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In the paper the problems connected with numerical modelling of bio-heat transfer processes are discussed.
The mathematical model of phenomena discussed bases on the Pennes equation, at the same time the
steady and transient tasks are considered. The basic equation is supplemented by the adequate geometrical,
physical, boundary and (in the case of transient heat transfer) initial conditions. In the first part of
the paper the examples of direct solutions are discussed. Next the possibilities of sensitivity analysis
applications in the domain of bio-heat transfer are presented. In the final part the selected solutions of
inverse problems are shown. On the stage of numerical simulations both in the case of direct and inverse
problems, as a rule, the different variants of the boundary element method have been used.

1. GOVERNING EQUATIONS

Heat transfer processes proceeding in the domain of biological tissue are described by the following
Pennes equation [18, 60],

T (z, 1)

z€N: ¢(T) 5

T V[/\(T) VT(SD., t]] + GCB[TB == T{$! t)] + Qm ) (1)
where 2 is a tissue domain, ¢ is a tissue volumetric specific heat, X is a tissue thermal conductivity, G
is a perfusion coefficient, cp is a blood volumetric specific heat, T is an arterial blood temperature,
Q:m is a metabolic heat source, T', z, t denote temperature, spatial co-ordinates and time.

If one considers the biological tissue freezing (e.g. cryosurgery treatment) then the right hand side
of Eq. (1) must be supplemented by the term controlling the freezing process, namely [6, 10, 24, 25|

Ofs(z,t)

Qf =L T ) (2)
where L is a volumetric latent heat, fs is a volumetric fraction of frozen state at the neigbourhood
of considered point from tissue domain.

The basic assumption of such model of bio-heat transfer is that the tissue is supplied by the big
number of small blood vessels. In the case of large vessels existence in the domain analyzed, Eq. (1)
must be supplemented by the additional one concerning the vessel (or vessels) domain [38, 39, 54].
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On the outer surface of the system the boundary conditions in general form

oT (z,t)

an. = (3)

r€Elg: {T(:}:,t},

are given (07'/0n denotes a normal derivative).
In the case of transient problems the initial condition

t=0: T(x,0)="To(z) (4)

is also known.

2. EXAMPLES OF DIRECT PROBLEMS NUMERICAL SOLUTIONS

2.1. Simulation of thermal processes in the skin tissue subjected to an external heat
sources

The first example concerns the heating of skin subjected to an external heat source. The source
is of duration #y and it generates on a skin surface the temperature T'(0,¢). When the exposure
ended, the cooling of skin surface proceeds according to the Newton formula (3rd kind boundary
condition). The thermophysical parameters of successive skin layers (epidermis, dermis and sub-
cutaneous region, Fig. 1) are different [42, 62]. The knowledge of heating (cooling) curves at the
boundary points on the contact surfaces epidermis-dermis and dermis-sub-cutaneous region allow
to predict the burn degree on the basis of so-called Henriques integrals [13, 14, 29, 31, 32|.
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Fig. 1. Sub-domains of skin

Thermal damage of skin begins when the temperature at the basal layer (the interface between
epidermis and dermis) rises above 44 [°C]| (317 [K]) and Henriques found that the degree of skin
damage could be predicted on the basis of the integrals

t

AE t AR
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where AE/R |K] is the ratio of activation energy to universal gas constant, F,, P [1/s] are the
pre-exponential factors and they are defined as follows,

B0 T, < 317, p {0 T < 317, (6)
¥~ 11.43-10? T, > 317, 4=--2:86 - 105% Ty > 317,

while 7}, [K] and T [K] are the temperatures of basal layer and dermal base (the interface between
dermis and underlying sub-cutaneous region), respectively. First degree burns are said to occur
when the value of the burn integral is from the interval 0.53 < I;, < 1, while the second degree
burns when I, > 1. Third degree burns are said to occur when Iy > 1.

