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This paper presents certain results of the analysis of elastic wave propagation in one-dimensional (1-D) and
two-dimensional (2-D) elements of structures with damage. The problem of the elastic wave propagation
has been solved by the use of the Spectral Element Method (SEM). In this approach elements of structures
are modelled by a number of spectral finite elements with nodes defined at appropriate Gauss-Lobatto-
Legendre points. As approximation polynomials high order orthogonal Lagrange polynomials are used. In
order to calculate the elements characteristic stiffness and mass matrices the Gauss-Lobatto quadrature
has been applied. In the current analysis damage in the form of crack has been considered. It has been
assumed that the damage can be of an arbitrary length, depth, and location and can be simulated as
a line spring of varying stiffness. Numerical calculations illustrating the phenomena of the elastic wave
propagation in isotropic media have been carried out for the case of an aluminium rod and beam as well
as a flat aluminium panel and plate.

1. INTRODUCTION

A problem of damage detection in elements of structures remains one of the most challenging tasks to
all classical damage detection methods. Techniques for detection of small damage must be based on
high frequency excitation signals, while the use of any conventional modal method for that purpose
becomes computationally inefficient. In the case of conventional modal methods the accuracy of
a solved problem depends strongly on spatial finite element discretisation. It is well known that
the mesh of finite elements must be very dense to reach high vibration modes, because only then
any effects of wave scattering on structural discontinuities can be observed and captured [21]. Such
an approach often leads to a large system of equations even for simple 1-D structures and solution
of such systems is very time consuming. On the other hand on-line Structural Health Monitoring
(SHM) systems require short computational times.

Over last few decades a variety of different numerical algorithms and techniques have been
developed and used for the problem of elastic wave propagation. The most commonly used are the
Finite Difference Method (FDM) [9, 10, 19, 28] and the Finite Element Method (FEM) [18, 25, 29,
30]. However, it should also be mentioned that the Boundary Element Method (BEM) [1, 2, 12, 23],
the FFT-based (frequency-domain) Spectral Element Method (SEM) [7, 11, 21, 22 and the time-
domain Spectral Element Method [14-16, 20, 24], the Mass-Spring Lattice Models (MSLM) (3, 27]
as well as the Local Interaction Simulation Approach (LISA) [4-6] have been used and reported in
the literature.

At this point it is necessary to distinguish clearly two different approaches to the SEM known
in the literature. The first one, as mentioned before, is based on the Fast Fourier Transformation
(FFT) and therefore is called FTT-based SEM [7, 11, 21, 22|, whereas the second approach is a time
domain method and is called time-domain SEM or simply SEM [14-16, 20, 24].
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It seems that the FFT-based SEM approach, as proposed by Doyle [7], is a very effective numerical
tool for wave propagation modelling of this class. In this approach additional throw-off elements are
required due to periodic nature of the FFT and because of that fact the FFT-based SEM is well
suited for solving problems of infinite or semi-infinite rods, beams, and plates. In order to overcome
the problem of the periodic nature of the FFT the Laplace transform can be applied instead, as
shown by Igawa [11]. However, it should be mentioned here that the use of the FFT limits the
applicability of the FF'T-based SEM to structures of rather simple geometry.

Opposite to the FFT-based SEM is placed, proposed by Patera [20], the time-domain SEM.
The method is versatile and so far has found applications in the field of fluid dynamics [20], heat
transfer, acoustics, as well as for modelling of the propagation of seismic waves. The method has
been successfully applied to 2-D and 3-D problems related to elastic isotropic media as well as fully
anisotropic media [14].

