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This paper presents a review of intelligent computing techniques in solving inverse mechanics problems.
These techniques are based on Evolutionary Algorithms (EAs) and the coupling of Evolutionary Algo-
rithms (EAs) and Artificial Neural Networks (ANNs) in the form of Computational Intelligence Systems
(CISs). The main attention was focused on the identification of the defects such as voids or cracks in
structures on the basis of the knowledge about displacements, temperature and eigenfrequencies. The
identification of the unknown number, position, size and kind of defects in the elastic structures is shown.
The paper contains a lot of tests and numerical examples.
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1. INTRODUCTION

Most of catastrophic failures of mechanical structures were caused by the appearance of material
defects such as voids, cracks or inclusions etc. There are several non-destructive methods, used for
the identification of such defects but only few of them are capable of finding internal defects, which
in some cases are very difficult to detect.

There are many methods that allow the identification of internal defects on the basis of the
knowledge about boundary state fields such as displacements, temperature or natural frequencies.
There are several approaches to identification problems. One group of methods is based on sensi-
tivity analysis [3]. This approach is very elegant and strict from mathematical point of view but it
sometimes fails because the minimization of identification functions leads to a local minimum.

Another group of methods is based on techniques which simulate or imitate biological systems
and processes. These methods are sometimes called intelligent techniques because they have some
features which fulfil some criteria of artificial intelligence. ANNs and EAs belong to this group. The
Artificial Neural Networks [21] have been used for identification problems, [22, 26-28]. In this method
there is a difficulty with the identification of a large number of different kinds of defects, especially
when the number of defects is unknown. In the second very common approach the evolutionary
algorithms are used in identification tasks, [5-11]. The EA enables the identification of multiple
defects. It can distinguish different kinds of defects such as voids and cracks and a number of
defects can be considered a design variable.

The main goal of this paper is to review various intelligent techniques, elaborated by authors,
based on evolutionary computing and coupling the EA and the ANN in defect identification prob-
lems.
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The paper is devoted to develop and examine solution intelligent techniques for non-destructive
identification of multiple internal defects (crack and voids) in mechanical systems being under
static, dynamical, thermal loads and in the free vibration state. These techniques are based on
minimization approach performed by the evolutionary algorithms and, using the finite or boundary
element methods, they solve the direct problem.

2. FORMULATION OF THE INVERSE PROBLEM

Consider an elastic body containing some defects in the form voids and/or cracks. The body occupies
the domain €2 bounded by boundary I' (Fig. 1). Within the domain 2 both the temperature 7" and
displacements u; are unknown. Appropriate differential equations defining the distribution of these
two fields are described by linear thermoelasticity,

kT =0, x € , (1)

Gug,jj(x) + % ujlj,‘(x) + b,-(x] =0, xXE Q, (2)

where k is thermal conductivity, G and v are the shear modulus and Poisson’s ratio, respectively.

/4 2 r=IpuT,ul, [=T ok

Fig. 1. The body with defects

The body force b; due to the thermal expansion is defined as

260 +v) o )

b = —
: 1-2 X

where o stands for the coefficient of thermal expansion.
The boundary conditions associated with heat conduction are defined on three sub-boundaries
I'r, Pq and I'y,,

T(x) = T%(x), %€ Dr;
q(x) = ¢°(x), x €Ty, (4)
q(x) = h[T(x) — Ty(x)], x €Ty,

where ¢ is the heat flux, T is the temperature of the fluid and 4 is heat transfer coefficient.
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The topological sum of sub-boundaries I'y, T, and I', forms the boundary I' = Tp UT ¢ U
The intersection of these sub-boundaries is empty, ' NI, =0, Ty NT), = 0, FeNTy=0.
Boundary conditions for elasticity are prescribed in the form

ui(x) = uf (%), x € Ly, -
pi(x) = p (x), xely,
where p; are tractions. Sub-boundaries I';, and T, fulfil the following conditions: I', UTy, =T,
F“ n [‘p = @-
In the crack case the displacements are allowed a jump across the boundary of the crack: [u;] =
+ —
u; —u; #0.

In the case of time-dependent thermoelastic problems boundary conditions should be completed
by initial conditions.

The number, shapes and sizes of the defects are unknown. One should find them having infor-
mation about measured displacements u;, temperature T' or natural frequencies.

The aim of the identification problem is to find the vector of parameters ch, describing the
number, shape and position of the defects. The lack of this information is compensated by some
knowledge about displacements, temperature or natural frequencies (redundant date). The usual
approach to solve an identification problem is the minimization of some measure of distance between
simulated numerically (by the FEM or the BEM) and measured experimentally displacements,
temperature or natural frequencies. The identification problem is expressed as the minimization of
the special objective function (or functional) J with respect to a design vector which is represented
by a chromosome ch,

néiln J. (6)

The objective function J depends on state fields such as displacements, temperature or natural
frequencies. A few typical objective functions can be expressed as follows:

e for displacements under static loading;:

aszwwmn (7)
JI

for temperature in a steady state:

h:ﬁwmnmn ®)

e for displacements under dynamical loading:

Ly
‘m=ﬁ £MMmmwa, (9)

for transient heat conduction:

hw=£I£¢WWJWWM, (10)

for eigenfrequencies:

M

Jo =) (wj — @)% (11)

j=1
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where integrands are given as follows,
eluy)] = [uly) -a())?,
e[T(y)] = [T{y) —T (y)]z,
Plu(y,t)] = [u(y,t) - a(y, 0],
WT( ) = 16,0 - 2(3,0)]

~ -

The fields a(y), T'(y), a(y,t), T(y,t) and @; are measured fields of displacements, temperature and
natural frequency. In the case when these fields are measured in discrete sensor boundary points y;
at the time #; integrands have the forms

N
plu)] =) 8y —yi)[uly) - ay)),
i=1

N
AT = Y0 i) [T) - 7))

N M (13)
Pluly, )] = 3 by - yi) 8t — ti) [uly, t) — aly, ),

i=l k=1

N M - 2
VT ] = 30 oy = ¥i) 6t — ) [Ty, ) - T(y.1)] -

i=1 k=1

It is possible to create the same combination of objective functions (7)—(11). The more general
equivalent objective function has the form

J= WrsJu i 'QTJT + "'?utJut + ffftJTt + anw (14)

where 7y, 77, Nut, NTt, Nw are non-negative weights indicating the relative importance of each
objective functions.

In order to evaluate the fitness functions (7)-(11) one should solve the direct problem, which is
described by Egs. (1) and (2). This can be done by the finite element method (FEM) [19, 29] or the
boundary element method (BEM) [4]

and number of

Real object
Cpe—— with defects
|
v new geometry
orhgood| BEMorFEM
ALGORITHM model of
———  the object
computed
? displacements
position, shape
:

Fig. 2. The evolutionary identification using BEM or FEM to compute the fitness function
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The problem of defect identification solved by means of the evolutionary algorithm and FEM or
BEM is presented in Fig. 2.

3. GEOMETRICAL PARAMETERIZATION

The key problem in identification is the selection of design variables which enable the description
of the shapes, positions, types and number of defects.

The defects in 2-D structures are modelled as: (i) a circular, (ii) an elliptical, (iii) any arbitrary
shape by using the closed NURBS curve and (iv) cracks (Fig. 3). In the case of a 3-D structure the
defect is modelled as: (i) a spherical, (ii) an ellipsoidal and (iii) any arbitrary shape using the closed
NURBS surfaces are presented in Fig. 4 [20].

a) b) ©)

d) €) f)
S,y

Fig. 4. The modelled forms of the defects (3-D)

There are a few possibilities of building chromosomes for defect identification problems in which
the number of defects is unknown. It is necessary to assume the maximal number of defects Tomax
and the algorithm should find the actual number n € {0; nmax } of defects and their positions, shape
and kind.

Consider the 2-D case. The first possibility is to use the following type of the chromosome
ch = [ﬂ'a Ty, W1,T1,%2,Y2,02, ... , L1, Y ,Tp, ..., Lrmax 1 Ynmax 2 rnm“] (15)

where the gene n € {0;nmax} is responsible for the actual number of voids.
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The second type of chromosomes is simpler

ch = [Il s YL, T1,T2,Y2, T2, .00y Try Wy Tly oo s Trgax + Ynpax o rﬂmnx] (16)

and the actual number of defects is controlled by the conditions |r;| < min, Where rmin ( = 0) is
an admissible minimal value. If this condition is fulfilled, the I-th void does not exist.
The third type of chromosomes can be built as follows,

Ch= [wl71~u2!"'1w11"'?‘wﬂmu!
Ty, YLy Ty T2, 42,72, -+ T, YLy T “"J‘Tﬂumx‘-'y“nmxﬂrﬂmim] (17)

where a controlling parameter (indication) w; = {true, false}, associated with the I-th void, shows
if the void exists (true) or does not exist (false).