So, in order to determine the values of integrals I and I, the heating and next the cooling curves
for the basal and dermal surfaces must be known. The problem can be solved using the numerical
methods. Taking into account the geometry of multilayer domain €2, the 1D task is considered and
this simplification is sufficiently exact. So, the following system of Pennes equations is taken into
account [14, 31-33, 35, 62],

T, (z,t) N 0T, (z,1)

Bl G gy~ =g

+ GecB[TB =T Tg(fb’, t)] T ch ) (7)

where e = 1,2, 3.
The mathematical model is supplemented by the following boundary-initial conditions

- the condition on the skin surface

Tl(ﬂ:,t)=To t<tp, ]
ailz,t) = —aTilz, 1) — T®] &> tg, (8)

T =

where T is the boundary temperature resulting from the contact between the skin surface and
external heat source, ty is the duration of thermal pulse, q;(x,t) is the heat flux between the
skin and environment after time ¢y (o is the heat transfer coefficient, while 7% is the ambient
temperature),

the condition of ideal contact on the basal layer and dermal base
) OTe(z,t) 3 0T 41 (z,1)
E=De: : Tz oo oz : 9)
Te{ﬂ:st} o= e+](ﬂ?,t) 3
where e = 1,2,
— the condition on the external surface of sub-cutaneous region

z=z3: Ti(z,t)=Tpg, (10)

|

the initial condition
t=0: Ti(z,0)=To(z), Ta(z,0)="Tyw(z), Ti(z,0)="Ts(z), (11)

where Tyo, Ty and T3p are the initial temperatures of successive sub-domains.

As it was mentioned on the stage of numerical computations the BEM (the first scheme of the
BEM) has been used [2, 5, 21]. The details concerning this algorithm in the case of non-homogeneous
domains can be found in [21, 29].

The input data used in presented below examples have been taken from [62]. The skin constitutes
a composition of three layers of thicknesses L; = 0.1 [mm|, Ly = 1 [mm], L3 = 10 [mm)]. The initial
temperature distribution is a parabolic one and at point corresponding to skin surface T' = 32.5 [°C],
while at point corresponding to the total skin thickness T' = Tp = 37 [°C].

The solution presented concerns the heating determined by heat source generating the skin
surface temperature Ty = 70 [°C] during exposure time o = 2 [s]. In Fig. 2 the cooling curves T}(t)
and Ty(t) are shown. It turned out that after the time 1.15 [s] the second degree burn takes place,
but the third degree burn doesn’t appear - Fig. 3.
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2.2. Numerical simulation of freezing process

The well known phenomena, concerning the destructive effect of freezing on biological tissue, account
for the broad application of cryogenic surgery. Tissue reactions to cryosurgical process depend on
temperature changes and on rates of temperature changes caused by freezing probes. Below, the
example of 2D solution (axially-symmetrical task) will be shown [11, 12, 23]. In order to solve
the problem the mathematical model has been transformed to the enthalpy convention. On the
stage of numerical computations the boundary element algorithm for parabolic equations has been
used, while the 'non-linearities’ of freezing and thawing mathematical description are taken into
account by introduction of the numerical procedure called the alternating phase truncation method
(APTM) [41, 61]. The basic energy equation describing the process is of the form (see: equations (1)
and (2))

: :t 3 y |- ,f?
z€Q: T ‘E((;_} = V[\T) VT(z,t)] + L % .
One can see that the perfusion and metabolic heat sources are here neglected (they are essentially
less than the term controlling the freezing process). If one assumes the knowledge of function fg in
the temperature interval [T, T1] (the beginning and the end of freezing) then

(12)

(e, s ome
and finally

c€Q: C(T) Wg?‘) = VIAT) VT(z, 1)) (14)
where

C(T) = o(T) - L % (15)

is called the substitute thermal capacity. Because the last equation concerns the whole tissue domain
therefore this approach is known as the one domain method [19, 37, 51].
The volumetric physical enthalpy of tissue is defined as follows

T
2(1) = [ cuwa (16)
where 7} is an arbitrary assumed reference level. Introducing this function to Eq. (14) one obtains
H(z,t
z€eN: a—ég%—) = V|[a(T) VH (z,1)] (17)

where a = A/C is the diffussivity coefficient.

The boundary and initial conditions should be also transformed to the enthalpy convention. The
simple mathematical manipulations can be found, among others, in [21, 51].

In Figs. 4 and 5 the courses of C(T') and A(T') [6] are shown. In order to use (on the stage of
numerical computations) the standard BEM a.lgonthm for linear parabolic equations the alternating
phase truncation method (APTM) can be applied. The transition from ¢ to t+At requires the solving
of three linear problems for the parameters corresponding to the natural state of tissue, intermediate
phase and frozen region and after every loop the results are in a certain way corrected. The details
of APTM can be found in [41].

