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This paper proposes the wave based method for the steady-state dynamic analysis of the in-plane behaviour
of 2D structural solids. This novel prediction technique relaxes the frequency limitations of the commonly
used finite element method through an improved computational efficiency. This efficiency is obtained by
selecting basis functions which satisfy the governing equations a priori, in accordance with the indirect
Trefftz approach. Special attention is paid to problems in which singularities appear in the problem
solution. For these problems, the conventional set of basis functions is extended with functions which can
represent the singularity accurately. The capabilities of this novel method for mid-frequency applications,
as compared to the standard finite element method, are demonstrated by means of two numerical examples.
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1. INTRODUCTION

Nowadays, the finite element method (FEM) is the most widespread technique for the steady-
state dynamic analysis of structural components [4, 40]. The FEM is based on the discretisation
of the considered structure into small elemental domains. Within each element, the dynamic field
variables are expressed in terms of local, predefined and usually polynomial shape functions, which
satisfy only the Dirichlet boundary conditions and which do not fulfil the governing differential
equations. The solution is determined by restoring the differential relations and Neumann boundary
conditions in an integral sense. Due to the approximative nature of the shape functions, the number
of elements and the subsequent size of the models increase with increasing frequency, such that the
use of the FEM is practically limited to low-frequency applications. An additional disadvantage of
the polynomial nature of the shape functions is that it is difficult to obtain reliable results when the
strains or stresses become singular due to a large pollution error invading the whole domain [21, 26].
In order to acquire acceptable results, the mesh should be refined in the vicinity of the singularity.
An alternative group of deterministic simulation techniques are the so-called Trefftz-based meth-

ods, such as the variational theory of complex rays [6, 18], the method of fundamental solutions [13]
and the wave based method (WBM) [12]. Those methods are based on the Trefftz principle [32]
in the fact that the field variables are expressed in terms of functions which satisfy the governing
equations a priori. The WBM, which is the topic of this paper, relaxes the frequency limitation
of the FEM through an enhanced computational efficiency. It starts by partitioning the problem
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domain into a small number of large, convex subdomains. The convexity of the subdomains is a
sufficient condition for the convergence of the WBM. Since the field variables are expressed in
terms of an expansion of wave functions which satisfy the governing equations a priori, there is
only an approximation error introduced on the boundary and interface conditions for each sub-
domain. The minimisation of this approximation error leads to a system of equations which can
be solved for the unknown contribution factor of each wave function. Since no fine domain dis-
cretisation is required, the model matrices of the WBM are substantially smaller than those of the
FEM. Thanks to the smaller model matrices and the subsequent smaller computational load, the
application of the WBM can be extended towards higher frequencies as compared to the FEM.
Previous validations showed the capabilities of the WBM for interior and exterior (vibro-) acous-
tic problems [5, 22–24, 33, 37, 38], for dynamic plate bending problems [34] and for poro-elastic
problems [9].
This paper proposes the development of the WBM for the simulation of the in-plane behaviour

of 2D structural solids, also known as the “membrane behaviour” of flat plates. Specific attention
is paid to the presence of singularities in the vicinity of corner points. Such singularities can lead
to convergence problems for the WBM. For plate bending and poro-elastics, these convergence
problems are solved by including some special purpose functions, termed ‘corner functions’, in the
expansion set [8, 35]. The only purpose of the corner functions is to provide an accurate representa-
tion of the singular behaviour of the problem solution in the vicinity of the corner point. A similar
methodology will be applied for the dynamic in-plane 2D structural solid problems considered in
this paper. Jirousek discussed the use of special purpose functions for stress singularities in the
hybrid Trefftz FEM for static in-plane plate problems [15]. Sinclair gives an extensive overview
of the different types of singularities which can occur in static in-plane problems [28], including
a discussion of possible corner functions. For dynamic problems, the use of corner functions has
mainly been restricted to plate bending problems. Leissa and Huang presented a procedure based
on a Ritz method where the conventional set of basis functions is extended with corner functions
of the associated static problem [16, 19]. Similar to this principle, this paper uses dynamic corner
functions, derived from the associated static problem, to extend the set of basis functions.
The paper starts with the definition of the general 2D structural in-plane problem. The next sec-

tion discusses the singularities which can occur. An asymptotic analysis leads to an understanding
of the possible singular fields. In addition, it allows to define some functions which asymptotically
represent the strain and stress fields. These functions can be used as corner functions in the WBM.
Subsequently, the basic principles of the WBM are explained. Finally, the use of the WBM is
demonstrated for two numerical examples. Both examples indicate the beneficial convergence rate
of the WBM as compared to the FEM. Furthermore, it is confirmed that the corner functions are
essential for the accuracy of the WBM.

2. PROBLEM DEFINITION

A problem definition is given in Fig. 1. The in-plane displacements wx and wy at any position
(x, y) on the mid-plane of the plate domain Ωs can be described by the coupled dynamic Navier
equations:

∂2wx
∂x2

+
1− ν

2

∂2wx
∂y2

+
1 + ν

2

∂2wy
∂x∂y

+
ρ(1− ν2)ω2

E
wx = 0,

∂2wy
∂y2

+
1− ν

2

∂2wy
∂x2

+
1 + ν

2

∂2wx
∂x∂y

+
ρ(1− ν2)ω2

E
wy = 0

(1)

with E the elasticity modulus, ν the Poisson coefficient, ρ the material density. The FEM makes use
of the coupled Navier equations to derive the model matrices. The WBM, on the other hand, makes
use of exact analytical solutions of the homogeneous equations to define the basis functions. In order
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Fig. 1. In-plane forces acting on a plate section.

to simplify the solution of these equations, the Navier equations are transformed into two uncoupled
equations. The considered transformation decomposes the displacement field in a dilatational and
rotational strain [2]:

{
wx
wy

}
= − 1

k2l
∇e+ 1

k2t
∇×Ω, (2)

with e and Ω the dilatational and rotational strain. By means of this transformation, the coupled
equations are transformed in the following uncoupled equations:

∇2e+ k2l e = 0,

∇2Ω + k2tΩ = 0,
(3)

where the in-plane longitudinal and shear wavenumbers are defined as

kl = ω

√
ρ(1− ν2)

E
and kt = ω

√
2ρ(1 + ν)

E
. (4)

At each point of the boundary Γ (= ∂Ωs) two boundary conditions must be specified. Three
groups of boundary conditions are considered (Γ = Γv ∪ Γt ∪ Γvt):
• Kinematic boundary conditions: the displacement components are specified along the boundary.
These conditions are expressed as

Rwn(x) = Lwn

[
e(x)

Ω(x)

]
−wn(x) = 0

Rws(x) = Lws

[
e(x)

Ω(x)

]
− ws(x) = 0





x ∈ Γv, (5)

with wn and ws the prescribed values for the displacement components. A fixed edge is a special
case with zero values prescribed.