In all types of chromosomes (15), (16) and (17) x; and y; are the co-ordinates of the centres of
defects. In the case of 3-D problems in the chromosomes (15), (16) and (17) co-ordinates of the
centres of the defects z;, y should be replaced by z;, yi, z for each | = 1,2,...,74,,, -

The vector parameter r;, [ = 1,2,...,n, depends on the kind of defect. For circular (Fig. 3a) or
spherical (Fig. 4a) voids the vector r; = [r] contains only one member which represents the radius
r, of the I-th void. In the case of elliptical voids (Fig. 3b) r; = [Ptzs 71y, 1] and ellipsoidal voids
(Fig. 4b) v = [Tz, 1y, Tlz, iz, Qly, 1z). In the general case for any arbitrary shape of the void the
vector parameter is described by r; = [ri1,712,. -, 71s, - - -, Tin), Where 75 are the positions of the
control points of NURBS on given rays (for 2-D Fig. 3c and for 3-D Fig. 4c).

In the case of linear cracks z;, v are the co-ordinates of one tip and r; = [mftip, y,?“p] contains
the co-ordinates of the second tip (Fig. 3d) or r; = [ay,l;], where oy is the slope angle and [; is
the length of the crack (Fig. 3e). In the case of the segmental-straight cracks consisting of R linear
segments r; = [ayy, by, w2, ligy - -+ s Qs Uiy - -+, CUR, lir], where ay, and [;; are the slope angle and the
length of each segment, respectively (Fig. 3f).

The elliptical (for 2-D) and ellipsoidal (for 3-D) defects can represent the cracks defects in the
limit case. When 75 — 0 or r, — 0, the elliptical void becomes the plane crack. In the similar way
the ellipsoidal void transforms into a spatial crack.

If the actual number of defects n is less than the maximal number fimax (7 < Nmax), geometrical
parameters z;, y and r; associated with the non-generated defects, exist in the chromosome as not
active genes.

Due to the introduction of the special types of chromosomes the evolutionary algorithm can find
the geometrical parameters of defects and the number of defects as well.

4. INTELLIGENT IDENTIFICATION ALGORITHMS
4.1. The sequential evolutionary algorithm [2, 12, 18]

The evolutionary algorithms are methods searching the space of solutions basing on the analogy to
the biological evolution of species. Like in biology, the term of an individual is used, and it represents
a single solution. The evolutionary algorithms operate on populations of individuals, so while an
algorithm works, all the time a set of problem solutions is dealt with. An individual consists of
chromosomes. Usually, it is assumed that an individual has one chromosome. Chromosomes consist
of genes which are equivalents of design variables in optimisation problems. The adaptation is
computed by using the fitness function. All genes of an individual decide about the fitness function
value. Figure 5 shows how the evolutionary algorithm works.

In the first step a initial population of individuals is created. Usually, the values of the genes
of particular individuals are randomly generated. In the next step the individuals’ fitness function
value is computed. Then, evolutionary operators change genes of the parent population individuals,
individuals are selected for the offspring population, which becomes a parent population and the
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Fig. 5. A flowchart of the evolutionary algorithm

algorithm is done iteratively till the end of the computation. The termination condition of the
computation is formulated as the maximum number of iterations.

In evolutionary algorithms floating-point representation is applied, which means that genes in-
cluded in chromosomes include floating-point numbers. Usually the variation of the gene value is
limited.

A single-chromosome individual (called a chromosome) chy, &k = 1,2,..., N, where N is the
population size, may be presented by means of a column or a row matrix, whose elements are
represented by genes gi, ¢ = 1,2,...,n, n — the number of genes in a chromosome. The sample
chromosome can be is presented as follows,

Ch=[91,92:---|9:'|—--’9n]- (18)

The genes are real numbers on which constraints are imposed in the form
gir. < 9i S GiRr; i=12,...,n, (19)

where gi;, and g;r are the boundary values of the i-th gene.

Evolutionary operators change gene value like the biological mechanisms of crossing and muta-
tion.

The crossover operator swaps some chromosome of the selected parents in order to create the
offspring. Simple, arithmetical and heuristic crossover operators are used.

The simple crossover needs two parents (pl and p2) and produces two descendants (d1 and d2).
The simple crossover may produce the offspring outside the design space. To avoid this, a parameter
« € [0,1] is applied. For a randomly generated crossing parameter 7 it works as follows (chromosomes
ch,, chy are parents),

pl: chi=[g,92,--18ir---»0n] (20)
1)2: Ch2=[81,62,...,81‘,...,6n]

dl: Ch,l = [91| cve oy Giy €4 +(1_a)gi+la - (l_a)gn] (21]
d2: chh=[er,...,ei, agiy1+ (1-a)eiy1, ..., agn + (1—a)en ]

The arithmetical crossover gives two descendants, which are a linear combination of two parents

ch| = ach; + (1 — a)ch;, ch), = achy + (1 — a)ch; . (22)
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The heuristic crossover produces a single offspring
ch'] = r(chy — chy) + chy (23)

where r is a random value from the range [0,1] and J(chy) < J(ch;).

Four kinds of mutation operators: uniform, boundary, non-uniform and Gaussian mutation, are
used. If a chromosome ch has the form given by Eq. (18), after the mutation it can be presented as
follows,

ch=[g1,92y-+ 9%+ Gn] (24)

where g; is the mutated gene.

In the uniform mutation children are allowed to move freely within the feasible domain and the
gene g; takes any arbitrary value from the range (g, , gin).

In the boundary mutation the chromosome can take only the boundary values of the design space,
9 = giL, ot g; = gir -

The operator of the non-uniform mutation depends on the generation number ¢ and is employed
in order to tune the system

(25)

e {g,: + A(t, gip — ¢i) if a random digit is 0,
g =

gi — A(t, gi — gir) if a random digit is 1,

where the function A takes a value from the range [0, ¢].
In the Gaussian mutation a gene g; is mutated by adding a random variable Ag; with the normal
distribution

9i = gi + Ag;. (26)

A special type of mutation, the so called gradient mutation, is used. This mutation is characterized
by a genetic interference, which means the modification of a gene by adding the term Ag; =
Bih; which depends on the sensitivity of the fitness function h; = h;(0.J/9dg;) and a coefficient 5;
determining a step increment in a search direction h; .

An important element of the evolutionary algorithm is the mechanism of selection. The probabil-
ity of the individual’s survival depends on the value of the fitness function. There are a few methods
of selection: the roulette wheel selection, the tournament selection and the ranking selection. The
ranking selection is performed in a few steps. First, the individuals are classified according to the
value of the fitness function, then a rank value is attributed to each individual. It depends on the
individual’s number and the rank function. The best individuals obtain the highest rank value, the
worst obtain the lowest one. In the final step individuals for the offspring generation are drawn, but
the probability of drawing particular individuals is closely related to their rank value.

The sequential evolutionary algorithms are well known tools for global optimization but the
number of fitness function evaluations during optimization is equal to thousands or even hundreds
of thousands. The fitness function evaluation for most real life problems connected with mechanics
or mechanical engineering takes a lot of time (from seconds to hours). The long computation time
can be shortened when the parallel or distributed evolutionary is used.

The fitness function evaluation is done in a parallel way when the parallel evolutionary algo-
rithms are used. The distributed evolutionary algorithms operate on many subpopulations. The
parallelization of the distributed evolutionary algorithm leads to two cases: the first one in which
each subpopulation uses a different processor, and the second one when the different processors can
be used by each chromosome of the subpopulations.
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4.2. The parallel evolutionary algorithm

The parallel evolutionary algorithms [15] perform an evolutionary process in the same manner as
the sequential evolutionary algorithms. The difference is in the fitness function evaluation. The
parallel evolutionary algorithm evaluates fitness function values in the parallel way. Theoretically,
the maximum reduction of time needed to solve the optimization problem by means of parallel
evolutionary algorithms is equal to the number of the used processing units. The maximum number
of the processing units which can be used is constrained by the number of chromosomes in the
population. The flowchart of the parallel evolutionary algorithm is shown in Fig. 6. The starting
population of chromosomes is created randomly.

client/worker
compute fitness C START
function value
; create
starting population
server/master s v
chromosomes
send chromosomes. evolutionary algorithm
to clients and recelve operators
> pe
finess functions values it ¥
1. values
A !
S [ selection 1
R
compute fitness Y/ \, N
function value b pio Fonditian o
compute fitness
clientiworker function value END

client/worker

Fig. 6. The parallel evolutionary algorithin

The evolutionary operators change chromosomes and the fitness function value for each chro-
mosome is computed. The server/master transfers chromosomes to clients/workers. The workers
compute the fitness function and send it to the server. The workers operate on different processing
units. The selection is performed after computing the fitness function value for each chromosome.
The selection decides which chromosomes will be in the new population. The selection is done ran-
domly, but the fitter chromosomes have a bigger probability to be in the new population. The next
iteration is performed if the stop condition is not fulfilled. The stop condition can be expressed as
the maximum number of iterations.