In this paper an efficient and accurate method has been used for the analysis of elastic wave
propagation in 1-D and 2-D elements of structures with damage. The problem of the elastic wave
propagation has been solved by the use of the time-domain SEM. In this approach elements of
structures are modelled by a number of spectral finite elements with nodes defined at appropriate
Gauss-Lobatto-Legendre points. As approximation polynomials high order orthogonal Lagrange
polynomials are used. In order to calculate the elements characteristic stiffness and mass matrices
the Gauss-Lobatto quadrature has been applied. In the current analysis damage in the form of crack
has been considered. It has been assumed that the damage can be of an arbitrary length, depth,
and location and can be simulated as a line spring with varying stiffness. Numerical calculations
illustrating the phenomena of the elastic wave propagation in isotropic media have been carried out
for the case of an aluminium rod and beam as well as a flat aluminium panel and plate. Although
only isotropic elements of structures have been investigated in this work, the current approach can
be easily extended for the use in the case of anisotropic (composite) materials as well as elements
of complex geometry.

2. SPECTRAL ELEMENT METHOD

The formulation of the Spectral Elements (SE) and calculation of the characteristic stiffness and
mass matrices is very analogous to the classical Finite Element (FE) formulation. The main feature
of the SE formulation is the adoption of specific shape functions possessing certain and desired
properties. In the SE formulation a set of local shape functions in a spectral element is chosen as
a set of orthogonal Lagrange polynomials. However, prior to this the degree N of the Legendre
polynomials [17] must be chosen and the local nodes & € [—1,1], i € 1,...,(N + 1) within the
element, in the local {-direction, are defined as the roots of the following equation,

(1-€%) Py(¢) =0, (1)

where Py (§) denotes the first derivative of an appropriate Legendre polynomial of degree N. The
local nodes specified in this way represent Gauss-Lobatto-Legendre (GLL) points. For the case of
N =5 the nodal coordinates of an 6-node spectral element can be defined as,
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It can be seen that for a chosen set of the element nodes Lagrange approximation polynomials
#i(§), i € 1,...,(N + 1) can be formulated. These polynomials are the N-th order polynomials
passing through the (N + 1) GLL points, while the internal nodes of the element are located at the
positions which correspond to zeros of the Legendre polynomials. It can be shown theoretically that

(2)
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such a distribution of nodes within an element results in the highest interpolation accuracy [24].
Moreover, it can also be shown that the approximation polynomials are orthogonal, i.e.

1 Stpl
/1 /Iqﬁn({)qﬁm(n)dfdnzﬂénm, nm= 1500V + 1), (3)

where 3 is a certain constant and d,,, denotes the Kronecker delta.

The method of calculation of the characteristic stiffness and mass matrices of a spectral finite
element, without loosing any generality, can be demonstrated on the example of a simple 1-D,
6-node spectral rod finite element, presented in Fig. 1. The longitudinal displacement u within the
element, measured along the z-axis, can be approximated as

N+1

u(€) = ®(O{u} = ) ¢i(&) w, (4)
t==]

where ®(¢) is the shape function matrix and {u} is the vector of nodal degrees of freedom of the
element. The element shape functions ¢;(¢) (i.e. Lagrange approximation polynomials) are presented
in Fig. 2.
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Fig. 1. 1-D, 6-node spectral rod finite element
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Fig. 2. Shape functions of a 1-D, 6-node spectral rod finite element
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Based on the given displacement field the strains within the element can be expressed according
to the well-known FE formula,

N+1

e2(¢) =B(©){u} = }_ Bi(®)us, (5)
=1
where B(¢) represents the strain-displacement matrix, which can be calculated from
N+1
Bi(§) = 8:$(€) = T 0p(€) = ) _ Bil®), (6)
=]

and where J~! denotes the inverse of the Jacobian matrix [13, 25, 29]. Following based on the shape
function matrix ®(¢) as well as the strain-displacement matrix B(¢) the element stiffness and mass
matrices can be easily calculated according to the well-known FE formula [13, 25, 29] as

o 1 N+1
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where D is the matrix of elastic coefficients which in the case of the 1-D spectral rod finite element,
simplifies to a one-element matrix of the Young’s modulus E. The symbol w; denotes the Gauss-
Lobatto weights calculated at the element nodes i according to the following formula [17],