• Mechanical boundary conditions: the stress resultants have prescribed values:

RTn(x) = LTn
[
e(x)

Ω(x)

]
− T n(x) = 0

RTs(x) = LTs
[
e(x)

Ω(x)

]
− T s(x) = 0





x ∈ Γt, (6)

with T n and T s the prescribed values for the in-plane normal and tangential forces. A free edge
is a special case with zero values prescribed for the force resultants.
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• Mixed boundary conditions: both a displacement and a traction component are prescribed.
Following the terminology of Bardell [3], these conditions are called simply supported analo-
gous to plate bending problems. There exist two feasible boundary conditions in this group
Γvt = Γvt1 ∪ Γvt2 [14],

Rws(x) = Lws

[
e(x)

Ω(x)

]
− ws(x) = 0

RTn(x) = LTn
[
e(x)

Ω(x)

]
− T n(x) = 0





x ∈ Γvt1, (7)

and

Rwn(x) = Lwn

[
e(x)

Ω(x)

]
−wn(x) = 0

RTs(x) = LTs
[
e(x)

Ω(x)

]
− T s(x) = 0





x ∈ Γvt2. (8)

For a simply supported edge the prescribed values, ws and T n for the first set or wn and T s for
the second set, are zero.

The differential operators for the in-plane normal and tangential displacement and the in-plane
normal and tangential force are defined as follows:

Lwn =

[
− 1

k2l

∂

∂n

1

k2t

∂

∂s

]
,

Lws =

[
− 1

k2l

∂

∂s
− 1

k2t

∂

∂n

]
,

LTn =

[
− 1

k2l

Eh

(1− ν2)

(
∂2

∂n2
+ ν

∂2

∂s2

)
1

k2t

Eh

(1 + ν)

∂2

∂n∂s

]
,

LTs =
[
− 1

k2l

Eh

(1 + ν)

∂2

∂n∂s

1

k2t

Eh

2(1 + ν)

(
∂2

∂s2
− ∂2

∂n2

)]
.

(9)

where n and s are, respectively, the in-plane normal and in-plane tangential directions of the
boundary (see Fig. 1).

3. STRESS SINGULARITIES

In a polygonal domain, singular strains and stresses can appear in the corner points. The singularity
arises when the internal angle α formed by the two edges of the corner exceeds a critical value.
The critical value depends on the boundary conditions applied along the two adjacent edges of the
corner point. This section discusses the singular behaviour in the vicinity of such a corner. For that
purpose, an analytical solution is defined, which approximates asymptotically the displacement
field and stresses in the vicinity of the corner. The aim of the asymptotic analysis is twofold:

• it allows to predict the behaviour of possible corner singularities based on the problem geometry
and applied boundary conditions,

• it allows to define functions that accurately represent the singular behaviour in the corner and
that can be included as special purpose functions in the set of basis functions of the envisaged
wave models (see Sec. 4).
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To define the analytical solution in the vicinity of a corner point, some assumptions are made.
To start with, it is assumed that the stresses within a small vicinity of the corner are hardly af-
fected by the boundary conditions away from the corner point. The far-field loading in the global
configuration will only determine whether a local singular stress field participates in a particular
global configuration or not. Therefore, it is appropriate to study the behaviour in the vicinity of
a corner by means of an infinite wedge domain, as shown in Fig. 2. The solutions of the infinite
wedge domain are nevertheless applied for finite structures. However, they approximate the singu-
lar behaviour very well in the vicinity of the corner, provided that the internal angle and radial
boundary conditions of the infinite wedge correspond to those of the corner in the actual problem.
Furthermore, only wedges comprised of a single linear elastic material are considered. In conclu-
sion, to analyse the stress fields in the vicinity of a certain corner, an infinite wedge domain with
identical internal angle and radial boundary conditions is defined.

r

a

¥

¥

q

Fig. 2. An infinite wedge domain.

For the wedge domain the homogeneous, analytical solution for the in-plane displacements wx
and wy is formulated. This analytical solution needs to satisfy:

(i) the homogeneous, dynamic equation,

(ii) two regularity conditions in the corner point,

(iii) the radial boundary conditions.

Starting from the exact analytical displacement field, the strains or stresses and their singular
behaviour can be evaluated.
In addition, the defined dynamic solution is compared with the static solutions for the infinite

wedge domain, which were originally defined by Williams [39]. In this case, the solution must
satisfy the homogeneous static differential equation rather than the dynamic equation. The problem
geometry and boundary conditions remain identical as in the dynamic problem. The discussion of
the static solutions consists of three main parts:

• First, the static solutions defined by Williams are discussed. It is demonstrated that for simply
supported edges the singularities in the static and dynamic solutions exhibit an identical asymp-
totic behaviour in the vicinity of the corner point. For other combinations of radial boundary
conditions, it is impossible to define an exact dynamic solution that satisfies the boundary con-
ditions. However, it is assumed that the asymptotic behaviour of the singularities in the static
and dynamic solutions is also identical for other combinations of boundary conditions than sim-
ply supported. Consequently, an approximate dynamic solution can be derived from the static
eigenfunctions such that its singular behaviour is asymptotically accurate. This approximate
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dynamic solution will still satisfy the governing dynamic equations. Only the radial boundary
conditions are not exactly fulfilled.

• In addition to the singularities defined by Williams, the possibility exists that logarithmic con-
tributions to the stress singularities appear [29]. Logarithmic stress singularities only occur for
a few specific values of the internal angle α, which depend on the considered problem and ap-
plied boundary conditions. At this moment, it is impossible to derive a dynamic solution that
accurately represents the logarithmic singularities in the stress field.

• Finally, static problems with inhomogeneous boundary conditions are considered. In this case,
the solution consists of the fields that satisfy the corresponding homogeneous problem and the
fields that satisfy the inhomogeneous problem. It is assumed that also for inhomogeneous prob-
lems the singularities in the static and dynamic solution have the same asymptotic behaviour.
This allows to derive an approximate dynamic solution, provided that no logarithmic stresses
are present.

The obtained dynamic solutions accurately represent the singular behaviour in the vicinity of the
corner and they can consequently be included as special purpose functions in the set of basis
functions of the WBM. Since the set of dynamic solutions does not form a complete function set,
they can only be used in combination with the conventional set of wave functions (see Sec. 4).