The example presented below concerns the external cylindrical cryoprobe, the syvstem considered
is shown in Fig. 6. The surface of cryoprobe is in ideal thermal contact with a skin surface and the
temperature of contact surface changes according to formula

Ty(t) =Te —mt, t<t,,

z=0: Tb(t) = Tond + V2t y le <t <iena, (18)
Tb(t} = Tc 3 t 2 tend,
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~

A[W/mK]
s

o
-]

0.6

0.3

il 3 -8 -6 -4 -2 ) T[°C]

Fig. 5. Thermal conductivity of tissue

where T, is the initial temperature of cryoprobe surface (T, = 37 [°C]|), v; is the cooling rate (v; = 5,
10, 15 [K/min]), ve is the heating rate (vy = 30 [K/min]), t. is the time for which the temperature
of skin surface reaches —63 [°C], while teng is the time for which this surface reaches the initial

temperature T, .

In Fig. 7 the part of the results is presented. The boundary temperatures of cryoprobe are marked
by the heavy lines. The cooling and heating curves for the points z = 0, 5, 10, 15, 20 [mm]| (axis
of symmetry) are also shown. The others problems of freezing process numerical simulation are
discussed in papers [10-12, 23-25, 37, 47-49).
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Fig. 7. Cooling and heating curves for vy = 5 [K/min|

2.3. Thermal interactions between blood vessels and tissue

The problem of heat exchange between blood vessel and biological tissue is very interesting, first of
all, from the scientific point of view. As was mentioned, the Pennes equation has been found under
the assumption that the tissue is supplied by the big number of small vessels. The large vessel
and its interactions with the tissue must be treated separately. For example, if one considers the
lateral section of domain in which the pair of vessels (artery and vein) is located (the domain in
which the thermal interactions take place corresponds to the so-called Krough cylinder [22, 56] —
Fig. 8) then on the contact surfaces between vessels and tissue the additional boundary conditions
must be assumed (in the form of Robin ones). The steady state problem is, as a rule, considered at
the same time the blood temperatures in both vessels are different. The heat transfer coefficients
appearing in the Robin boundary conditions correspond to the Nusselt number equals 4 |56]. Below,
the example of such problem solution is presented [22, 56]|. It is obtained for the following input data:
artery radius R; = 0.2 [mm]|, vein radius R, = 0.3 [mm|, Krough cylinder radius R = 1.5 [mml],
distance between vessels D = 0.3 [mm)]. In Fig. 9 the temperature distribution in the rest conditions
(metabolic heat source @, = 245 [W/m?]) is shown.
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Fig. 8. A pair of blood vessels

Fig. 9. Temperature distribution

The more complex problem depends on the modelling of heat transfer in the system considered
under the assumption that the blood temperature changes along the vessel. For the tissue domain
the Pennes equation is accepted, while the change of blood temperature results from the following
equation (see: 38, 39]),

dTs(2)
dz

at the same time

wk +a P[Tg(z) — T(R),2)] =0, (19)

z=0: Tg(0)=Tgo. (20)

In Eq. (19) the blood temperature corresponding to co-ordinate r is uniform, this means
Tp(r,z) = Ty(z), while w is the blood velocity, F is the vessel lateral section, P is the vessel
periphery, « is the heat transfer coefficient between blood and tissue, T(Ry,z) is the vessel wall
temperature. The coupling of the Pennes equation and Eq. (19) results from the boundary condition
given on the vessel wall. On the stage of numerical modelling the algorithm being the composition
of the BEM (tissue) and finite differences method (vessel) has been applied.

Presented below results concern the single vessel (R, = 0.2 [mm)]), tissue radius equals R = 10R;,
vessel length Z = 0.18 [m]|. Two models have been considered [26]. In the first version the blood
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Fig. 11. Temperature profiles (supplying vessel)

temperature in the Pennes equation has been assumed to be constant end equal to blood temperature
for z =0 (traversing vessel), while in the second model the blood temperature in the Pennes equation
was equal to T's(z) (supplying vessel).

In Figs. 10 and 11 the solutions obtained for different values of co-ordinate z are shown. One can
see that differences between two models considered are visible.