4.3. The distributed evolutionary algorithm

The distributed evolutionary algorithms (DEA) [1, 25| work similarly to many evolutionary algo-
rithms operating on subpopulations. The evolutionary algorithms exchange chromosomes during a
migration phase between subpopulations. The flowchart of the DEA is presented in Fig. 7. When
the DEA is used, the number of fitness function evaluations can be lower in comparison with the
sequential and parallel evolutionary algorithms. The DEA works in a parallel manner, usually. Each
of the evolutionary algorithms in the DEA works on a different processing unit. The theoretical re-
duction of time could be bigger than the number of processing units. The starting subpopulation of
chromosomes is created randomly. The evolutionary operators change chromosomes and the fitness
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Fig. 7. The distributed evolutionary algorithm (one subpopulation)

function value for each chromosome is computed. The migration exchanges a part of chromosomes
between subpopulations. The selection decides which chromosomes will be in the new population.
The selection is done randomly, but the fitter chromosomes have a bigger probability to be in the
new population. The selection is performed on chromosomes changed by operators and immigrants.
The next iteration is performed if the stop condition is not fulfilled. The stop condition can be
expressed as the maximum number of iterations.

4.4. The improved distributed evolutionary algorithm

To improve the scalability of the distributed evolutionary algorithm, mechanisms from the parallel
evolutionary algorithm can be used. The simplest improvement is computing the fitness function
values in a parallel way. The maximum number of processing units which can be used is equal to
the sum of chromosomes in subpopulations instead of the number of subpopulations. The flowchart
of the modified distributed evolutionary algorithm is presented in Fig. 8.

5. THE TESTING OF THE IDENTIFICATION METHOD
5.1. The selection of the sensor points in the identification problems

One of more important issues in an identification problem is the selection of the sensor points. The
great number of sensor the points provides more information about the system but it can complicate
the identification process. In order to check the influence of the number and positions of the sensor
points on the identification process, a few tests have been carried out.

The aim of the presented test is to identify a circular defect in a 2-D structure (plane stress)
(Fig. 9). The direct problem is described in the framework of elastodynamics. Boundary conditions
in the form displacements u; = u? = 0 and tractions p» = p3H(t), p3 = 10 [kN/m], H(t) -
Heaveside’s function, are prescribed and initial conditions are homogeneous. In order to identify
the void, the objective function (9) was proposed. Measured displacements in 31 sensor boundary
points were simulated numerically for the actual position and size of the void by using the BEM.
Various 12 combinations of the sensor points were examined (see Table 1).
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Fig. 8. The improved distributed evolutionary algorithm

31 30 29 28 27 26 25 24 23 22 21

I 0 150 2 1 Y 1 TN

p,°(t)

p=0 16

0 e GRS SRt R i TR S Tl 1 R B

Fig. 9. The plate with the circular defect

In the test, for all combinations, 10 independent experiments were carried out. Each experiment
started from randomly population. Finally, the results were averaged. The following parameters of
the evolutionary algorithm were applied:

e the population size: pop_size = 100,

e the maximum number of generations: maz_life = 100,

the probability of uniform mutation: py;,, = 0.25,

the probability of non-uniform mutation: py;, = 0.35,

the probability of boundary mutation: py, = 0.05,
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Table 1. The number of fitness function computation in selection of sensor points

The sensor points Nu{nber o ﬁtnes.s

function computation
6 2600
11 3770
16 3808
21 3760
26 2632
6,16,26 1475
11,21 1992
6,11,16,21,26 1507
2-11 2202
11-21 2061
21-30 1655
1-31 (all) 1488

the probability of simple crossover: ps. = 0.25,

the probability of heuristic crossover: py. = 0.25,

the probability of arithmetical crossover: po. = 0.25,

the cloning probability: psq = 0.05.

For all selected combinations of the localization of the sensor points the identification process
has finished successfully but different number of fitness function computation was required.

Obtained results show that the identification based only on one sensor point is very difficult. If
the sensor point is close to the actual defect, the defect can be found very fast. The localization of
many sensor points on the one boundary segment is not satisfactory but if the sensor points are
localized on the middle of boundary segments, better results are obtained.

5.2. The influence of the various time-dependent loadings on the identification results

In order to check the influence of the selected time-dependent loadings on the identification process,
many tests were carried out. One of them is presented in this paper.

Consider, similarly to the previous problem, the identification of a circular void in a elastic struc-
ture (Fig. 9) but the main aim now is to examine various time-dependent loadings p3(t) (Fig. 10):
a) Heaveside’s; b) Saw 1; ¢) Saw 2; d) Sinusoidal 1; €) Sinusoidal 2. The sensor points are situated
at nodes: 6, 11, 16, 21 and 26.

In the test, for all combination, 10 independent experiments were carried out. Each experiment
started from a randomly population. Finally, numerical results were averaged.

The following parameters of the evolutionary algorithm were applied:

e the population size: pop_size = 100,

e the maximum number of generations: maz_life = 100,

the probability of uniform mutation: p,,,;, = 0.25,

the probability of non-uniform mutation: p,,, = 0.35,

the probability of boundary mutation: py,, = 0.05,

the probability of simple crossover: py. = 0.25,
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Fig. 10. The different forced functions: a) Heaveside, b) saw 1, c) saw 2, d) sinusoidal 1, e) sinusoidal 2

Table 2. The number of generation needed to solve identification problem for different time-dependent

loadings
The forced function | Number of generation
Heaveside 20
Saw 1 39
Saw 2 16
Sinusoid 1 91
Sinusoid 2 72

e the probability of heuristic crossover: p,, = 0.25,
e the probability of arithmetical crossover: p,. = 0.25,
e the cloning probability: p,. = 0.05.

The averaged results of the numbers of generations needed for the identification are presented in
Table 2.

The obtained results show that the minimal number of generations, needed for obtaining good
results of the identification, is for non-continuous time-dependent functions: (i) saw 2, (ii) Heaveside,
(iii) saw 1. Unfortunately, practical realization of such loadings is not easy.
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5.3. The selection of objective functions for identification problems

In order to check the best usefulness of objective functions for defect identification several tests have
been performed. Objective functions: Jy, (7), Jut (9), Jo (11) and J (14) for 7, = n, = 100 and
ne = 0.003 were examined for the identification of a circular void in an elastic structure (Fig. 9).
The sensor points are situated at nodes: 6, 11, 16, 21 and 26.

In the test, for each objective function, 10 independent experiments were carried out. Each
experiment started from a randomly generated population. Finally, the results were averaged.

The following parameters of the evolutionary algorithm were applied:

e the population size: pop_ size = 100,

e the maximum number of generations: maz_ life = 100,
e the probability of uniform mutation: p,.,, = 0.25,

e the probability of non-uniform mutation: ppm, = 0.35,
e the probability of boundary mutation: py,, = 0.05,

e the probability of simple crossover: pg. = 0.25,

e the probability of heuristic crossover: pp,. = 0.25,

e the probability of arithmetical crossover: p,. = 0.25,

e the cloning probability: pgq = 0.05.

The averaged results are collected in Table 3. It can be seen that the most effective approach
to identification is based on using all information obtained from static, dynamic and free vibration
problems.

Table 3. The number of fitness function computation for different objective functions

: ; Number of fitness
The information ; :
function computation
The displacements in the static problem .J, 11850
The frequencies in eigenvalue problem .J, 11846
The displacements in the dynamic problem J,; 6452
The all information J = 1, Jy, + nuJy + 1ueJut 2176

5.4. Tests for the identification of multiple voids

The identification of multiple defects is much more complicated as for single defects. This problem is
especially difficult when a distance between both voids is very small. In this section the applications
of evolutionary computation and different objective functions are analysed.

Consider a 2-D elastic structure which contains two circular voids (Fig. 11). The distance between
them is described by a parameter R which takes different values, R = 1,3,5,7,9. In the case when
R = 1 both voids overlap partly and create a new void with a complicated shape. To solve the
identification problem four objective functions: Jy, (7), Jut (9), Ju (11) and .J (14) for ny, = mye = 100,
nw = 0.003, and nr = nry = 0 were examined. The sensor points are situated at nodes: 6, 11, 16,
21 and 26.



Intelligent computing in inverse problems 175

(LTI T T ] |wo

]
|
|
4

R=1.3.5,79

O O

p=0

Fig. 11. The plate the with the two circular defects

The following parameters of the evolutionary algorithm were applied:
¢ the population size: pop_ size = 100,
¢ the maximum number of generations: maz_ life = 100,
e the probability of uniform mutation: pyy, = 0.25,
e the probability of non-uniform mutation: p,, = 0.35,
e the probability of boundary mutation: py,, = 0.05,
e the probability of simple crossover: ps. = 0.25,
¢ the probability of heuristic crossover: py. = 0.25,
¢ the probability of arithmetical crossover: p,. = 0.25,
e the cloning probability: ps, = 0.05.

The results of the identification for different values of the parameter R and for various objective
functions are presented in Figs. 12 to 15.