3.1. Analytical solution infinite wedge domain

The homogeneous solution for the in-plane displacement field is defined starting from the uncoupled
differential equations (3) for the dilatational and rotational strain. Assuming a separable function
for the strains e(r, θ) and Ω(r, θ) in the polar coordinates indicated in Fig. 2 (−α/2 ≤ θ ≤ α/2),
leads to the following homogeneous solution:

e =
∞∑

k=1

[
cos(λlkθ)Rλlk(klr) + sin(λ∗lkθ)Rλ∗

lk
(klr)

]
,

Ω =
∞∑

k=1

[
cos(λtkθ)Rλtk(ktr) + sin(λ∗tkθ)Rλ∗

tk
(ktr)

]
,

(10)

where

Rλ(z) = AλJλ(z) +BλYλ(z). (11)

The eigenvalues are defined as λl = λlk or λ
∗
lk for the dilatational strain and λt = λtk or λ

∗
tk for

the rotational strain. Aλ and Bλ are two constants of integration and, Jλ and Yλ are the ordinary
and modified Bessel functions of the first kind. The eigenfunctions associated with λlk and λtk
describe the symmetric strain fields with respect to the axes θ = 0; the ones associated with λ∗lk
and λ∗tk are anti-symmetric with respect to this axes. Application of the radial boundary conditions
at θ = ±α/2 to the homogeneous solution (10) yields a set of equations in the unknown integration
constants:

Ac = 0, (12)

with A the coefficient matrix and c the vector of integration constants. To eliminate the trivial
solutions, the determinant of the coefficient matrix must vanish:

detA = 0. (13)

The eigenvalues λlk, λtk, λ
∗
lk and λ

∗
tk are the solutions of this characteristic equation.
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Imposing independent conditions for r =∞ and r = 0 leads to the integration constants of each
eigenfunction. Since the conditions at infinity have no influence on the singular behaviour in the
corner, they can be discarded. The absence of conditions at infinity merely results in solutions that
are non-unique. Since the only objective of these functions is the characterisation of all possible
displacement and stress distributions at the corner point, their non-uniqueness does not create any
problem. At the wedge tip r = 0, the following regularity conditions are imposed:

wr(0, θ) = finite,

wθ(0, θ) = finite.
(14)

Imposing these conditions ensures the boundedness of the strain energies as proved by Knowles [17].
Transformation of the in-plane displacements to the strain components according to Eq. (2) and
introduction of the eigenfunctions Rλ (11) lead to the following conditions:

wr(r, θ)|r=0 = lim
r→0

[
− 1

k2l

∂e

∂r
+

1

k2t

1

r

∂Ω

∂θ

]

= lim
r→0

[
c1(θ) [Aλl (Jλl−1(klr)− Jλl+1(klr)) +Bλl (Yλl−1(klr)− Yλl+1(klr))]

+ c2(θ)
1

r
[AλtJλt(ktr) + BλtYλt(ktr)]

]
= finite,

wθ(r, θ)|r=0 = lim
r→0

[
− 1

k2l

1

r

∂e

∂θ
− 1

k2t

∂Ω

∂r

]

= lim
r→0

[
c3(θ)

1

r
[AλlJλl(klr) + BλlYλl(klr)] + c4(θ) [Aλt (Jλt−1(ktr)− Jλt+1(ktr))

+Bλt (Yλt−1(ktr)− Yλt+1(ktr))]

]
= finite,

(15)

where the functions c•(θ) only depend on the angular coordinate θ. Since

lim
z→0

Yλ (z) = −∞ (16)

the regularity conditions can only be satisfied if Bλ = 0. The remaining expressions are finite if

λl > 1 and λt > 1. (17)

Thus, the regularity conditions at the corner point yield the following eigenfunctions:

Rλl = AλlJλl(klr), λl > 1,

Rλt = AλtJλt(ktr), λt > 1,
(18)

where λl = λlk or λ
∗
lk and λt = λtk or λ

∗
tk depending on whether the eigenvalues are associated with

a symmetric or anti-symmetric eigenfunction. These eigenfunctions correspond with the admissible
displacement fields:
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wr = −
1

2kl

[
Aλlk cos(λlkθ) (Jλlk−1(klr)− Jλlk+1(klr))

+Aλ∗
lk
sin(λ∗lkθ)

(
Jλ∗

lk
−1(klr)− Jλ∗

lk
+1(klr)

)]

+
1

k2t r

[
−Aλtλt sin(λtθ)Jλt(ktr) +A∗λtλ

∗
t cos(λ

∗
t θ)Jλ∗t (ktr)

]
,

wθ =
1

k2l r

[
Aλlkλlk sin(λlkθ)Jλlk(klr)−A∗λlkλ

∗
lk cos(λ

∗
lkθ)Jλ∗lk(klr)

]

− 1

2kt

[
Aλtk cos(λtkθ) (Jλtk−1(ktr)− Jλtk+1(ktr))

+Aλ∗
tk
sin(λ∗tkθ)

(
Jλ∗

tk
−1(ktr)− Jλ∗

tk
+1(ktr)

)]
,

(19)

with λl > 1 and λt > 1.

3.2. Singularities in the stress field

Starting from the analytical solution, the strain and stress fields can be evaluated in the vicinity of
the corner. The strains are expressed as

ǫr =
∂wr
∂r

,

ǫθ =
1

r

∂wθ
∂θ

+
wr
r
,

ǫrθ =
1

r

∂wr
∂θ

+
∂wθ
∂r

− wθ
r
.

(20)

The stresses in a homogeneous and isotropic medium are defined as

σr =
E

1− ν2

(
∂wr
∂r

+
ν

r

∂wθ
∂θ

+ ν
wr
r

)
,

σθ =
E

1− ν2

(
ν
∂wr
∂r

+
1

r

∂wθ
∂θ

+
wr
r

)
,

τrθ =
E

2(1 + ν)

(
1

r

∂wr
∂θ

+
∂wθ
∂r

− wθ
r

)
.

(21)

Substitution of the eigenfunctions (18) associated with eigenvalues λl and λt in the expression of
the radial stress σr results in

σr =
E

1− ν2

[
−Aλl

k2l

(
k2l
4
Jλl−2(klr) +

νkl
2r

Jλl−1(klr)−
(
k2l
2

+
ν

r2

)
Jλl(klr)

− νkl
2r

Jλl+1 +
k2l
4
Jλl+2

)
+(1− ν)

Aλt

k2t r

(
kt
2
Jλt−1(ktr)−

1

r
Jλt(ktr)−

kt
2
Jλt+1(ktr)

)]
. (22)

Use of the power series expansion for the Bessel function of the first kind [1],

Jλ(z) =
∞∑

n=0

(−1)n(z2 )2n+λ
n!Γ (n+ λ+ 1)

, (23)
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leads to the following expression for the radial stress in the vicinity of the corner point:

σr|r=0 = lim
r→0

[(
1

Γ (λl − 1)
+ ν

1

Γ (λl)
− ν

1

Γ (λl + 1)

)
rλl−2 +

(
1

Γ (λt)
− 1

Γ (λt + 1)

)
rλt−2

]
. (24)

Equation (24) shows that the stress field becomes singular in the corner point if one of the eigen-
values becomes smaller than 2, λl < 2 or λt < 2. The order of the singularity is λ − 2. The two
other stress components σθ and τrθ can be approximated in the same manner. The order of these
singularities is λ− 2 as well.