2
N(N + 1)[Pn(&)?]

§6 Ayt by (W sboik). 9)

w; =

Because of the orthogonality of the approximation shape functions $i(£), as shown in Eq. (3),
the resultant element mass matrix M is diagonal and the element stiffness matrix K is not fully
populated. At this point it should be emphasised that the properties of the characteristic stiffness
and mass matrices of the element allow one to use very efficient and effective algorithms for solving
the equation of motion in order to analyse the phenomena of the elastic wave propagation in elements
of structures by the use of the SEM. A variety of explicit or implicit time integration schemes with
various modifications has been used for solving the equation of motion starting from the explicit
central difference method [8] or the explicit Newmark method [14].

3. NUMERICAL INVESTIGATION

Numerical calculations in this work, illustrating the phenomena of the elastic wave propagation
in isotropic media, have been carried out for the case of an aluminium rod and beam as well
as a flat aluminium panel and plate with damage. The following mechanical properties for the
aluminium have been assumed: Young’s moduls E = 72.7 GPa, Poisson ratio v = 0.33, and density
p = 2700 kg/m?3. It has also been assumed that the damage can be of an arbitrary length, depth, and
location and can be simulated as a line spring of varying stiffness. The results presented below have
been obtained by the application of a very fast and efficient, second-order accurate, central difference
scheme [13] in order to integrate the equation of motion. In all presented cases the excitation signal
has a form of a force pulse signal of 100 N amplitude, as shown in F ig. 3, for both the time and
frequency domains. The total calculation time varied according to the dimensions on the element
under consideration and in each case has been divided into 5000 time steps.
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Fig. 3. An excitation signal in the form of a force pulse signal in: a) time, b) frequency domains
3.1. Propagation of elastic waves in an isotropic rod

The geometry of an aluminium rod is presented in Fig. 4. For the present analysis the rod has
been divided into 100 spectral rod finite elements, while each element has 8 nodes and 1 degree of
freedom per node (longitudinal displacement u). A force signal pulse F' has been applied at the left
end of the rod.
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Fig. 4. The geometry on an aluminium rod with a crack

It has been assumed that a transverse, circumferential, and open crack is located at the distance
of 667 mm from the excitation point (2/3 of the total rod length). The assumed depth of the crack
is 2 mm (10% of the rod diameter). Numerical calculation has been carried out for the rod with
and without the crack and are presented as waterfall plots in Figs. 5 and 6. The assumed type of
boundary condition for the rod is of the free type (i.e. both ends of the rod remain free).

In the case of the rod under investigation the travelling waves are of the P type, also called the
dilatational or longitudinal waves [7]. The speed ¢, of the P wave in isotropic media (the phase
speed and the group speed are the same) can be calculated from the following relation,

E

_(1 = I/Z)p = Cp = 5496.95 m/s. (10)

Cot 55 4

It can be seen that for the rod with no crack only the signal reflected from the right end is
present, as shown in Fig. 5. However, the results presented in Fig. 6 show that the presence of
the crack results in additional reflections of the travelling waves from the crack. The amplitudes of
these reflections are proportional to the size of the crack. These reflections can be easily detected
by measuring signals at the both ends of the rod and by comparing them with the signals obtained
in the case of the rod with no crack. Moreover, in this manner also the location of the crack can be
evaluated, based on the known speed ¢, of the propagation of the elastic P wave in aluminium and
by measuring the time lags between the reflected signals at the rod ends.
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Fig. 5. Propagation of elastic waves in an aluminium rod with no crack
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Fig. 6. Propagation of elastic waves in an aluminium rod with a crack
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3.2. Propagation of elastic waves in an isotropic beam

The geometry of an aluminium beam is presented in Fig. 7. In this analysis the beam has been
divided into 100 spectral beam finite elements of Timoshenko type, while each element has 8 nodes
and 3 degrees of freedom per node (transverse displacement v, longitudinal displacement u, and
independent rotation ). A force signal pulse F' has been applied at the left end of the beam.
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Fig. 7. The geometry on an aluminium beam with a crack

It has been assumed that a transverse, extending to the full width of the beam, and open double-
edge crack is located at the distance of 1333 mm from the excitation point (2/3 of the total beam
length). The assumed depth of the crack is 2x10 mm (20% of the beam thickness). Numerical
calculation has been carried out for the beam with and without the crack and are presented as
waterfall plots in Figs. 8 and 9. The assumed type of boundary condition for the beam is of the free
type (i.e. both ends of the beam remain free).