In the cases, in which the distance R between defects is large, the objective functions J, (7) and
Jut (9) are sufficient. The application of only J, (11) is not satisfactory. For a small distance R the
applications of all single objective functions J,, (7), Ju (9), Jw (11) does not give good results. Only
the mixed functional J (14) for 7, = 1, = 100, 7, = 0.003, and 7y = nr¢ = 0 provides very good
results of the identification.

6. THE IDENTIFICATION OF VOIDS

Numerical tests of identification were carried out for 2-D and 3-D structures with internal defects.

6.1. The identification of a void with arbitrary shape

A 2-D elastic structure (Fig. 16), loaded dynamically by tractions field p = py sinwyt, contains an
unknown void which shape is parameterised by a NURBS curve (see Fig. 3c).
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Fig. 16. A 2-D elastic structure with the void of complicated shape

The chromosome is described as follows: ch = [z,y,71,79,73,74,75,76], where z and y are the
co-ordinates of the centre and ¢, 1 = 1,...,6, are the positions of control points on rays. The angle
between two neighbouring rays is 60°. The actual position and shape of the void is described by
2" = ch = [15,50,1.5,1.5,1.5,4.5,1.5,2.5].

The following parameters of the evolutionary algorithm were applied: pop size = 600,
maz_life = 100, the tournament selection. The process of identification was performed for the
objective function Jy; (9).

The identification problem was solved for two kinds of measured displacements in sensor points:
(i) the ideal data of displacements obtained from numerical simulation for the actual void by the
BEM and (ii) the noised data of displacements obtained by the additional introduction of the
Gaussian noise.

The numerical results of the identification are shown in Fig. 17. One can observe that final results
are very good.

u) b)

generation 28 generation 35

Fig. 17. Identification of the void of complicated shape: a) for ideal data of measured displacements, b) for
noised data of measured displacements
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6.2. The identification of multiple voids with different shapes

A 2-D elastic structure, showed in Fig. 16 contains two circular voids and an elliptical one instead
one void. All voids are parameterised by the elliptical description. Their actual shape parameters
are as follow: z! = [70,20,3,3,0]; z> = [20,70,2,2,0]; z*° = [20,20,6,3,1]. The identification task
is to find the number of defects, their size and coordinates having: (i) eigenvalues w;, 7 = 1,2,3;
(i) displacements u(z,t) in 21 boundary sensor points. The objective function is given as follows,
J = nuJy + nwd, . The chromosome had 15 genes, because the evolutionary algorithm could find
Timax = 3 voids. If the value of the radius is less than the critical value rpy, then the void vanishes.
The population consists of 3000 chromosomes. The best solutions in four various generations are
shown in Fig. 18.

© 0 O O
c) d)

Fig. 18. Identification results for generation number: a) 1st, b) 10th , ¢) 50th and d) 100th

6.3. The identification of multiple spherical voids in 3-D elastic structure

A 3-D structure — the cube with a 20 [cm] side, showed Fig. 19, has one wall supported, while the
opposite one is subjected to the harmonic load p = pg sinwt. The load is uniformly distributed
on the wall and has a different direction in each quarter (py = 15000 [N/m?|, w = 31 [rad/s]).
The mass density of the structure is p = 100 [kg/m?|, the shear modulus G = 1 -10° [Pa| and
the Poisson’s ratio » = 0.25. The structure contains two internal defects in a form of spherical
voids, which parameters — the coordinates of centres and radii — are given in the Table 4 as the
actual parameters. The evolutionary algorithm, using the values of amplitudes in 64 sensor points,
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sensor points D H

Fig. 19. A 3-D structure: loads and location of the sensor points

Fig. 20. Identification results of two spherical defects in the 3-D structure
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Table 4. Parameters of two spherical voids in 3-D structure

defect parameter | actual | final
(1) 5.00 | 4.99
za(1) 15.00 | 14.98
z3(1) 15.00 | 14.98
r(1) 2.00 [ 2.00
z1(2) 15.00 | 15.83
z2(2) 5.00 [ 4.25
z3(2) 15.00 | 14.22
r(2) 2.00 | 2.12

placed uniformly on four walls, carried out the identification of defects. The population contains
200 chromosomes. The result, obtained in 200 generations, is presented in Fig. 20.

7. THE IDENTIFICATION OF CRACKS
In the present chapter the following identification problems are examined:

o the identification of single cracks;

e the identification of multiple cracks — the number of the cracks is known;

o the identification of multiple cracks — the number of the cracks is unknown;

e the identification of cracks with the stochastic disturbance of the measured quantities.

The measurements of the displacements of the statically loaded elastic elements are considered. As
the measurements are never ideal, it is proper to assume that there occurs a Gaussian measurement
error (noise). One assumes that the measurement error does not exceed 10%, so the Gaussian
distribution has the expected value E(z) equal to the “ideal” one and standard deviation o(z) =
E(z)/30.

The fitness function values for each individual in the population are obtained from the analysis
of the structure by means of the dual BEM [23|. The number of the sensor points has been chosen
according to the complexity of the particular task.

The floating point gene representation and the ranking selection are used. Five evolutionary op-
erators are applied: uniform and boundary mutations, simple, arithmetical and heuristic crossovers.
The selection is performed in the form of the ranking selection.

7.1. The identification of single crack

A structural element of the shape and dimensions presented in Fig. 21 containing a single crack
of a known shape is considered. One should find the size and the position of the crack having
measured displacements at 37 boundary sensor points. 6 design variables represent co-ordinates of
the 1st crack tip, length of segments and slope angles of segments, respectively.

The parameters of the EA are:

e the number of variables N, = 6;
e the number of individuals N; = 100;

o the maximum number of generations N, = 1000;
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e the probability of the uniform mutation pym = 0.01;

the probability of the boundary mutation pym = 0.05;

the probability of the simple crossover pse = 0.1;

the probability of the arithmetic crossover pac = 0.1;

the probability of the heuristic crossover pac = 0.1.

The actual and final positions of the crack are shown Fig. 21. The actual and final values of
variables are presented in Table 5.

actual position 7

M - sensor point
final position

Fig. 21. The identification of one crack

Table 5. Identification of single crack

Variable | , 001 value Range Final value | Error [%]
number

1 0.00 —0.20; 0.90 0.000 =

2 —0.04 —0.20; 0.90 —0.0401 0.25

3 0.04 0.0; 0.1 —0.0413 3.25

4 0.0 -90; 90 0.0 :

5 0.058 0.0; 0.1 0.061 5.17

6 62.0 -90; 90 61.1 1.46

7.2. The identification of two cracks

A structural element containing two linear cracks is considered (Fig. 22). The aim is to find the
positions of the cracks represented by co-ordinates of crack tips. Displacements at 81 boundary

sensor points are measured.
The parameters of the EA are:
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¢ the number of variables N, = 8;

the number of individuals N; = 100;

the maximum number of generations N, = 3500;

the probability of the uniform mutation p,,, = 0.01;

the probability of the boundary mutation py,, = 0.05;

the probability of the simple crossover pg. = 0.1;

the probability of the arithmetic crossover p,. = 0.1;

the probability of the heuristic crossover py. = 0.1.

The actual and final positions of the cracks are shown in Fig. 22. The parameters of the evolu-
tionary algorithm and the numerical results are presented in Table 6.

Fig. 22. The identification of two cracks

Table 6. Identification of two cracks

Vamiable Actual value Range Final value | Error [%]
number

1 0.00 —0.20; 0.90 0.0 ¥

2 —0.04 —0.20; 0.90 —0.041 2.5

3 0.04 —0.20; 0.90 0.04 0.0

4 -0.02 -0.20; 0.90 | -0.023 15

5 0.04 —0.20; 0.90 0.044 10

6 -0.07 —0.20; 0.90 —0.062 11.4

7 0.07 —0.20; 0.90 0.069 14.2

8 —0.04 —0.20; 0.90 —0.033 17.5
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7.3. The identification of an unknown number of cracks

It is assumed that the maximal number of linear cracks in a structure (Fig. 23) is nmax = 5.
The actual number of the cracks is n = 2. The number and positions of cracks should be found.
The chromosome is of the type (15), the first gene represents the number of the cracks n € [1, 5],
remaining design variables represent the co-ordinates of the crack tips. Displacements at 81 boundary

sensor points are measured.

The parameters of the EA are:

the number of variables N, = 21;

the number of individuals N; = 200;

M - sensor point

the maximum number of generations N, = 3500;
the probability of the uniform mutation py,, = 0.01;
the probability of the boundary mutation py, = 0.05;

the probability of the simple crossover pg. = 0.1;

Fig. 23. The identification of 1-5 cracks

Table 7. Identification of 1-5 cracks

Vasigble Actual value Range Final value | Error [%)]

number
1 2 § 2 0
2 0.00 —0.20; 0.90 0.01 -
3 —0.04 —0.20; 0.90 —0.041 2.5
4 0.04 —0.20; 0.90 0.04 0
5 —0.02 —0.20; 0.90 -0.019 5
(] 0.04 —0.20; 0.90 0.042 3]
7 —0.07 —0.20; 0.90 -0.073 4.28
8 0.07 —0.20; 0.90 0.072 2.85
9 —0.04 —0.20; 0.90 —0.043 7.5




Intelligent computing in inverse problems 185

e the probability of the arithmetic crossover py. = 0.1:
e the probability of the heuristic crossover pj. = 0.1.