3.3. Simply supported infinite wedge domain

In this section, the analytical solution is defined for an infinite wedge domain where both edges
are simply supported. The conditions are formulated following the second group of conditions Γvt2,
which in polar coordinates are expressed as

wθ

(
r,±α

2

)
= 0,

τrθ

(
r,±α

2

)
= 0.

(25)

Application of these boundary conditions to the homogeneous solution (19) and solution of the
resulting characteristic equation yields the eigenvalues:

λlk =
2kπ

α
, λtk = (2k − 1)

π

α
,

λ∗lk = (2k − 1)
π

α
, λ∗tk =

2kπ

α

(26)

with k = 1, 2, . . .. The homogeneous solutions (19) together with the here defined eigenvalues form
an exact analytical solution for the simply supported infinite wedge since they satisfy the dynamic
equations, the regularity conditions and the radial boundary conditions. As stated in the previous
section, singular stresses can be expected when one of the eigenvalues becomes smaller than 2. For
a simply supported corner, the critical angle α, starting from which singularities can occur, equals
thus π/2 or 90◦.

This is illustrated with an example. Consider a simply supported wedge with internal angle
α = 100◦. The in-plane longitudinal and shear wavenumbers kl and kt equal 12.0 m

−1 and 20.2 m−1,
respectively. In this case, the smallest eigenvalues are:

λl = 3.6, 7.2, . . . , λt = 1.8, 5.4, . . . ,

λ∗l = 1.8, 5.4, . . . , λ∗t = 3.6, 7.2, . . . .
(27)

The first eigenvalue of the anti-symmetric dilatational and symmetric rotational strain field λ∗l and
λt are smaller than 2 such that the stress field corresponding to these eigenfunctions will exhibit a
singularity. The remaining eigenvalues do not induce a singularity. Figure 3 shows the radial and
angular displacement field corresponding to the eigenfunctions with λ∗l = λt = 1.8. It is seen that
the displacement boundary conditions are fulfilled along the two radial edges. Figure 4 shows the
radial stress field which corresponds to these eigenfunctions. As expected the stress field becomes
singular in the corner point.
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Fig. 3. Displacement field corresponding to the anti-symmetric dilatational and symmetric rotational eigen-
functions with λ∗l = λt = 1.8 for a simply supported infinite wedge with α = 100◦, kl = 12.0 m−1 and

kt = 20.2 m−1: a) radial displacement wr, b) angular displacement wθ.
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Fig. 4. Radial stress field corresponding to the anti-symmetric dilatational and symmetric rotational eigen-
functions with λ∗l = λt = 1.8 for a simply supported infinite wedge with α = 100◦, kl = 12.0 m−1 and

kt = 20.2 m−1.

3.4. Analytical solutions of the static infinite wedge

In this section, the previously defined dynamic solution is compared with the static solution for
the infinite wedge domain. In this case, the analytical solution needs to satisfy the homogeneous,
static equations instead of the dynamic equations, namely Eq. (3) with kl = kt = 0. The radial
boundary conditions and regularity conditions remain identical. Williams [39] was the first to define
the analytical solutions for a static infinite wedge domain, introducing the following displacement
fields:
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wr = −
rλs

2G
[Aλs cos (λs + 1) θ +Bλs sin (λs + 1) θ

+ (λs − k) (Cλs cos (λs − 1) θ +Dλs sin (λs − 1) θ)] ,

wθ =
rλs

2G
[Aλs sin (λs + 1) θ −Bλs cos (λs + 1) θ

+(λs + k) (Cλs sin (λs − 1) θ −Dλs cos (λs − 1) θ)] ,

(28)

with G the shear modulus and k = (3 − ν)/(1 + ν) for plane stress problems. The corresponding
stresses are defined as

σr = −λsrλs−1 [Aλs cos (λs + 1) θ +Bλs sin (λs + 1) θ

+(λs − 3) (Cλs cos (λs − 1) θ +Dλs sin (λs − 1) θ)] ,

σθ = λsr
λs−1 [Aλs cos (λs + 1) θ +Bλs sin (λs + 1) θ

+(λs + 1) (Cλs cos (λs − 1) θ +Dλs sin (λs − 1) θ)] ,

τrθ = λsr
λs−1 [Aλs sin (λs + 1) θ −Bλs cos (λs + 1) θ

+(λs − 1) (Cλs sin (λs − 1) θ −Dλs cos (λs − 1) θ)] .

(29)

In the literature, no distinction is made between eigenvalues which correspond to a symmetric
or anti-symmetric strain field. Therefore, that notation is also followed in this text. Eigenvalues
λs with a negative real part are excluded, since they introduce a singular displacement field that
is inconsistent with the regularity conditions. Furthermore, it is seen that eigenvalues λs < 1
give rise to singular stresses in the corner point. Comparing the radial stress fields for the static
and dynamic solutions, i.e. Eq. (29) and Eq. (24), it is observed that the stresses have the same
asymptotic behaviour in the vicinity of the corner point, provided that λl = λs+1 and λt = λs+1.
For the static wedge with simply supported edges, Seweryn [27] defines the eigenvalues as

λs =
nπ

α
− 1, λs =

nπ

α
+ 1, (30)

where n = 1, 2, . . .. These eigenvalues are deduced from the application of the simply supported
boundary conditions. Imposing the boundary conditions (25) to the homogeneous solution (28)
yields a set of equations:

rλs−1A





Aλs

Bλs

Cλs
Dλs





= 0, (31)

with A the 4× 4 coefficient matrix. To eliminate the trivial solutions, the determinant of A must
vanish, such that the resulting characteric equation is satisfied:

detA = 0. (32)

The static eigenvalues are compared with the dynamic values, derived in the previous section.
Considering the first group of static eigenvalues (30), the range of n is subdivided into a set with
even numbers and a set with odd numbers.