2.4. Temperature distribution in the tissue with a tumor

The last example of direct problem numerical solution concerns the heterogeneous system healthy
tissue - tumor region [17]. In particular, the results concerning the 2D problem will be presented [40,
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43, 55| but, it should be pointed out, that the 3D task has been also solved. Thermal processes in
domain considered are described by the system of equations

TE€Ne: ANV3Te(z) + Gecn[Tp — Te(z)] + Qme =0 (21)

where e = 1,2 corresponds to successive sub-domains.
On the contact surface the continuity condition in the form

@) oD
z€l: ! an - 2 on ° (22)
T (3") = TZ(:":) 1

is given, where d/0n denotes a normal derivative. On the external parts of the boundary the no-flux
condition is taken into account (the skin surface is assumed to be insulated, while the other parts
of the boundary are away from the region of temperature perturbations). The essential differences
between the parameters of healthy tissue and tumor region (in particular G, and @Q,,.) cause that
the temperature field in domain considered is irregular and the skin surface temperature is non-
homogeneous. It gives the possibilities for non-invasive diagnostics of the tumor presence in the
tissue domain.

As the example, the solution of the following task will be presented [45]. The tissue of dimensions
0.06x0.03 [m] with a tumor of radius R = 0.0075 [m] and center (0.03,0.015) is considered. The

37.25

tissue
T[eC] with
a fumor
37.23 5
' y \

. /

7.9 / \

Tl

377

375
0.00 0.01 0.02 0.03 0.04 0.05 008 X[m]

Fig. 13. Skin surface temperature
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thermal parameters of sub-domains are taken from [17]. On the stage of numerical simulation the
multiple reciprocity boundary element method has been used [22, 57, 58]. In Figs. 12 and 13 the
results (internal and boundary temperature distribution) are shown.

3. SENSITIVITY ANALYSIS IN BIOHEAT TRANSFER PROBLEMS

The sensitivity of temperature field with respect to external or internal parameters py, pa, ..., Py
is defined as follows,

. T(z,t,pet+Apr) — T(z,t,
Ukta, ) = Jim T2t Op) = T L)

; (23)

at the same time the remaining parameters are undisturbed. The solution of sensitivity problem
gives the essential information concerning the mutual connections between the steady or transient
temperature distribution and the perturbations of parameter p;. The sensitivity model can be
constructed using the direct approach or adjoined one [7-9, 15]. Below the first version of sensitivity
analysis will be shortly presented.

If the direct approach is used then the equations determining the thermal processes in domain
considered must be differentiated with respect to parameter py analyzed. Let us consider the Pennes
equation for the constant values of thermal parameters,

T (z,t)
‘ot

where W = Gep (c.f. Eq. (1)). Differentiation of Eq. (24) with respect to py gives (here p; denotes
the internal or external parameter except the geometrical one)

¢ I(x,t) | OUi(z,t) _ OA

= A\V2T(z,t) + W[Ts — T(z,t)] + Qm, (24)

2 2
o Ot ¢~ or VT (z,t) + AV*U(z,t)
ow .., s OQm
+ r T —T(z,t)] + W [—Bpk Uk (z, t}] + o (25)

where Uy = @T'/dpy. . For the specified parameter p; , the sensitivity equation is simpler, of course.
The boundary and initial conditions of sensitivity problem can be also determined by the differ-
entiation of basic model conditions. It should be pointed out that the sensitivity model is coupled
with the basic one, because in Eq. (25) both 8T /8t and also V2T appear. The same situation takes
place, among others, in the Robin boundary condition.

3.1. Sensitivity analysis in thermal procésses in the system tissue — blood vessel

The problem concerns the mutual connections between the temperature and capacity of metabolic
heat source in the tissue domain. In order to estimate the changes of tissue and blood temperatures
due to the change of this source the sensitivity analysis with respect to the @Q,, has been done.
Using the direct approach the following mathematical model is constructed (c.f. Section 2.3)

AV2U(r, z) + 1 + Geg[Up — U(r, 2)] = 0,

e —A% = ol (Ry, ) Us(2));

(26)
r=DRy: r=g
=0, v& = & BU—O,

5——
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while for the blood sub-domain

cpwkl dUBz(z) + aP[Ug(z) — U(Ry,2)] =0,
z=0: Upg(0)=0,
where
T (r, z OTg(z
Una) =5, upte) = ZEE

(28)

are the sensitivity functions and Up = 0 for supplying vessel, U} = Ug(2) for traversing vessel.
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The basic problem and additional one connected with the sensitivity analysis have been solved
using the hybrid algorithm [26]. For the tissue sub-domain the boundary element method has been
applied, while for the blood sub-domain the finite difference method has been used. The methods
have been coupled by the condition given at the vessel wall, at the same time the iterative process
has been applied.