The actual and final positions of the cracks are presented Fig. 23. The parameters of the evolu-
tionary algorithm and the numerical results are presented in Table 7.

7.4. The influence of the measurement errors on crack identification

The influence of the stochastic disturbance of the measured quantities on the identification of the
crack is considered. The identification task becomes a non-deterministic one.

A structural element containing a linear crack is considered. The displacements are measured in
45 sensor points.

The parameters of the EA are:

e the number of variables N, = 4;

e the number of individuals N; = 100;

* the maximum number of generations N, = 1000;

e the probability of the uniform mutation p,,, = 0.01;
e the probability of the boundary mutation py, = 0.05;
e the probability of the simple crossover py, = 0:1;

e the probability of the arithmetic crossover p,. = 0.1;
e the probability of the heuristic crossover p;. = 0.1.

The actual and final positions of the cracks are presented in Fig. 24. The parameters of the
evolutionary algorithm and the numerical results are presented in Table 8.

W - sensor point
position

1 final position

)

Fig. 24. The influence of the measurement error — identification 1 crack
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Table 8. The influence of the measurement error

Nauistie | 4 inalisiug Range Final value | Error %]
number

1 0.05 —0.20; 0.90 0.0486 2.8

2 -0.01 —0.20; 0.90 —0.0959 4.1

3 0.01 —0.20; 0.90 0.0112 12

4 —0.05 —0.20; 0.90 —-0.0518 3.6

8. THE IDENTIFICATION OF VOIDS AND CRACKS

A 2-D structure (Fig. 25) contains two different internal defects: a crack and an elliptical void. Both
defects are parameterised by an elliptical description. The actual parameters of the elliptic void are:
z? = z(2) = [50,25,5,2.5,2.5], where the first two parameters are the co-ordinates of the ellipse
centre, next ones — the two radii of the ellipse and the last one — the angle between the z; axis
and first radius. The actual crack parameters are: z' = z(1) = [20, 30, 5,0,0.25] and are defined
in the same way as for the ellipse. The aim of the identification problem is to find the number of
the defects n € [0, nmax] Where nmax = 2, the kind of the defects and their shape having measured
displacements 1(x, 1) in 33 sensor points (Fig. 25). The objective function .J,; (9) was applied.

¥
[mm] 40
; 0O - yensor pf}fﬂ'ﬁ\'
VAP 7SI,
20
S 40
R R KRR LA
—
2 0
2(2) g
J——_h
100 x,[mm]

Fig. 25. A 2D structure with an internal crack and void

The structure is loaded by p(f) = po sinwt (pp = 40 kN/m) and has the following material
properties: the Young’s modulus F = 0.2E12 Pa, the Poisson’s ratio » = 0.3 and the mass density
p = 7800 kg/m®. The multiple defect identification has been solved with the assumption, that the
body contains: 2 defects, 1 defect or no defect. The chromosome is defined by Eq. (16) and consists of
10 genes, where the first 5 parameterise the first ellipse, and the last 5 the second ellipse. When one
of the genes, which is an ellipse radius is less than 7, = 2 mm, the ellipse becomes a crack, when
both radii are less than ry;, the ellipse disappears. The population contains 2000 chromosomes.
The tournament method of selection was used. The solution was obtained for the case with no noise
in 100 generations and for noisy data in 120 generation. Figure 26 presents the best solution of the
first and the last generation.
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Fig. 26. Identification results: a) 1st generation, b) 100th generation, c) 120th generation (noisy data)

9. THE IDENTIFICATION IN THE TERMOMECHANICAL CONDITIONS

Two examples of the identification of voids in 2D structures (plain strain) are considered in this
chapter. Structures are made from material: shear modulus G' = 80 GPa, Poisson’s ratio v = 0.23
and the coefficient of thermal expansion @ = 12.5- 1076 1/°C.

9.1. The identification of a void by using the distributed evolutionary algorithm

The identification of a circular void in a rectangular plate shown in Fig. 27 is considered. The fitness
function given by Eq. (14) J = n,Jy, + npJy is applied. Displacements were measured in the sensor
points 1 and 2. Temperatures were measured in the sensor points 3 and 4. The boundary was divided
into 48 boundary elements.

The position and radius of the void are searched. Table 9 contains the parameters of the boundary
conditions.

The speedup s of computation can be expressed as time need to solve the problem on 1 processing
unit #; divided by time on n-processing units £, ,

s=—. (27)

The number of processing units varies from 1 to 3. Two computers with two SMP processing
units are used. Table 10 contains the parameters of the distributed evolutionary algorithm.

The speedup of the improved distributed evolutionary algorithm is shown in Fig. 28. The linear
speedup is the theoretical maximal speedup of the parallel evolutionary algorithm.
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Fig. 27. Identification of a circular void in 2-D structures under termomechanical loadings

Table 9. Parameters of the boundary conditions in identification by DEA

0 20°C

79 500°C

q° 0

Po 100 kN/m
a 20 W/m?K
Qs 1000 W/m?K
Up 0

Table 10. Parameters of distributed evolutionary algorithm

Number of subpopulations 2
Number of chromosomes 10
Number of genes 3

Constrain on gene 1 (z; coordinate) | 0.5 + 29.5
Constrain on gene 2 (z2 coordinate) | 0.5+ 9.5
Constrain on gene 3 (radius) 0.5+ 3.0

3
2.8

26 L Ts
24

22 g

a
=]
.. 2
5- 1.8 /
1.6
1.4
1.2
1
1 2 3
s number of processors
=== speedup linear speedup

Fig. 28. The speedup of improved distributed evolutionary algorithm
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Table 11 contains the best result (after 8897 iterations) and relative errors for the coordinates
and radius of the internal void.

Table 11. Results of void identification in the termomechanical conditions by means of DEA

7, coordinate 25.28978
z2 coordinate 2.989090
radius 0.997610
value of the fitness function | 0.000030
x; coordinate error 1,16%
x- coordinate error 0,36%
radius error 0,24%

9.2. The identification of an unknown number of circular voids in termomechanical
conditions

A 2-D structure with three circular voids shown in Fig. 29 is considered. The boundary conditions
and positions of the sensor points are shown in Fig. 30. The positions, radii and number of the voids
n € [0, nmax) Where npax = 5 are searched for.

Table 12 contains the applied evolutionary parameters and the values of prescribed boundary
conditions. Five numerical tests were performed for 3 cases with noise and for 3 cases with no noise:

* 30 temperature sensor points and 28 displacement sensor points (the objective function (14),
J = nudu +nrdr),

e 58 temperature sensors — located in every sensor point (the objective function (8), Jp),

e 58 displacement sensors — located in every sensor point (the objective function (7), .J,,).

x2 [m] 8

R1.3

20

T

R1

2 X1 [m]
16

20

Fig. 29. A 2-D structure with three circular voids under termomechanical conditions
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Fig. 30. Boundary conditions and location of the sensor points for the structure

Table 12. Applied parameters of evolutionary algorithm and boundary conditions values

Number of chromosomes 500
Number of iterations 300
Number of design parameters 15
Probability of uniform mutation 0.015
Probability of boundary mutation 0.01
Probability of simple crossover 0.07
Probability of arithmetic crossover 0.10
Probability of heuristic crossover 0.07
Probability of cloning 0.03

To 100°C

T 0°C

T 20°C

o 100 MN/m

ag 1000 W/m*K

o 20 W/m’K
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Table 13. Results of numerical tests with no noise

30 temperature sensor points
and 58 temperature sensor points 58 displacement sensor points
28 displacement sensor points

O O

& o

Table 14. Results of numerical tests with no noise

30 temperature sensor points
and 58 temperature sensor points 58 displacement sensor points
28 displacement sensor points

The results of the identification with no noised measured data are shown in Table 13, and Table 14
contains numerical results of identification with noised data for 3 cases mentioned above.

It is seen that the evolutionary algorithm found the actual number of voids and the best results
were obtained in the case when the information about measured state fields had mixed character
(i.e. for 30 temperature sensor points and 28 displacements sensor points).

10. COMPUTATIONAL INTELLIGENT SYSTEM IN DEFECT IDENTIFICATION

10.1. Coupling of the evolutionary algorithms and the artificial neural network in
defect identification

In order to speed up the identification, one could increase the computation power or improve the
fitness function evaluation. This can be done by replacing the BEM or the FEM solutions by their
approximations with the help of the ANNs. The result of coupling the EA and the ANN or the
FIS is a computational intelligence system (see Fig. 31) [24]. In such a situation the identification
process could be carried out on a unit with relatively low computation power in a very short time.
It can be said that the artificial neural network or the fuzzy inference system is an approximator
of a boundary-value problem for the different number, shapes and positions of defects. The EA will
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Fig. 31. Computational intelligence system for defect identification

find the number, shapes and positions of internal defects basing on the results obtained by means
of the approximators.