• n even:
By substitution of these eigenvalues in the system of equations (31) resulting from application
of the radial boundary conditions, while taking into account that

sin (λs + 1)
α

2
= 0, (33)
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the integration constants can be determined:

Bλs = Cλs = Dλs = 0, Aλs 6= 0. (34)

The angular displacement field corresponding to these eigenvalues is anti-symmetric with respect
to the axes θ = 0:

wθ = rλs sin (λs + 1) θ. (35)

The radial displacement field is symmetric with respect to the θ-axes:

wr = rλs cos (λs + 1) θ. (36)

For the dynamic displacement field, an anti-symmetric angular and symmetric radial displace-
ment field is induced by the eigenvalues λlk and λ

∗
tk, see Eq. (19). For the simply supported

wedge, these dynamic eigenvalues are defined as

λlk = λ∗tk =
2kπ

α
, (37)

with k = 1, 2, . . .. Hence, the following relation:

λ = λs + 1, (38)

between static and dynamic eigenvalues is valid. Considering the asymptotic behaviour of the
stresses in the vicinity of the corner point, it is seen that the static and dynamic solution for
the radial stress are asymptotically identical:

σr ∼ rλs−1 for the static wedge,

σr ∼ rλl−2 + rλ
∗

t−2 for the dynamic wedge.
(39)

• n odd:
We proceed in a similar way. Substitution of the eigenvalues in the system of equations leads to
the constants:

Aλs = Cλs = Dλs = 0, Bλs 6= 0. (40)

In this case, the corresponding angular displacement field is symmetric with respect to the axes
θ = 0, whereas the radial displacement field is anti-symmetric:

wθ = rλs cos (λs + 1) θ,

wr = rλs sin (λs + 1) θ.
(41)

For the dynamic displacement field, the eigenvalues λ∗lk and λtk provoke a symmetric angular
and anti-symmetric radial displacement field, see Eq. (19). For the simply supported wedge,
these dynamic eigenvalues are defined as

λ∗lk = λtk = (2k − 1)
π

α
, (42)

with k = 1, 2, . . .. Also for odd values of n, the relation

λ = λs + 1 (43)

between static and dynamic eigenvalues is valid. Considering the asymptotic behaviour of the
stresses in the vicinity of the corner point, it is seen that the static and dynamic solution for
the stresses are identical,

σr ∼ rλs−1 for the static wedge,

σr ∼ rλ
∗

l
−2 + rλt−2 for the dynamic wedge.

(44)
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For the second group of static eigenvalues (30)2 no equivalent dynamic eigenvalues exist. However,
these eigenvalues are always larger than 1 such that they do not induce any singularity in the stress
field. Since the only objective of this study is the characterisation of stress singularities, the second
group of static eigenvalues is not relevant and therefore not further considered. In summary, it
is demonstrated that, for the simply supported infinite wedge, the singularities in the static and
dynamic stress field are asymptotically identical in the vicinity of the corner point. It is assumed
that the asymptotic behaviour of the singularities in the static and dynamic solution remains
identical for all combinations of boundary conditions.
In a similar study of the infinite wedge domain, Bogy found conditions under which logarithmic

stress singularities exist [7]. He states that these auxiliary fields can be generated by differentiating
the original fields with respect to λs:

wr = −
rλs

2G

[ (
A′λs cos (λs + 1) θ +B′λs sin (λs + 1) θ

)
ln r

+ (1 + (λs − k) ln r)
(
C ′λs cos (λs − 1) θ +D′λs sin (λs − 1) θ

)

− θ
(
A′λs sin (λs + 1) θ −B′λs cos (λs + 1) θ

+(λs − k)
(
C ′λ sin (λs − 1) θ −D′λs cos (λs − 1) θ

))]
,

wθ =
rλs

2G

[(
A′λs sin (λs + 1) θ −B′λs cos (λs + 1) θ

)
ln r

+ (1 + (λs + k) ln r)
(
C ′λs sin (λs − 1) θ −D′λs cos (λs − 1) θ

)

+ θ
(
A′λs cos (λs + 1) θ +B′λs sin (λs + 1) θ

+(λs + k)
(
C ′λ cos (λs − 1) θ +D′λs sin (λs − 1) θ

))]
.

(45)

The displacement fields (45) still satisfy the governing equations, since these equations are indepen-
dent of λs. The auxiliary fields are supplemented to the original displacement fields (19) and the
integration constants follow from application of the radial boundary conditions. As demonstrated
in [28], the auxiliary fields can appear when

D = 0 and
∂nD
∂λns

= 0 (46)

for n = 1, . . . , nA − rA. D is the determinant of the coefficient matrix A resulting from application
of the radial boundary conditions, nA is the order of this matrix and rA is its rank for the eigenvalue
λs. In the neighbourhood of the corner, the stresses behave asymptotically as

σ ∼ rλs−1 ln r + rλs−1. (47)

Compared with the original fields, the stress fields contain an additional logarithmic term ln r. The
stresses now become singular when λs ≤ 1. Logarithmic intensification of stress singularities can
be viewed as a transition state between pure power singularities (λs real) and oscillatory power
singularities (λs complex) [29]. A necessary but not sufficient condition is the occurrence of repeated
roots of the eigenvalue equation. Dempsey [11] lists several configurations in which logarithmic
intensification or pure logarithmic singularities (λs = 1) are present. Logarithmic singularities never
appear for a range of internal angles. On the contrary, they only occur for a few specific angles
α whose values normally depend on the applied boundary conditions and the material constants.
For example, for the fixed-free infinite wedge logarithmic intensification occurs for corners with an
internal angle [30],

α = π − αk or α = 2π − αk, (48)



148 C. Vanmaele, K. Vergote, D. Vandepitte, W. Desmet

where αk is defined as

αk = sin−1
1√
1 + ν

, (49)

for 0 < αk ≤ π/2. In the dynamic solution for the infinite wedge, as defined in (19), no logarithmic
intensification is present. Defining auxiliary dynamic fields by deriving the original fields with
respect to the eigenvalue according to the procedure of Bogy [7], is impossible since no closed
analytical expression exists for the derivative of a Bessel function with respect to its order. It is
therefore impossible to make the static and dynamic solutions asymptotically equivalent only by
adequately choosing the dynamic eigenvalues. As a result, currently no dynamic solution can be
defined that accurately represents the singularities in the stress field when logarithmic intensification
is present. Nevertheless, logarithmic stresses only occur in some specific configurations which form
a minority.
In the case that the radial boundary conditions applied to the static infinite wedge are inho-

mogeneous, the solution consists of the fields that satisfy the corresponding homogeneous problem
supplemented with the fields of the inhomogeneous problem. The inhomogeneous fields are ob-
tained in a similar way as for the homogeneous conditions. The displacement fields are defined as
in Eq. (28). If necessary, the original displacement fields are extended with the auxiliar displacement
fields (45). Application of the radial boundary conditions, which in this case are inhomogeneous,
leads to a system of equations in the integration constants. Solution of this system results in the
required displacement and stress fields. Inhomogeneous boundary conditions can possibly induce
logarithmic singularities [28, 29]. Also in this case, logarithmic singularities only appear for specific
angles α. For example, consider a wedge with internal angle α that is subjected to a uniform shear
force along one edge while the other edge is free of stresses. In this problem logarithmic singularities
can occur if α = tanα or α = 257.45◦. Other examples of logarithmic stresses with inhomogeneous
boundary conditions are given in reference [29]. Furthermore, the assumption is made that also for
inhomogeneous boundary conditions the singularities in the static and dynamic solution have the
same asymptotic behaviour. If stress singularities are absent from the static solution, no stress sin-
gularities are expected in the dynamic stress field. If singularities appear, an approximate dynamic
solution will be derived from the static solution such that the asymptotic behaviour around the
corner of both solutions is identical. As said before, logarithmic stress fields can not be represented
correctly by the dynamic solution. However, the configurations in which logarithmic stresses are
induced due to inhomogeneous boundary conditions, form a minority.

