicated variables on this submesh.
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With the auxiliary internal node being part of the submesh, this procedure would affect the
solution of the global system of equation as the size of the global stiffness matrix is increased by
non-polyhedral node entities. Otherwise the direct calculation of a local polyhedral stiffness matrix
like

[
KII

T KIA
T

KAI
T KAA

T

] [
uI

uA

]
=

[
f I

fA

]
, (27)

with a subsequent static condensation of the entities on the global nodes is possible. On the subele-
ments we can then obtain the residual vector f I

int and the corresponding tangential stiffness matrix
KIJ that is only depending on the nodes of our global finite element system, that can be assembled
and solved like any other domain. This approach reduces the numerical efforts for polyhedral in-
terpolation to a minimum as (17) has only be evaluated once and also this interpolation piecewise
satisfies the interpolation properties from Subsec. 4.1.

6. NUMERICAL EXAMPLES

In the following sections, our proposed element formulations shall be verified and tested on sev-
eral examples. The formulation with polyhedral interpolation (according to Subsec. 5.1) will be
indicated as PI elements. The formulation with tetrahedral subelements is termed SE element.
For comparison, trilinear hexahedral standard elements H8 and locking free hexahedral elements
H8lf with reduced integration and hourglass stabilization proposed by Reese [12] have been used.
As material model we used, for our examples, a non-linear Neo-Hookean material model with the
stored energy density function

W (C) = µI +
[
λI3 −

√
I3 − µ

]
C−1. (28)

Here the Cauchy-Green deformation tensor follows as C = F TF , its third invariant I3 and the
Navier-Lamé material constants are µ and λ.

6.1. Cook’s membrane based on regular mesh

As the described polyhedral finite element formulations are completely independent of the real
polyhedron’s shape, we can also verify our element types by a comparison with a standard element
mesh.
We consider the classical Cook’s membrane (see Fig. 8a, thickness 1 mm) which is fixed on the

left hand side and loaded with a distributed vertical load where
∑

F = 250 N. The Navier-Lamé
constants are given by µ = 80.194 N/mm2 and λ = 120.291 N/mm2 and the whole domain is
meshed by a n × n × 1 hexahedral mesh. The reference result for the vertical displacement of the
right tip R is uR

3,Ref = 16.0 · 10−3 mm [13].
Figure 8b shows the result of a convergence study normalized to the reference result for different

meshing parameters n and the different element formulations. It can be seen that the polyhedral
interpolated PI elements provide the same system response as the trilinear hexahedral H8 elements.
Otherwise the SE elements shows a good and even better behavior for technically relevant mesh
refinements. All polyhedral formulation show a good convergence for denser meshes and also ob-
vious, all formulations are not yet competitive with advanced standard element formulations like
the H8lf element. Regarding the computational costs, we examine the relative CPU times of each
formulation normalized to the H8 CPU time (Table 1, column 2) and the operation distributions
on three categories (’geometric’, ’quadrature’, ’overhead’, columns 3–5). The PI elements with ana-
lytic derivatives have a tremendously high τrel slightly below 150 due to plenty geometric operations
inside the necessary and sumptuous implementation of (17). Otherwise the SE elements are fast,
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a) b)

Fig. 8. Cook’s membrane: a) problem description (n = 4), b) convergency study for different element types.

Table 1. Relative CPU time τrel and operation distribution for proposed element types and trilinear
hexahedral element.

element τrel geometric quadrature overhead

PI 144 96% 3% 1%

SE 15 71% 27% 2%

H8 1 62% 30% 8%

but their numerical result suffer from general (distorted) meshes, see next section, but a great sen-

sitivity considering the choice of the auxiliary node X
A
is not neglectable and has to be examined

in future works.

6.2. Polyhedral examples on arbitrary meshes

The comparison with the classical Cook’s membrane does not cover the whole scope of the element
abilities and thus we want to demonstrate, in the following section, their powerful possibilities with
some real polyhedral examples.