In the case of the analysed beam the travelling waves are of the A type (i.e. anti-symmetric mode
of Lamb waves). The speed ¢ of the wave in isotropic media (the phase speed of the Ay mode) can
be calculated from the following relation,

|ET
o =L f A = 3067.97 m/s. (11)

where w = 27f and f is the average frequency of the excitation carrier wave, which in the case of
the excitation signal presented in Fig. 3 is equal to 100 kHz. The combination coefficient EI denotes
the flexural stiffness of the beam, A is the area of cross-section, and I is the second moment of area.

It should be noticed here that there are two modes Ay and A; propagating in the beam at
different propagation speeds, as shown in Fig. 8. It is well seen that the propagation speed of the
A mode is smaller that the propagation speed of the A; mode. The presence of the higher mode A;
is due to the fact that the excitation signal has components of frequencies higher than so-called
cut-off frequency f., for the given geometry and material of the beam. For excitation frequencies
below the cut-off frequency f. only the Ay mode is propagating in the beam. On the other hand if
the excitation frequency is higher than the cut-off frequency f. the higher A; mode is also observed.
Obviously the presence of even higher modes As, As, etc., requires excitations above the appropriate
cut-off frequencies. The cut-off frequency f. for the A; mode can be estimated from the following
simple formula [7],

£ 512 \/g > f, = 22.5 kHz, (12)

where G is the shear moduls and ¢ denotes the thickness of the beam.
It can be seen that for the case of the beam with no crack that the wave propagation pattern
obtained and presented in Fig. 8 is similar to those obtained in the case of the undamaged rod.
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Fig. 9. Propagation of elastic waves in an aluminium beam with a crack
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Because the waves are travelling in the beam as the modes Ay and A; their reflections from the
right end of the beam are clearly observed. It should be noted here that the reflections of either the
mode Ap or A; from the right end of the beam results in the generation of two new waves travelling
as the modes Ay and A; as well.

The presence of the crack in the beam results in the wave propagation patter being more complex.
Besides the waves reflected from the right end of the beam, and travelling as the modes Ay and Ay,
additional reflections from the crack location are also clearly visible, as shown in Fig. 9. In this case
the reflections of either mode Ag or A; from the crack results in the generation of two new waves
travelling as the modes Ap and A; , as previously mentioned.

As before the amplitudes of these reflections are proportional to the size of the crack and they
can be easily detected by measuring signals at the both ends of the beam and by comparing them
with the signals obtained in the case of the beam with no crack. Moreover, in this manner also
the location of the crack can be evaluated, based on the known speeds of the propagating Ay and
A; modes in aluminium and by measuring the time lags between the reflected signals at the beam
ends.

3.3. Propagation of elastic waves in a flat isotropic panel

The geometry of a flat aluminium panel is presented in Fig. 10. For the present analysis the panel has
been divided into 1600 spectral membrane finite elements with a regular mesh of 40x40 elements,
while each element has 36 nodes and 2 degrees of freedom per node (longitudinal displacements u
and v). A force signal pulse F' has been applied at the centre of the panel and in the direction of
the y-axis.