3.5. General infinite wedge domain

In case where the two radial edges of the infinite wedge domain are not both simply supported,
it is impossible to define an exact dynamic solution that satisfies the radial boundary conditions
in addition to the dynamic equations. For static problems, on the other hand, the analytical solu-
tions exist for each possible combination of radial boundary conditions [29, 39]. Table 1 lists the

Table 1. Characteristic equations and critical angles αc for the static infinite wedge domain.

BC characteristic equation αc

fixed – fixed sinαλs = ±
1 + ν

3− ν
λs sinα 180◦

free – free sinαλs = ∓λs sinα 180◦

fixed – free sin2 αλs =
4

(3− ν) (1 + ν)
− 1 + ν

3− ν
λ2s sin

2 α 60◦ a

a the presented critical angle corresponds with a Poisson coefficient ν = 0.3
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characteristic equations for various combinations of homogeneous boundary conditions as defined
by Williams.
In addition, Table 1 mentions the critical angles starting from which singularities may be ex-

pected. The critical angles are determined from the characteristic equations as the angles for which
the smallest eigenvalue becomes smaller than 1. For corners with an internal angle larger than the
critical angle, the expansion set of the WBM will need to be extended with the corner functions.
However, the Williams functions cannot be incorporated in the WBM as basis functions. As will be
shown in Sec. 4, the WBM is an indirect Trefftz method and thus it requires basis functions that
exactly satisfy the dynamic equations. Only functions consistent with Eq. (19) satisfy the homo-
geneous, dynamic equations and can be used as basis functions. The corresponding characteristic
eigenvalues λ are usually deduced from the radial boundary conditions. Since that is impossible
in this case, they are chosen such that the singular behaviour around the corner is asymptotically
the same as that of the corresponding static solution. The derivation of the dynamic eigenvalues
from the static ones can only be performed for the original, basic stress fields. Subsection 3.4 pre-
sented the relation between static and dynamic eigenvalues that yields the same singular behaviour
around the corner point. For an anti-symmetric angular or symmetric radial displacement field, the
dynamic eigenvalues are defined as

λl = λs + 1 and λ∗t = λs + 1. (50)

For a symmetric angular or anti-symmetric radial displacement field, the dynamic eigenvalues are
defined as

λ∗l = λs + 1 and λt = λs + 1. (51)

The resulting eigenfunctions satisfy the dynamic equations inherently such that they can be incorpo-
rated in the WBM as basis functions. Although the radial boundary conditions are not represented
correctly by this derived solution, the singularity has the correct order and the stresses in the
neighbourhood of the corner form a good approximation for those in the problem solution, at least
when only power singularities are present. If logarithmic stresses are present, it is not yet possible
to define a dynamic solution that approximates the stress singularity accurately.

4. BASIC CONCEPTS OF THE WAVE BASED METHOD

The FEM and WBM are both deterministic techniques, however they are based on different prin-
ciples. Whereas the classical FEM uses (simple) polynomial shape functions, the WBM is based on
the Trefftz principle and as a result uses exact solutions of the governing differential equations as
basis functions. The WBM divides the domain into a small number of large subdomains. Provided
that each of the subdomains is convex, the convergence of the method is ensured [12]. Since the
basis functions satisfy the governing equations, minimisation of the approximation error induced
in the boundary conditions and the conformity between subdomains leads to the solution of the
system.
The specific choice of basis functions leads to a substantially reduced size of the numerical

models, which leads to substantially lower computation times as compared to the FEM. As a result
the WBM can be used up to considerably higher frequencies. This has been shown for interior and
exterior (vibro-) acoustic problems [5, 22–24, 33, 37, 38], for the structural dynamic analysis of the
bending of flat plates [34, 35] and for poro-elastic problems [9].

4.1. Division in convex subdomains

In the case of a non-convex problem geometry, the domainΩs must be divided inNs non-overlapping

convex subdomains Ω
(β)
s to guarantee convergence of the method. The coupling between the dif-

ferent subdomains is created by imposing a displacement compatibility and force equilibrium. The
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displacement compatibility along the coupling interface Γ
(β,α)
I between subdomains β and α is

formulated as

R
(β,α)
Iwn

= w(β)
n (x) + w(α)

n (x) = 0

R
(β,α)
Iws

= w(β)
s (x) + w(α)

s (x) = 0



 x ∈ Γ (β,α)

Iv
. (52)

The force equilibrium between subdomains β and α corresponds with

R
(β,α)
ITn

= T (β)
n (x)− T (α)

n (x) = 0

R
(β,α)
ITs

= T (β)
s (x)− T (α)

s (x) = 0



 x ∈ Γ (β,α)

It
. (53)

The coupling conditions are formulated in terms of the boundary displacements and forces:

w(β)
n = n(β)T

{
w

(β)
x

w
(β)
y

}
, T (β)

n = n(β)T

{
T
(β)
x

T
(β)
y

}
,

w(β)
s = s(β)

T

{
w

(β)
x

w
(β)
y

}
, T (β)

s = s(β)
T

{
T
(β)
x

T
(β)
y

}
,

(54)

where the vector n(β) corresponds with the subdomain outward-normal direction, and the vector
s(β) with the tangential direction along the interface (see Fig. 5).
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Fig. 5. Subdomain partitioning.

In the WBM, the continuity conditions are enforced using a direct coupling approach, i.e. the
interface conditions are imposed directly as boundary conditions to the subdomains. In case that the
displacement compatibility (52) between subdomains β and α is imposed as a boundary condition

for domain β, Γ
(β,α)
Iv

and Γ
(β,α)
It

are defined as

Γ
(β,α)
Iv

= Γ
(β,α)
I and Γ

(β,α)
It

= ∅. (55)

When, on the contrary, the force equilibrium (53) is imposed on domain β, the following definitions
hold:

Γ
(β,α)
Iv

= ∅ and Γ
(β,α)
It

= Γ
(β,α)
I . (56)

The remaining continuity condition is imposed as boundary condition on domain α.
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4.2. Field variable expansion

In each subdomain Ω
(β)
s the field variables are approximated by the solution expansion

{
ŵ

(β)
x

ŵ
(β)
y

}
=

[
L(β)
wx

L(β)
wy

]



∑n
(β)
l

l c
(β)
l Ψ

(β)
l

∑n
(β)
t

t c
(β)
t Ψ

(β)
t





+

n
(β)
c∑

c

{
ŵxc
ŵyc

}
, (57)

with Ψ
(β)
• the wave functions, satisfying the uncoupled Navier equations (3), and c

(β)
• the unknown

wave functions contribution factors which are determined by the imposed boundary and interface
conditions. The set of wave functions have to form a T-complete set of functions, thereby theoret-
ically ensuring convergence to the exact result [36]. However, when the deformation state becomes
singular in a corner point, a prohibitively high number of wave functions is needed to achieve an
acceptable prediction accuracy and, because of the ill-conditioning, round-off errors can destroy
the accuracy before adequate convergence is achieved [20]. Enrichment of the expansion with some
special-purpose functions, that accurately represent the singularity in the deformation state, ac-
celerates the convergence of the WBM significantly. For each corner c of the problem domain in
which a singularity is present, the set of wave functions is extended with a set of corner functions
{ŵxc ŵyc}T whose only purpose is an accurate representation of the singularity in corner c.