As the example the blood vessel of radius R, = 0.0002 [m] is considered. The external radius
of domain is assumed as R = 10R;, while Z = 0.18 [m]. The following input data have been
introduced: A = 0.5 [W/(mK)], Qn = 250 [W/m?], G = 0.002 [1/s], eg = 4.134 - 105 [J/(m3*K)],
w = 0.01 [m/s], P/F = 2/Ry [1/m], the Nusselt number Nu = a2R; /X = 4 (a = 500 [W/(m2K]).
The blood temperature Tpg equals 37°C, the tissue temperature equals T'(R, z) = 37°C.

Figures 14 and 15 illustrate the distribution of sensitivity function in the radial direction and dif-
ferent values of z. One can notice that the sensitivity distributions are visible different for supplying
and traversing vessel models. In particular, in the case of supplying vessel the sensitivity function
U = 9T /9Qm in surrounding tissue domain is higher than in the case of traversing vessel.

3.2. Sensitivity analysis of bioheat transfer in 2D tissue domain subjected to an
external heat source

Below, the sensitivity analysis of transient temperature field in the tissue domain with respect to its
thermal parameters is discussed [52]. The biological tissue is subjected to the external heat source
and 2D problem is taken into account [30]. Contrary to the model presented in Section 2.1 the skin
tissue is treated as the homogeneous domain. The distribution of external heat flux is shown in
Fig. 16.

Xz

I
........... e T S,
Qp :
Q i
i >
'””v g
___________________________________ ol

Fig. 16. Domain considered

The Pennes equation (1) is supplemented by the following boundary conditions,

, q=q t<1y,
z€T,: {qzﬁ 51y (29)

where g, is the known boundary heat flux, ¢, is the exposure time. The distribution of the boundary
heat flux gy is described by the polynomial of 4th degree, in particular

Y'Y
a(z2) = —10" +8-10822 —1.28 . 10328, 2, € [“Z’ IJ . (30)

Along the remaining part of the boundary g, = 0. The initial condition is also given.
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The sensitivity model concerning the tissue thermal conductivity is of the form

zeN: C_EF#I\VUI-FXE{—WUI’

z€lyg: V=‘O,

0 1 A (31)
z €y : Vl-_——xq;,,
=) Uy =10,

where V3 = —A 8U; /0n. The similar models can be formulated for the others parameters of process
considered.

Very essential application of the sensitivity analysis results from the following considerations.
Let us assume that the primary and additional problems have been solved for parameters Ag, ¢,
Wo , in other words we know the distribution of temperature field and functions Uy in domain 2 at
optional time ¢. If we want to find the solution of primary problem for the new values of parameters
A=XE AN c=cyptAc, W =Wy £+ AW, we can use the Taylor formula, this means

T(z, t, XA, cotAc, WotAW) = T (Ao, co, Wo) = Y Uk (z, t, Ao, co, Wo) Api. (32)
k

In this way the basic solution can be quickly transformed to the new one.

As the example the 2D domain of skin shown in Fig. 16 is considered. The external boundary
of tissue Iy is subjected to the heat flux given by formula (30), the duration of this flux #, =5 [s].
The depth of domain considered is equal to 10 [mm|, while ¥ = 20 gmm] (c.f. Eq. (30)). The
basic thermophysical parameters of tissue equal ¢ = 3.35 - 106 [J/m’K], Ap = 0.75 [W/mK],
Wo = 5000 [W/m?®K]|. The initial temperature of skin: Ty = 37[°C]. In Fig. 17 the temperature
distribution in the domain considered is shown, Fig. 18 illustrates the distribution of sensitivity
function U; . Due to the symmetry the upper part Y > 0 of domain is taken into account.

Fig. 17. Temperature distribution (5 s) Fig. 18. Distribution of function U; (5 s)

The numerical computations show that in the case of example discussed the values of Uy and Uy
are very small and the temperature field in skin is almost independent of ¢ and W.