Fig. 10. The geometry on a flat aluminium panel with a crack

It has been assumed that a transverse and open crack is located at the distance of 125 mm from
top edge of the panel and 250 mm from the right edge. The assumed depth of the crack is 2 mm,
which is equivalent to 20% of the panel thickness. Numerical calculation has been carried out for the
panel with and without the crack and are presented as maps of displacements u and v at 3 different
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u displacement component v displacement component

t=0.102 ms t=0.102 ms

t=0.170 ms

t=0.272 ms t=0.272 ms

Fig. 11. Propagation of elastic waves in a flat aluminium panel with no crack

time instances in Figs. 11 and 12. The assumed type of boundary condition for the panel is of the
free type (i.e. all four edges of the panel remain free).

In the case of the panel under investigation the travelling waves are of the P and S type, also
called the dilatational or longitudinal waves and distortional or shear waves, respectively [7]. The
speed ¢, of the P wave, as well as the speed c, of the S wave, in isotropic media (the phase speed
and the group speed are the same) can be calculated from the following relation,

G
= — ¢p = 5496. =4/ — — ¢, = 3181. _
Cp T Pl 5496.95 m/s, ¢ o 3181.59 m/s (13)

Significant differences can be seen in the obtained wave propagation patters for the case of the
panel with and without the crack, as shown in Figs. 11 and 12. These differences are very well visible
for both displacement components u and v.

Additional reflections of the travelling P and S waves from the crack can be seen (see Fig. 12)
and the amplitudes of these reflections are proportional to the size of the crack. However, it should
be said that the signal reflections from the crack generated by the P wave are, in general, weaker
than the reflections generated by the S wave. The reflections can be easily detected by measuring
signals at a number of points located on the panel surface (for example at points A, B, C, D, and E
as shown in Fig. 10) and by comparing them with the signals obtained in the case of the panel
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u displacement component v displacement component
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Fig. 12. Propagation of elastic waves in a flat aluminium panel with a crack

without the crack. As before, in this manner also the location of the crack can be evaluated, based
on the known speeds ¢, and cs of the propagation of the elastic P and S waves in aluminium and
by measuring the time lags between the reflected signals at the selected points.

3.4. Propagation of elastic waves in a flat isotropic plate

The geometry of a flat aluminium plate is presented in Fig. 13. In this analysis the plate has been
divided into 1600 spectral plate finite elements of Reissner-Mindlin type, while each element has
36 nodes and 3 degrees of freedom per node (transverse displacement w and independent rotations 1)
and ¢). A force signal pulse F' has been applied at the centre of the plate and in the direction of
the z-axis.

The same as in the case of the previously discussed aluminium panel it has been assumed here
that a transverse and open crack is located at the distance of 125 mm from top edge of the plate
and 250 mm from the right edge. The assumed depth of the crack is 2 mm, which is equivalent
to 20% of the plate thickness. Numerical calculation has been carried out for the plate with and
without the crack and are presented as maps of displacements u and v at 3 different time instances
in Figs. 11 and 12. The assumed type of boundary condition for the plate is the same as before and
is of the free type (i.e. all for edges of the panel remain free).
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Fig. 13. The geometry on a flat aluminium plate with a crack

In the case of the plate under consideration the travelling waves are of the A type, exactly as
in the case of the beam (i.e. anti-symmetric mode of Lamb waves). The speed ¢ of the wave in
isotropic media (the phase speed of the Ay mode) can be calculated from the following relation,

co = \/‘,/ — ¢o = 3067.97 m/s. (14)

where w = 27 f and f is the average frequency of the excitation carrier wave, which in the case of
the excitation signal presented in Fig. 3 is equal to 100 kHz. The symbol D denotes the flexural
stiffness of the plate and ¢ is the plate thickness.

It should be pointed out that the same as in the case of the aluminium beam discussed before
there are two modes Ag and A; propagating in the plate at different propagation speeds. The
presence of the higher mode A; is also due to the fact that the excitation signal has components of
frequencies higher than the cut-off frequency f., for the given geometry and material of the plate.
For excitation frequencies below the cut-off frequency f. only the Ay mode is propagating in the
plate. On the other hand if the excitation frequency is higher than the cut-off frequency f,, the
higher A; mode is also observed. Obviously the presence of even higher modes Ay , A3, etc., requires
excitations above the appropriate cut-off frequencies.