4.2.1. Wave functions

Table 2 lists the selected wave functions for subdomain β. The corresponding wavenumbers are

defined based on the dimensions
(
L
(β)
x × L

(β)
y

)
of the preferably smallest rectangular box circum-

scribing the subdomain, see Fig. 6. Assuming that an integer number of half wavelengths equals
the dimension of the rectangular box in the corresponding direction leads to the first wavenumber:

k
(β)
l1,x

=
l1π

L
(β)
x

and k
(β)
l2,y

=
l2π

L
(β)
y

, (58)

for the dilatational field and

k
(β)
t1,x

=
t1π

L
(β)
x

and k
(β)
t2,y

=
t2π

L
(β)
y

, (59)

Table 2. Selected wave functions for subdomain β.

dilatational wave functions

Ψ
(β)
l1

(x) = sin(k
(β)
l1,x

x) exp(−jk(β)l1,y
y) l1 = 0, 1, · · · , n(β)

l1

Ψ
(β)
l2

(x) = exp(−jk(β)l2,x
x) sin(k

(β)
l2,y

y) l2 = 0, 1, · · · , n(β)
l2

Ψ
(β)
l1

(x) = cos(k
(β)
l1,x

x) exp(−jk(β)l1,y
y) l1 = 1, · · · , n′(β)l1

Ψ
(β)
l2

(x) = exp(−jk(β)l2,x
x) cos(k

(β)
l2,y

y) l2 = 1, · · · , n′(β)l2

rotational wave functions

Ψ
(β)
t1

(x) = cos(k
(β)
t1,x

x) exp(−jk(β)t1,y
y) t1 = 0, 1, · · · , n(β)

t1

Ψ
(β)
t2

(x) = exp(−jk(β)t2,x
x) cos(k

(β)
t2,y

y) t2 = 0, 1, · · · , n(β)
t2

Ψ
(β)
t1

(x) = sin(k
(β)
t1,x

x) exp(−jk(β)t1,y
y) t1 = 1, · · · , n′(β)t1

Ψ
(β)
t2

(x) = exp(−jk(β)t2,x
x) sin(k

(β)
t2,y

y) t2 = 1, · · · , n′(β)t2
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Fig. 6. Definition of the bounding box for subdomain β.

for the rotational field. The other component of the wavenumber is calculated from, respectively,
the longitudinal or shear wavenumber associated with the considered frequency:

k
(β)
l1,y

= ±

√√√√k
(β)
l

2
−
(
l1π

L
(β)
x

)2

, k
(β)
l2,x

= ±

√√√√k
(β)
l

2
−
(
l2π

L
(β)
y

)2

, (60)

and

k
(β)
t1,y

= ±

√√√√k
(β)
t

2
−
(
t1π

L
(β)
x

)2

, k
(β)
t2,x

= ±

√√√√k
(β)
t

2
−
(
t2π

L
(β)
y

)2

. (61)

For acoustic problems and plate bending problems, it has been demonstrated that such selection
of wave functions leads to convergence provided that the considered subdomain is convex [24, 34].
We assume that this can be extrapolated to problems governed by multiple Helmholtz-equations,
as this will be confirmed in the numerical examples in Sec. 5.

The number of wave functions n
(β)
l + n

(β)
t that are included in the expansion (57) is related to

the excitation frequency and the dimensions of the enclosing rectangular box:

n
(β)
l = 2n

(β)
l1

+ 2n
(β)
l2

+ 2(n
′(β)
l1

+ 1) + 2(n
′(β)
l2

+ 1), (62)

n
(β)
t = 2(n

(β)
t1

+ 1) + 2(n
(β)
t2

+ 1) + 2n
′(β)
t1

+ 2n
′(β)
t2

, (63)

with,

n
(β)
l1

L
(β)
x

≈
n
(β)
l2

L
(β)
y

≈
n
′(β)
l1

L
(β)
x

≈
n
′(β)
l2

L
(β)
y

≈ n
(β)
t1

L
(β)
x

≈ n
(β)
t2

L
(β)
y

≈ n
′(β)
t1

L
(β)
x

≈ n
′(β)
t2

L
(β)
y

≥ T
kt
π
, (64)

with n
(β)
• integer truncation values and with T a user defined truncation parameter. The trunca-

tion rule is based on the in-plane shear wavenumber kt since it typically exceeds the longitudinal
wavenumber kl and therefore yields the most restricting condition. With this truncation rule, the
wavenumbers of the highest oscillating wave functions included in the expansion exceed the in-plane
shear wavenumber multiplied with a user defined parameter T.

4.2.2. Corner functions

If stress singularities are present in one or more corners, the expansion of wave functions is extended
with a set of corner functions. For each corner c of subdomain β in which singular stresses occur,
the following expansion associated with that corner is added to the field variable expansions:
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{
ŵ

(β)
xc

ŵ
(β)
yc

}
=

[
L(β)
wx

L(β)
wy

]{∑ncf

l=1 clcΥ
(β)
lc (rc, θc)

∑ncf

t=1 ctcΥ
(β)
tc (rc, θc)

}
(65)

with 2ncf the total number of included corner functions for corner c. The corner functions are
multiplied with contribution factors clc and ctc which are unknowns of the system.
The corner functions are defined as the eigenfunctions of the corresponding infinite wedge do-

main:

Υ
(β)
lc (rc, θc) =

{
cos (λlcθc)Jλlc(k

(β)
l rc)

sin (λ∗lcθc)Jλ∗lc(k
(β)
l rc)

,

Υ
(β)
tc (rc, θc) =

{
cos (λtcθc) Jλtc(k

(β)
t rc)

sin (λ∗tcθc) Jλ∗tc(k
(β)
t rc)

.