In Fig. 19 the heating curves at points A and B from the domain 2 are shown. The successive
cooling curves concern the basic solution (A = 0.75 [W/mK]) and the solutions for A = 0.5 and
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Fig. 19. Heating (cooling) curves at points A (0,0.33) and B (1,1) [mm]

A = 1, in other words A\ = 0.25. The results obtained using the sensitivity analysis and formula (32)
are marked by the full lines, the results found directly — by the symbols. It should be pointed out
that they are practically the same.

3.3. Shape sensitivity analysis

In this section the shape sensitivity analysis is applied in order to estimate the influence of spherical
cryoprobe radius on the course of biological tissue freezing process [36, 50|. So, the following 1D
equation written in the spherical co-ordinate system is taken into account (see Eq. (14)),

ar(rt) 1 0 o OT'(1, 1)
o O(T o 2 | AR e
R1 <r<g Rz C( ) ot 2 Br [)«( )7‘ ar (33)
where R; is a cryoprobe radius, R» is an external radius of tissue.
Equation (33) is supplemented by the following boundary conditions,
r=Ry: T(ri)=T},
o p.. OT(rt) (34)
T = Rg H 81" —_ 0
and initial one,
b0 00 Tind) = Ts; (35)

where T, is the temperature of cryoprobe surface, Ty is the initial temperature of tissue.
Taking into account the possibilities of standard BEM algorithm it is convenient to transform
the basic model using the Kirchhoff transformation

T
V(T) = [F MY (36)
and then
B[T(V)] av(g,:) aL Tl? % [ 2 ﬂé‘:’_‘)] (37)
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where (c.f. Fig. 20)

o) = ST, (38)

The new boundary and initial conditions result directly from Eq. (36).

In order to estimate the influence of cryoprobe radius on the course of freezing process the
sensitivity model is constructed. Using the concept of material derivative,

DV oV . v

Db ob  Or
where v = v(r, b) is the velocity associated with design parameter b = Ry, one finally obtains (after
rather complex mathematical manipulations) the following shape sensitivity equation,

(T (V)] %—f e (rQ@) - 2«1)['1*(1»’)]‘—3lE =

v, (39)

r2 Or ar or ot
1 (dc dA

I r 2
dV+(2dU d“v 211)3V (40)

- = | = — = ®[T(V ———— - | —

A[T(V)] \dT'"  dT 7 )]) v ot ror % r2) or°
where U = U(r,t) = DT/Db. The boundary-initial conditions are also differentiated with respect
to b and then

r=H: Ulrt)=0,

oU(r,t
r=ky: 208 _, (41)
=0 U(r,t) =0.

The velocity field v(r,b) associated with design parameter b = R (see Eq. (40)) is defined as
follows,
R2 =
Ro—b"
On the stage of numerical realization both in the case of basic problem and additional one the
BEM algorithm supplemented by artificial heat source method [21, 41] has been used.

v=u(rb) = (42)
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As the example we consider the cryoprobe of diameter Ry = 0.005 [m| and surface temperature
—90°C. The external radius of domain: R, = 0.025 [m]. Initial temperature of tissue: Ty = 37°C.

The cooling curves obtained for these input data are shown in Fig. 21.

In Fig. 22 the distribution of sensitivity function U = DV/Db in the domain considered for times
5, 10, 15, ..., 60 [s] is presented. Figure 23 presents the results obtained for disturbed cryoprobe

radius (AR; = 0.1R,), in this place the Taylor formula has been used.

4. INVERSE PROBLEMS

Inverse problems [1, 3, 4, 16, 59| in bioheat transfer, as a rule, usually concern the identification of
thermal parameters appearing in Pennes equation [20, 34, 44, 46] boundary or initial conditions [27,
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28] and geometrical parameters of the domain considered [53]. In the case of inverse task the
additional information connected with the problem analyzed is necessary. Generally it is assumed
that the temperature distribution on the surface of biological tissue or at the selected points from the
tissue interior is known. The first situation is closer to the real possibilities of thermal measurements
in the case of living tissue.

In order to solve the inverse problem the following least squares criterion can be taken into
account (the transient temperature field is considered)

F M

s=y3 (¢ -1i) —mN (43)

f=1i=1

where M is the number of sensors, F' is the number of time steps, i identifies the position of sensor,
T‘f;, T:-‘r denote the measured and computed values of temperature, respectively. In literature one
can find also the others forms of criterion (43).