The presence of the crack in the plate results in the wave propagation patter being more complex.
Besides the waves reflected from the plate edges, and travelling as the modes Ay and A; , additional
reflections from the crack location are also well visible, as shown in Fig. 14. The same as in the case
of the beam discussed previously the reflections of either the mode Ay or A; from the crack results
in the generation of two new waves travelling as the modes Ay and A4 .

As already mentioned, the amplitudes of these reflections are proportional to the size of the crack
and they can be easily detected by measuring signals at a number of points located on the plate
surface (for example at points A, B, C, D, and E as shown in Fig. 13) and by comparing them with
the signals obtained in the case of the plate with no crack. In this way the location of the crack can
be easily evaluated, based on the known speeds of the propagating Ay and A; modes in aluminium
and by measuring the time lags between the reflected signals at the selected points.
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Fig. 14. Propagation of elastic waves in a flat aluminium plate with and without a crack

3.5. Damage detection concept

A simple concept for damage detection in isotropic elements of structures is presented in Fig. 15.
However, the idea of this concept is explained on the case of the flat aluminium panel discussed
previously, it can be straightforwardly applied or modified for the case of other elements of structures
(curved or made out of anisotropic materials). This damage detection concept is based on differential
response signals measured at a number of points located on the panel surface, which are the points A,
B, C, D, and E.

The information about the presence of the damage in the panel becomes very clear when received
response signals from the previously selected points are referred to certain healthy response signals
acquired at the same points, and for the case of the panel with no damage. This can be achieved
by considering the difference between the both response signals and producing so-called differential
response signals in this way. Such differential response signals carry sufficient information in order
to identify precisely not only the location of the damage, but also the extent of it.

It is worth pointing out that a right selection of the location of measurement points as well
as displacement, velocity or acceleration components in order to obtain the differential response
signal is a very important factor. Because the excitation signal is applied in the direction of the
y-axis in the case of the investigated panel, and due the panel symmetry and the location of the
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Fig. 15. Damage detection concept for the case of a flat isotropic panel
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measurement points A, B, C, D and E, it is very convenient to consider the z components either of
the displacement, velocity, or acceleration at the selected measurement points. This is because in
the case of the panel with no damage the obtained response signal contain only the y components
of the displacement, velocity, or acceleration at the measurement points (see Fig. 11). In the case
when the damage is present in the panel this symmetry is distorted and the response signals from
points A, B, C, D, and E carry then information about the damage.

By measuring the time lags between the reflected signals at the selected points, as shown in
Fig. 15 and taking into account the propagation speed of the c¢; wave (in the analysed case the
response signals produced by the S wave are much stronger than those produced by the P wave)
the location of the damage can be easily evaluated. Moreover, the extent of the damage (i.e. damage
size and depth) can also be estimated due to the fact that there is a direct link between the extent
of the damage and the intensity of the response signals. The use of the method of neural networks
or genetic algorithms can be very helpful in this particular task.

3.6. Conclusions

In this paper certain results of the analysis of elastic wave propagation in one-dimensional (1-D) and
two-dimensional (2-D) elements of structures with damage have been presented. Also the application
of the obtained results for damage detection purposes has been shown. A concept for damage
detection in isotropic elements of structures has been presented and it has been demonstrated that
the SEM can be successfully exploited for problems involving the phenomena of the elastic wave
propagation in isotropic media.

The results of numerical calculations illustrating the wave propagation in the case of an alu-
minium rod and beam as well as a flat aluminium panel and plate have been shown. The problem of
damage detection based on the transmitted and reflected waves has been also considered. It has been
shown that various damage detection algorithms may be developed based on the current approach.
In the opinion of the authors the SEM approach presented can easily be modified and adopted for
use in the case of three-dimensional (3-D) structural elements or structural elements made out of
anisotropic or orthotropic materials.
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