This paper presents the application of the artificial neural networks (ANNs) and the adaptive
fuzzy inference systems (FISs) in the approximation of the boundary displacements and the natural
frequencies of an elastic body with defects. The neural network with Gaussian radial basis func-
tions (RBFNN) and the fuzzy inference system with Gaussian (FIS) and pseudo-Gaussian (PGFIS)
membership functions are taken into account. An example of the application of such approximators
connected with the evolutionary algorithm to identify the number of internal defects in the body,
their position and size is shown.

The approximators (the ANN and the FIS) have been trained with the help of gradient methods,
the evolutionary method and the evolutionary method connected with the gradient method.

10.2. The adaptive fuzzy inference system

Two kinds of the adaptive fuzzy inference system were taken into consideration. One is the fuzzy
inference system with the Gaussian type of membership function, another one is the fuzzy inference
system with pseudo-Gaussian membership functions [17].

The formula (28) shows the Gaussian function while the formula (29) presents the pseudo-
Gaussian function,

1(z—t)?
G(g;) = exp (_5%) 4 (28)
§ fuaan g 1 (z — t)?
o (—i(x—@{i) = oot (_5(?’_‘72%) U (z;t,00), (29)
where
_ _df 1 ifa<a<y,
U(z;a,b) = {{J otherwise,

t is the mean, o is the standard deviation, and ¢, and op are left-hand and right-hand standard
deviations, respectively. Figure 32 shows the Gaussian and pseudo-Gaussian functions.
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Fig. 32. Functions: a) Gaussian ¢ = 0.0, s = 1.0; b) pseudo-Gaussian t = 0.0, sL = 1.0, sP = 2.0;

Layer 1 Layer2

Fig. 33. The scheme of the FIS and PGFIS with one output

The approximation function realized by FIS and PGFIS is as follows,

M N
> Wi
=

G(z;)
f(z) = :

=

M N (30)
> [1 G(z:)
I=1i=1
where G(z) is given by Eq. (28) in the case, when the FIS is considered, and by Eq. (29) when the
PGFIS is taken into account, x is the input vector, N is the number of inputs, M is the number of
fuzzy rules.
The scheme of the FIS and the PGFIS is presented in Fig. 33.
Training the network consists of changes made in the parameters W, t, o, oy, . op step-by-step
in order to minimize an error given by

1 -
Beg &) (31)
where p = 1... P is the number of training patterns, y? is the response of the ANN on the p input

vector, d” is the desirable response of the ANN.
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The networks are trained by using the gradient method. To make such a process feasible knowl-
edge of the gradient vector VE is necessary. In the case when the FIS is taken into account, the
VE vector consists of three components,

oE ]

- Al i

OE ., (f(z)—d) z; — &)

acgn = 2 f2 Ll (WI = f(z)) (o(t))2 L] [33}
)2

OE . (f(z)—d) (a: -<")

200 25— (Wi — f(2)) —(W— : (34)

In the case of the PGFIS, the VE vector consists of the appropriately modified four components.
As it was mentioned, the parameters are modified step-by-step according to the formula

w(s+1)=w(s) —n g—i + alAw(s — 1) (35)

where w is the parameter put into optimisation, s is the number of iteration step, 7 is the learning
rate, a is the momentum rate and Aw(s—1) is the change of the parameter in the previous iteration
step. The change of the parameters runs after every presentation of the vector x” to the ANN.

In order to reduce the risk of reaching the local minimum of the error function during the training
process, the training pairs were chosen randomly from the training set.

During the training process the learning rate changed according the following formula,

n(s) = T (36)

where s is the iteration step, 7o is the initial value of the learning rate, T' is a constant.

Initial values of parameters W, ¢ and o(or, , op) were selected arbitrarily.

After choosing starting parameters, the gradient learning methods, notably the steepest descent
method (SD) and the conjugate gradient method (CG), were applied to find the optimal set of
parameters of the networks [16]. More details about the training process of the FIS are presented
in [11]. The training procedure of the PGFIS proceeds similarly to that of the FIS.

During the training process the EA was applied, but it did not yield satisfactory results - the
training and testing errors were to significant. Better results were obtained when the evolutionary
method connected with the gradient methods were applied. In the first step of the training process
the EA finds the parameter vectors of the neural network. In the second step these vectors are used
as starting parameters in the gradient method (SD or CG@). Such a connection gives better results
than the exclusive use of the EA method; however, the final conclusion is that the training and
testing errors are not smaller than those produced when only the gradient methods are used. The
second disadvantage is that the training time needed to reach a certain error value is not shorter
than in the case when only the gradient method is used. Due to a large number of variables needed
to be optimised during the learning process, the chromosome is very large. Due to the great number
of genes in the chromosome the number of chromosomes in population is also big. This leads to
a vast increase of the computation time. It is worth noting that the results obtained in any test with
the EA or the EA connected with the gradient learning method were not better (smaller training
and testing errors) than when solely the gradient training method was used.
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10.3. The radial basis function neural network
The RBFNN and the PG-RBFNN implement the approximation function in the form

K
f(z) =Wo+ ) Wi¥(z) (37)

=1

where Wy and W; are the weights and basis functions ¥;(z) are specified by the following formula
N 2
1 < () — tij)
(z) = -y =) 38
U,(z) = exp 3 2 Ul?j (38)

N means the number of inputs of the neural network.
Figure 34 presents the structure of the RBFNN with N input nodes, one output and K basis
functions. The training process of the network is the same in principle as that of the FIS, Eq. (31).

Input Hidden Output
layer layer I layer
I ' 1
X| lI{| Wi {
1
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Fig. 34. The scheme of RBFNN with one output

In order to train the RBFNN, the SD method with momentum was used. To make such a process
feasible, the knowledge about the gradient vector VE is necessary. In the case when the RBFNN is
taken into account the VE vector consists of four components. These components have the form
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where N is the number of inputs and K is the number of basis functions.

In order to reduce the risk of reaching the local minimum of the error function, during the
training process the simulated annealing and the “jog of weight” technique [10] were used. The “jog
of weight” technique consists of adding a random value to the parameter in order to restart the
process, in the time when there is a suspicion that the minimization process stopped in the local
minimuim.

During the training process the learning rate changed according to the formula (35).
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The initial values of parameters W and o were selected arbitrarily. Initial values of parameters t
were chosen according to the algorithm [13]:

e divide the training set into K subsets (K is the number of basis functions)
e find input vector Xhax for which the output value is maximum in every subset
o take t() = xP.x

After choosing starting parameters the gradient learning method was applied to find the optimal
set of parameters of the networks.

10.4. The formulation of an approximation problem

An elastic body with a number of internal defects is considered (Fig. 35). In the presented case
a plate contains one or two defects in the form of a circular hole. The upper part of the boundary is
loaded by traction p, one of the short parts of the boundary is fixed, while the last two parts of the
boundary contain sensor points. In the presented case during the preparation of the training data,
information about horizontal and vertical displacements in 30 sensor points for the elastostatic task
was taken. When running the elastodynamic task, the same sensor points are used, however, over
a timeframe of 101 time steps. The distance between the sensor points equals 10 mm. The point
No. 1 has coordinates (0.0,0.0), the coordinates of the point No. 30 were (200.0,90.0). The number
of natural frequencies taken into account was three.
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Fig. 35. An elastic plate with a) one; b) two internal defects in the form of a circular hole
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The ANN or the FIS should approximate the boundary displacements in some sensor points on
the boundary of the structure. Another ANN (FIS) should approximate the natural frequencies of
the plate with the defect.

The positions and radii of defects needs to be inputted to the approximator. On the outputs the
results are horizontal or vertical displacement in some sensor points on the boundary of the body,
or the natural frequency of the body with the defect.

The training and testing data sets used during the training and testing process were obtained
by making use of the boundary element method (BEM) [4].

Table 15 shows the material and geometrical parameters of the plate taken into consideration.
The maximum and minimum values of the centres coordinates of the defects, and the range of the
variability of radius - the maximum and minimum radius of one defect are shown in Table 16.

Table 15. Geometrical and material parameters Table 16. The range of coordinates and radius
of a plate of the defect

Parameter Value defect 1 defect 2

L [mm|] 200.0 Ximax [mm] 170.0 170.0
MP T60 Ymax [mm] 75.0 75.0

2{MPal i Yinin [mm)] 25.0 25.0

E [MPa] 2.0-10° Runax [mm] 14.0 14.0

v 0.3 Rpnin [mm] 5.0 5.0

In the case of the plate with one defect 1008 pairs input-output created a training set and
300 pairs formed a testing set for an elastostatic and eigenvalue problem, and 3135 and 1890 for
elastodynamic. In order to train the ANN (or the FIS) to approximate the boundary displacements
and natural frequencies for the plate with two defects, the training set consists of 12800 pairs
and the testing sets consists of 1600 pairs for the elastostatic and eigenvalue problem. When the
elastodynamic problem is taken into consideration the training and testing sets consists of 3160 and
3060 pairs, respectively.