6.2.1. Cantilever

Our first example shows the abilities of our elements: we still have the very simple domain geometry
of a cantilever (dimensions 10 × 1 × 1 m, Neo-Hookean material model (28), Young’s modulus
Y = 4 · 106 N/mm2, Poisson ratio ν = 0.3) which is clamped on the left side and loaded with
a vertical line load p on the right top line, but the underlying mesh consists of highly irregular
polyhedra. The polyhedral mesh consist of 126 elements that were constructed by Voronoi cells
around 126 randomly distorted seed points which leads in the presented example to 649 nodes
with the distribution of nodes per elements (shown in Fig. 9) which cover the range from 8 to 34
nodes per element. In the technical realization, the freeware tool TetGen [15] has been used for
the Delaunay tessellation and the initial generation of its dual Voronoi cells. In this constructed
mesh, the individual grain sizes may be controlled by the seed point locations and are comparable
to structural height of for example a µ-device.
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Fig. 9. Deformed polyhedral cantilever colored by u3-displacement magnitude with nodes-per-element
histogram.

To enable a comparison to an analytic result, we limit the vertical line load p = 100 N/m to
the scope of linear elasticity: the analytic vertical reference displacement at the front tip of this
Bernoulli beam is then u3,Ref = 1.0 · 10−3 m. For the shown example, we obtain a good numerical
and mechanical performance with respect to the element count (Fig. 9) for the PI elements. The
SE elements suffer massive locking effects, which urges future investigations or an improved mixed
variational formulation on the submesh.

6.2.2. Truncated cuboctahedra and icosahedra structures

Our final examples for our polyhedra now also have a polyhedral or very complex domain, where
by each subdomain that originally belongs to an arbitrary grain or crystal is also meshed as one
polyhedral element. Unfortunately, we are losing the possibility to compare numerical and analytic
results.

The first arrangement consists of 9 elements with 240 nodes, where the ball-shaped elements rep-
resent a 48 node omnitruncated cuboctahedron element each (characteristic cell dimension 1 mm)
that appear in nature, e.g., as crystal morphology of galena (Pb2S). The spherical elements are
linked by 12 node prisms (average edge dimensions 0.7 mm, material properties for all elements:
Young’s modulus Y = 4 · 106 N/mm2, Poisson ratio ν = 0.3). The upper face is loaded by constant
and uniform pressure distribution (p = 100 N/mm2) and the outer element nodes on the bottom
are beared floatingly, Fig. 10a.

The second generic example are 15 icosahedra (characteristic edge length 0.1 mm, Young’s
modulus Y1 = 4 · 106 N/mm2, Poisson ratio ν = 0.3) bridged by 28 octahedra (same properties as
icosahedra except Young’s modulus Y2 = 2Y1) with concentrated tangential forces at the shown
nodes on the top satellite elements (

∑
F = 12 N) and fixed bearings on the bottom nodes near the

rotational axis, Fig. 10b.

Each of these two examples shows expected mechanical responses, and we want to emphasize,
that although they only consists of polyhedral elements the developed formulations have no effect
on the surrounding finite element framework, thus any combinations and complications with other
element types (like mixed meshes with standard elements) and other topics beyond pure nonlinear
elasticity (like zero-thickness contact elements at the elements’ interfaces) are allowed and possible.
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a) b)
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Fig. 10. Polyhedral structures: a) deformed truncated cuboctahedra structure bridged by prisms loaded by
top pressure p and floatingly beared on bottom (color corresponds to displacement magnitude), b) deformed
28 icosahedra linked by 15 octahedra loaded by tangential loads and fixed at central bottom nodes (color

indicating tangential displacement).

7. CONCLUSION

With respect to arbitrary convex polyhedral elements, we have proposed a general 3D interpolant
and used it for the construction of two different finite element formulations for convex polyhedra in
nonlinear continuum mechanics that are compatible with the common finite element framework. As
has been demonstrated, easy discretization of polyhedral structures is possible due to a complete
shape independence which extends the standard element shapes significantly. The three-dimensional
interpolant provides good numerical results but suffers from high computational costs especially for
many expensive geometric operations. We showed a modified interpolation strategy that enables us
to decrease the CPU times but that is accompanied with unfavorable limitations in the mechanical
responses.
The presented element formulations are very prolific for general arbitrary meshes and have still

development potential. Therefore, the usage of mixed variational principles has to be considered.
Also the extension of the underlying nonlinear elastic Neo-Hookean to general ortho- and anisotropic
material models for the simulation of directional material properties by, e.g., sheet rolling processes
is desirable.
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