If the gradient methods of inverse problem solution are used, then using the necessary condition
of functional (43) minimum one obtains

F M ; aT: f
=2 (7/ - ) =0, 44
apk Z Z di 6p ( )
J=113=1 pk=pi.
where p denotes the unknown parameter, k = 1,2,..., K, while p} is an arbitrary assumed value
of the parameter pi (s = 0 corresponds to start point, s = 1,2,...,S correspond to the successive
iterations).

Function T‘-f is expanded in a Taylor series

of = (21} +Z apf

(pa—H s ) (45)
PE=P},

or

rf = (/) + 3 (L) G - ). (9
k=1
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where {Tif )* denotes the temperature at point z; for time #/ obtained from the solution of the
basic boundary-initial problem under the assumption that values of unknown parameters p; equal
j (U,':':.)S is the sensitivity function. Putting Eq. (46) into (44), after the simple mathematical
manipulations, one obtains the system of algebraic equations from which the unknown parameters
can be found. These parameters are identified in iteration way, of course.

It should be pointed out that the presented above method of identification requires for every
iteration the solving of basic problem and additional ones connected with the sensitivity functions.

4.1. Identification of thermophysical parameters of biological tissue

Domain of skin tissue of thickness L = 0.02 [m] (1D problem) has been considered (c.f. Fig. 1) [34].
The tissue is treated as the homogeneous domain and the thermophysical parameters of domain
are equal to mean values of parameters for successive layers. The boundary heat flux equals ¢, =
6000 [W/m?], initial temperature of tissue - Ty = 37°C.

At first the direct problem has been solved under the assumption that the thermophysical pa-
rameters of biological tissue equal A = 0.75, ¢ = 3-10%, W = 1998.1, Tz = 37°C, Q,» = 420. On the
stage of inverse problem formulation it is assumed that the thermal conductivity A is unknown (the
remaining parameters are given) or the volumetric specific ¢ is unknown. On the basis of knowledge
of time-dependent course of temperature on the skin surface the inverse problems have been solved.
In Figs. 24 and 25 the values of identified parameters during successive iterations for different initial
values of A and ¢ are shown. It is visible, that the iteration process is quickly convergent.

As an example of simultaneous identification of thermal parameters the following solution will
be presented [46]. The non-homogeneous domain being the composition of skin tissue and tumor
region is considered (c.f. Section 2.4). On the basis of the knowledge of skin surface temperature
(see Fig. 13) the thermal parameters of tumor region Ay, Wa = Gacp, Qm2 (c.f. Eq. (21)) have been
simultaneously identified. Because the steady state problem is considered, therefore the criterion (43)
takes a form

M
S=)Y (Ti - Tx)®* — MIN (47)
=1
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Fig. 24. Identification of X
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and the formulas (44)-(46) are simpler. In Fig. 26 the result of computations is shown. It should be
pointed out that the initial values of these parameters correspond to the values \;, Wy, Qu; for
healthy tissue. In this case the real values of identified parameters are obtained after 5 iterations.

4.2. Identification of position and shape of tumor region

Generally speaking, the identification of geometrical parameters is more complex as the identifi-
cation of internal or boundary values. In order to determine the sensitivity coefficients appearing
in formula (46) two approaches can be taken into account. The first one (explicit differentiation
method) consists in the application of material derivative and next the basic equations are differ-
entiated in adequate way [7-9], similarly as in Section 3.3. It requires the knowledge of velocity
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real

Fig. 27. Identification of tumor region

associated with shape parameter. From the practical point of view, the other approach called the
implicit differentiation method [7| is more convenient. In this case the differentiation takes place on
the stage of numerical approximation of the problem considered and concerns the system of equa-
tions resulting from numerical methods application. Such approach is effective in the case of the
BEM application. The problem presented below has been solved using the implicit differentiation
method.

The non-homogeneous domain healthy tissue-tumor region shown in Fig. 12 is considered. The
position (2, ys) and radius Ry of tumor region is unknown, while the surface temperature distri-
bution (Fig. 13) is assumed to be given (steady state problem).

In Fig. 27 the results of successive iterations and the final position of tumor region are marked.
In comparison with the direct problem solution the identified position and shape of tumor region
are practically the same.
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