The multi input-single output (MISO) neural networks and fuzzy inference systems were cho-
sen [13, 14]. One should prepare and train three approximators to approximate each of three natural
frequencies of the plate, and several ANNs (or fuzzy inference systems) to approximate displace-
ments in only one direction (vertical or horizontal) in one sensor point on the boundary of the
structure.

The assessment of the approximation abilities of the ANN for the training set was done by the
learning error according to the formula

P
1
= — P _ dr)?
MSE = o 3 (4" — &) (43)
p=1
where p = 1,..., P is the number of input-output pairs of the training set, y” is the value of the

output of the ANN, d” is the desirable output of the network.
In order to estimate the approximation abilities for the testing set, the testing error was calculated
according to the formula

T
MSBr = o 34 - )2 (44)
p=1

where p = 1,...,T is the number of input-output pairs of the testing set, y” is the answer of the
ANN for the p input vector, d P is the desirable output.
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Below there are presented the results of training and testing the FIS, the PGFIS and the RBFNN
when the second natural frequency and vertical displacements in elastostatic task in the point No. 25,
which coordinates are (200.0,40.0), were approximated. Table 17 shows the training and testing error
given by Eqs. (43) and (44) for the plate with one and two defects.

Figure 36 illustrates a sample diagram of the change of learning and testing error during the
RBFNN and the FIS training process. The approximators were trained to approximate the vertical
displacements in the sensor point No. 27, which coordinates are (200.0,60.0). The learning rate n
changed as it is shown in formula (36), the starting value of the learning rate was 7o = 0.01 and
o = 0.6, the time rate T = 1500 and T' = 15000, the momentum rate equals & = 0.008 and

Table 17. The results of approximation for different approximators

Second eigenfrequency
FIS PGFIS RBFNN
No. of defects 1 2 1 2 1 2
MSE;, 2.6e—6 | 2.2e—4 | 1.9e—4 | 4.4le—4 | 5.0e—6 | 7.31e—4
MSE ¢ 5.4e—6 | 52e—4 | 2.0e—4 | 9.08¢—4 | 1.3e=5 | 1.03e—3
No. of epochs | 100000 500 100000 500 100000 500
Displacement
FIS PGFIS RBFNN
No. of defects 1 2 1 2 1 2
MSE |, 1.56e—6 | 4.41e—6 | 6.77e—4 | 1.32e—3 | 3.92e—6 | 1.0de—5
MSE 3.14e—6 | 9.08¢e—6 | 8.13e—4 | 2.01e—3 | 7.02¢e—6 | 3.80e—5
No. of epochs | 100000 500 100 000 500 100000 3000
a)
15+ool
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1E02 ' !
" MSE;
g o \
1.E-04
1.E-05
1.E-06
epochs
b)
1.E+00
1.E-01
1.E-02
uU)J1E-03
21
1.E-04
1.E-05 K
1.E-08

epochs

Fig. 36. Training and testing error of a) RBFNN and b) FIS for displacement approximation
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« = 0.06 for the RBFNN and the FIS, respectively. The number of iterations is 30000 for the
RBFNN and 20000 in the case when the FIS is taken into consideration. The number of basis
functions is K = 85, the number of fuzzy rules used in this ANN is M = 15.

As it is shown in Fig. 36 the FIS reaches a much smaller level of training and testing error than
the RBFNN in a smaller number of iteration steps.

Initial tests show that the FIS has the best abilities of the approximation of the natural fre-
quencies and boundary displacements for elastostatic in some sensor points among the three tested
approximators. Due to these abilities it was decided the FIS will be trained to approximate the
solution of the boundary-value problem in the elastostatic and eigenvalue tasks. In the case of the
PGFIS it was possible to reach a very small error of the training set but simultaneously the testing
error was bigger than that for FIS.

Table 18 presents the final FIS errors of training and testing for approximation of several tasks,
the architecture of the network (the number of fuzzy rules M) and the number of iteration steps in
which the error has been reached.

In the case when displacements in the elastodynamic problem are taken into account the training
and testing errors of the FIS and the PGFIS are shown in Table 19.

Table 18. Training and testing error of the FIS for several approximation tasks

The plate with one defect The plate with two defects
MSEy, | MSEr | M | epochs | MSE;, | MSET | M | epochs
first eigenfrequency 6.2e—7 | 8.3e—7 | 45 | 2.0ed | 8.2e—5 | 1.Te—4 | 9 | 0.6e3
Second eigenfrequency 2.2e—7 | 1.1e—6 | 85 | 6.0e5 | 2.2e—4 | 5.2e—4 | 6 | 4.0e3
third eigenfrequency 89e—T7 | 2.6e—6 | 85 | 1.0ed5 | 4.7e—5 | 2.4de—4 | 9| 3.0e3

vert. displ. at point (200,20) | 9.6e—7 | 2.0e—6 | 15 | 2.0e5 | 3.7c—6 | 4.9e—6 | 40 | 5.5¢3
vert. displ. at point (200,40) | 1.7e—6 | 2.7e—6 | 15 | 2.0e5 | 7.6e—6 | 7.8e—6 | 24 | 3.3¢3
vert. displ. at point (200,60) | 1.6e—6 | 3.0e—6 | 15 | 2.4e5 | 2.8¢—6 | 4.1e—6 | 40 | 2.0e3

Table 19. Training and testing errors of the FIS and PGFIS for vertical displacement approximation
in the sensor point No. 10 in the time step 75

The plate with one defect The plate with two defects
MSE L MSE 13 M epochs MSE L MSET M epochs
FIS 1.3e—4 | 1.4de—4 | 198 | 190 | 4.7e—5 [ 1.4e—3 | 56 | 338
PGFIS | 5.3e—5 | 6.9e—5 | 198 | 473 | 1.3e—4 | 4.9e—4 | 56 228

Table 20. Training and testing error of the PGFIS

The plate with one defect. The plate with two defects
No. of point | time step | MSE;, | MSEy | M | epochs | MSE; | MSEr | M | epochs
7(v) 62 3.8e—5 | 46e—5 | 64| 734 | 4.8e—5|6.6e—4| 64| 344
7(v) 75 8.1le—5 | 82—-5| 64| 562 | 2.7e—5|89e—4 | 96| 496
10(v) 75 5.3e—5 | 6.9e—5 | 198 | 473 | 1.3e—4 | 49e—4 | 56 | 228
10(v) 98 8.5e—5 | 1.3e—4 | 216 | 887 | 1.9e—4 | 6.7e—4 | 196 | 230
25(h) 41 12e—4 | 1.3e—4 | 32| 366 |23e-5|48e—4| 64| 371
25(h) 74 4.1e-5 | 5.2e—5 | 64| 303 | 2.5e—4 |6.3e—4 | 64| 207
25(v) 74 34e—5 | 63e—5| 68| 236 | 2.9e—5 | 6.2e—4 | 56 | 270
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Tests show that in the case of the elastodynamic problem the PGFIS has better approxima-
tion abilities than the FIS. Due to this, it was decided that the PGFIS will be trained to be the
approximator of the solution of the boundary value problem in elastodynamic tasks.

Table 20 presents the final PGFIS errors of training and testing for the approximation of vertical
(v) and horizontal (h) displacements in an elastodynamic problem, the architecture of the network
(the number of fuzzy rules M) and the number of iteration step in which the error has been reached.

The possibility of using only the evolutionary algorithm and the EA coupled with the gradient
learning method during the training process was also studied. Figure 37a shows the change of
training error of the FIS during the first stage of training with the use of EA. Figure 37b illustrates
the diagram of the change of the training error in the second stage, when the FIS was trained by
using the SD method for starting parameters from the EA stage.
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1.E-01

MSE

1.E-02

1.E-03

epochs
1.E+00

1.E-01

MSE

1.E-02 -

1.E-03 ]

1.E-04

epochs

Fig. 37. The diagram of the FIS training error during a) the EA learning process; b) SD learning process
(starting parameters from EA)

The FIS with M = 85 fuzzy rules is trained to approximate the third natural frequency for the
plate with two defects. The parameters of the EA and the SD are presented below:
» the number of genes: 256,
e the number of chromosomes: 50,
e the number of epochs in the EA: 50,
e the probability of the arithmetic crossover: 0.6,
e the kind of mutation: Gaussian mutation,
e the number of iterations in SD: 1000,
e learning rate 7y = 0.2,

e momentum rate o = (0.4.
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It can be noticed that in a few iteration steps the EA finds the set of parameters which allows
reaching a small value of errors given by formulas (43) and (44). Unfortunately, the gradient process
after the EA stage proceeds very slowly. Such a behaviour was typical for this kind of training
method.

As it was mentioned above, the input-output pairs were obtained by using the BEM and the
FEM. The approximator for the natural frequency or boundary displacements approximation for
the body with one defect has three input nodes and one output. The first input is the x-coordinate
of the centre of the defect, the second input is the y-coordinate of this centre and the third input
node needs the value of the radius of the defect. When the plate with two internal defects is taken
into consideration, the approximator has six inputs — three for the first defect and another three for
second one.

The input values were from the range [30.0,170.0] for the z-coordinate, [25.0,75.0] for the y-
coordinate and [5.0, 14.0] for the radius. The output values of the output training vectors were put
into the range [0.1,0.9].

10.5. The identification problem

A 2-D elastic body with D < D,y internal defects in the form of circular holes is considered.
Drax means the maximum number of defects which can be expected in the body. The number of
defects, their position and size are not known.

The EA should identify the actual number of defects D and their parameters on the basis of
the knowledge about F' natural frequencies of the body with defect and displacements in S sensor
points on the boundary of the body. The unknown parameters of the defect are coordinates of the
hole’s centre (X, , Y;) and its size R, (z=1,2,...,D). Defects are specified by a chromosome

ch=[X1,Y1, R, ..., X:,Y;, Rey o s XDps s YDunax » RDpns] (45)

where: X, , Y, are the coordinates of the centre of defect and R, is the radius of the defect. D, o
and R; play the role of genes. The EA sends the chromosome with the suggested values of the
position and radii of each defect to the approximation block.

In the case when R; < R, the program assumes that genes X;,Y;, R; are inactive genes

Ri=0 Y(Ri < Rin)- (46)
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Fig. 38. The approximation of displacements and natural frequencies for one, two or more internal defects
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Genes with information about the position and shape of defects are sent to inputs of the approx-
imators. Approximated displacements in several sensor points on the boundary of the model and
natural frequencies are obtained on the outputs of FIS (or PGFIS). They are sent back to the EA
where the fitness function of each chromosome is computed as it is shown in Fig. 24.

The condition (46) controls the number of defects. The number of input values that are sent from
the EA to the fuzzy inference systems depends on the number of active genes. Thus, in the approx-
imation block there are several fuzzy inference systems with a different number of input neurons
(Fig. 38). Every FIS is responsible for the approximation of natural frequencies or displacements on
the boundary of the model with different number of internal defects.

The EA enables finding multiple defects. It minimizes the fitness function which is formulated as
a weighted sum of differences between measured boundary displacements and natural frequencies of
the examined body and computed displacements and natural frequencies for the numerical model
of the body with an assumed number and shapes of defects as it is shown in formulas J, (7), Jut (9)
and J, (11).

10.6. Numerical examples

A two-dimensional elastic structure is considered (Fig. 35) The geometrical and material parameters
of the body are shown in Table 15. One assumes that the maximum number of defects Dax = 2,
however, the actual number of defects is one in the first example and two in the second. One should
find the number of defects, their position and size.

To solve the problem the EA coupled with the FIS and PGFIS is applied. It should be noted
that as the FANNs with one output were used in order to approximate displacements in S sensor
points, S neural networks should be used.

Table 21 shows the parameters of the evolutionary algorithm and the number of sensor points
and natural frequencies that take part in the identification process. The computation of the fitness
function of every chromosome in the EA proceeds with the help of the FIS.

Table 22 presents the examples of the results of the defect position and size identification for
a rectangular plate with one defect (D = 1). The identification proceeds on the basis of the knowl-
edge about 3 natural frequencies and vertical displacements in 3 sensor points. The coordinates of
these sensor points are: (200.0,20.0), (200.0,40.0) and (200.0,60.0). Table 23 presents the identifi-
cation in the case when the number of defects D = 2.

The evolutionary algorithm, with fitness function values approximated by the FIS, found the
best solution in 18 sec. in both cases — when the body has one or two internal defects. In the case
of the evolutionary algorithm with the BEM the identification time was 22 min. 25 sec. and 11 min.
40 sec. [4]. So it can be said that the evolutionary algorithm with the fitness function approximated
by using the fuzzy neural network is much faster than the evolutionary algorithm with the boundary
element method (see Fig. 39). The time of computation using the EA with the FIS, presented in
this paper, does not take into account the time needed to teach the FIS and the time needed to
prepare the learning and testing sets. Such an approach is worth using when the identification of
many bodies with the same shape has to be done. In such a case the time needed to prepare training
and testing sets and train the FIS isn’t significant.

The problem of the internal defect identification in elastic structures under dynamical loads
was also tested. Table 24 shows the parameters of the evolutionary algorithm. This process utilizes
the knowledge about displacements at sensor points in the time steps shown in Table 20. The
computation of the fitness function of every chromosome in the EA proceeds with the help of the
PGFIS.

Table 25 presents the examples of the results of the defect position and size identification for the
rectangle plate with one and two defects. The identification proceeds basing on the knowledge of
boundary displacements under dynamical load.
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Table 21. Parameters of the evolutionary algorithm

Number of epochs 100
Number of chromosomes 50
Number of genes per chromosome 6
Arithmetic crossover probability 0.8
Type of mutation Gaussian
Number of sensor points S 3
Number of natural frequencies F 3

Table 22. The examples of the identification results when D = 1 and Dy = 2

Xy [mm] | ¥y [mm] | Ry [mm] | X, [mm] | Y2 [mm] | Ry [mm]
actual defect 130.0 55.0 9.0 0.0 0.0 0.0
found defect 126.8 47.0 9.1 0.0 0.0 0.0
actual defect 130.0 35.0 12.0 0.0 0.0 0.0
found defect 130.5 34.6 10.4 0.0 0.0 0.0
actual defect 50.0 40.0 7.0 0.0 0.0 0.0
found defect 49.0 36.0 6.7 0.0 0.0 0.0

Table 23. The examples of the identification results when D = 2 and D i =2

Xy mm] | ¥} [mm] | Ry [mm] | X, [mm] | Y5 [mm] [ Ry [mm]
actual defect 65.0 35.0 8.0 135.0 45.0 11.0
found defect 57.6 43.7 7.5 135.6 40.8 11.4
actual defect 83.0 40.0 11.0 103.0 65.0 10.0
found defect 73.5 37.0 10.5 105.2 64.2 10.4
actual defect 65.0 35.0 8.0 100.0 45.0 8.0
found defect 75.8 35.9 7.6 102.7 40.9 T.5

Table 24. Parameters of the evolutionary algorithm

Number of epochs 150
Number of chromosomes 18
Number of genes per chromosome 6
Arithmetic crossover probability 0.2
Type of mutation Gaussian

Table 25. The examples of the identification results on the basis of boundary displacements in
elastodynamic problem

Xy [mm| | Yy [mm] | B [mm] | X; [mm] | Y [mm] [ R, [mm]

actual defect 152.0 42.0 7.8 0.0 0.0 0.0
found defect 156.2 43.0 FE 0.0 0.0 0.0
actual defect 148.0 42.0 9.5 62.0 58.0 8.4

found defect 155.4 38.2 12.4 59.1 62.7 7.9
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Figure 40 shows the actual and found defects for six different examples. Figure 40a presents the
results of the identification in the case when the actual number of defects in the body was one,
Fig. 40b illustrates the situation when the actual number of defects was two. It can be said, that
the CIS identifies not only the position and size, but also the number of internal defects.

11. FINAL CONCLUSIONS

Evolutionary computing is a very effective technique in inverse problems. This approach enables
finding not only the positions and shape of defects but also the type of defects and the number of
defects.

The influence of some parameters on the evolutionary identification has been examined. A lot of
interesting conclusions can be formulated.

The right location of the sensor points makes the identification process easier.

The combining the measured information can shorten the time of identification. In the iden-
tification of voids, which are close to each other the combining of the measured information is
necessary.

The correct selection of the forced load functions makes the identification process more effective.

Unfortunately, this approach is very time consuming due to the necessity of solving many di-
rect problems in the form boundary value or boundary initial value problems. To speed up the
evolutionary identification one can use parallel or distributed evolutionary computing techniques.

The alternative approach of speeding up the solutions of the identification problem is to use com-
putational intelligence system (CIS) which consists of the evolutionary algorithm and the artificial
neural network or the adaptive fuzzy inference system.

Approximation abilities of the radial basis function neural network and two fuzzy inference
systems were compared. In further studies, the fuzzy inference system with Gaussian and pseudo-
Gaussian membership functions were chosen. Such approximators were trained using the evolution-
ary algorithm, the steepest descent method with momentum and the conjugate gradient method.
The best results were reached in the case when the FIS was trained using the gradient methods -
the SD method at first and the CG method next. Both learning rate and momentum rate should
change during the training process, the training input-output pairs should be presented randomly.

The fuzzy inference system can be used as an approximator of the solutions of the boundary
value problem in identification tasks. It can assist in the fitness value computation.

The evolutionary algorithm combined with the FIS produce the computational intelligence sys-
tem that is able to identify the number, shape and position of defects.
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