(66)

The eigenvalues λ depend on the type of singularity and thus on the boundary conditions along
the adjacent edges and the interior angle αc of the corresponding corner. When both edges are
simply supported, the eigenvalues follow from the application of the radial boundary conditions to
the dynamic, homogeneous solution of the infinite wedge domain. The eigenvalues are defined as
in Eq. (26). For other combinations of boundary conditions, the eigenvalues must be determined
from those of the corresponding static problem, as explained in Subsec. 3.5. If the interior angle
and radial boundary conditions of the infinite wedge domain correspond with that of the corner in
the original problem domain, the eigenfunctions accurately represent the stress singularity in the
problem solution.
As indicated in Fig. 7, each corner function is defined in a coordinate system attached to the

corresponding corner point. The corner is the origin of the coordinate system and θ is related to
the bisecting line. In contrast to the wave functions, which are defined within one subdomain, the
corner functions are related to a corner and are not necessarily restricted to one subdomain. In
case that the corner point lies on a interface, and thus belongs to several subdomains, the functions
associated with that corner extend over the different subdomains adjacent to the corner point. For

example, corner c2 in Fig. 7 belongs to both subdomains Ω
(1)
s and Ω

(2)
s . Thus the corner functions

associated with this corner extend over the two subdomains. For corner c1, on the other hand,

the corner functions are only defined inside subdomain Ω
(1)
s . Unlike the wave functions, the corner

functions do not form a complete set [16]. Therefore, the corner functions can only be used together
with the conventional set of wave functions. Since the purpose of the corner functions is merely to
give an accurate representation of the singularities in the solution in the vicinity of the corner, only
the eigenfunctions that give rise to singularities, i.e., eigenfunctions with an eigenvalue 1 < λ < 2,
need to be included in the model.

1c

1c
r 1c

2c

2c2c
r

(1,2)

I

s

s
(1,2)

(1,2)

Fig. 7. Definition of corner functions.
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4.3. Evaluation of boundary and interface conditions

The field variable expansion (57) satisfies the governing dynamic equations exactly, irrespective of

the unknown contribution factors c
(β)
l and c

(β)
t . The contribution factors are determined through

minimisation of the approximation errors of the boundary and interface conditions. Since these
conditions are imposed in every point of the subdomain boundary, they can only be satisfied ap-
proximately in an integral sense. In this paper, a weighted residual formulation is adopted to enforce
the boundary and interface conditions. For each subdomain β, the error residual functions are or-
thogonalised with respect to some weighting functions ẽ(β) and Ω̃(β) and their derived quantities

w̃
(β)
n , w̃

(β)
s , T̃

(β)
n and T̃

(β)
s (cfr. Eq. (9)):

∫

Γ
(β)
v ∪Γ

(β)
vt2

T̃ (β)
n R(β)

wn
dΓ +

∫

Γ
(β)
v ∪Γ

(β)
vt1

T̃ (β)
s R(β)

ws
dΓ −

∫

Γ
(β)
t ∪Γvt1

w̃(β)
n R

(β)
Tn
dΓ

−
∫

Γ
(β)
t ∪Γvt2

w̃(β)
s R

(β)
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dΓ +

∑

α,α6=β

∫

Γ
(β,α)
Iv

[
T̃ (β)
n R

(β,α)
Iwn

+ T̃ (β)
s R

(β,α)
Iws

]
dΓ

−
∑

α,α6=β

∫

Γ
(β,α)
It

[
w̃(β)
n R

(β,α)
ITn

+ w̃(β)
s R

(β,α)
ITs

]
dΓ = 0. (67)

Like in the Galerkin weighting procedure, the weighting functions ẽ(β) and Ω̃(β) are chosen as an
expansion of the same basis functions used for the field variable approximations. Substitution of
the field variable approximations and the weighting functions in the weighted residual formula-
tion (67), together with the requirement that these relations should hold for any set of weighting
function contribution factors results in a system of equations in the unknown contribution factors.
As mentioned before, the corner functions are not necessarily restricted to one subdomain. In the
case that a corner function is defined in two subdomains, it will not give rise to an approximation
error over the interface between the two subdomains since the continuity is a priori guaranteed.
The corner function will therefore be excluded from the residuals over that interface.
For each of the Ns subdomains, a matrix equation in the unknown contribution factors is for-

mulated. Combination of the Ns matrix equations yields the structural WB model.

5. NUMERICAL EXAMPLES

This section demonstrates the computational efficiency of the WBM by means of two cases. The
study will confirm the beneficial influence of the corner functions on the achieved prediction ac-
curacy. Furthermore, the performance of the WBM will be compared with that of the FEM. The
comparison is made based on both accuracy as well as on computation time. The WB predictions
are calculated using a C++ implementation of the WBM. The mentioned computation times for
the WBM include both the construction and solution times since the WB models are frequency
dependent. As MSC/Nastran is a widely accepted tool in the field of structural dynamics, the FE
predictions are calculated using MSC/Nastran. The considered problems only exhibit a deforma-
tion in the plane of the structure, such that the degrees of freedom associated with the out-of-plane
deformation can be constrained. The FE models include three degrees of freedom per node. All FE
results are calculated with the direct solution method. Computation times only include the direct
solution times, such that the times are a measure for the frequency dependent cost. All calculations
were performed on a 3 GHz Intel Pentium 4 processor running a Linux operating system.
The first example has a convex problem geometry such that a division in subdomains is not

needed. Since no singularities are present in the problem solution, the use of corner functions is
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needed neither. The last example consists of a more complex geometry which requires a domain
subdivision. In this example, singularities are present. To accelerate the convergence of the WBM,
the expansion set is extended with a few corner functions that accurately represent the existing
singularities.

5.1. Convex problem without singularities

A first example consists of a convex problem domain as shown in Fig. 8. The material is aluminium
(E = 70 · 109 N/m2, ν = 0.3, ρ = 2790 kg/m3) and the structure has a thickness of 0.001 m.
A uniform normal force of 1N/m is applied to the upper edge. The bottom edge is fixed, while the
two other edges are free. There are two response points located at w1 (0.25 m, 0.125 m) and w2

(0.65 m, 0.3 m).

2

4

3

w1

w2

°59 °63

°128

°110

1m

0
.5

m

y

x1

corner point x [m] y [m]

1 0 0

2 1 0

3 0.8 0.4

4 0.3 0.5

Fig. 8. Geometry of a convex problem without singularities.

Stress singularities

At first, it is verified whether singularities will be present. The combinations of radial boundary
conditions appearing in this problem are fixed-free and free-free. For these boundary conditions, no
exact dynamic solutions can be defined for the infinite wedge domain. The existing displacement
and strain fields are therefore derived from the corresponding static problem. The characteristic
equations and critical angles for the static infinite wedge are given in Table 1. For the fixed-free
infinite wedge, the critical angle equals 60◦ (for ν = 0.3). As a result singularities may appear
in corner 2. The interior angle of this corner lies nevertheless so close to the critical angle that
the expected strain and stress gradients are quite small. The smallest eigenvalue for the fixed-
free static wedge is λs = 0.98 while the stress fields behave as rλs−1 around the corner point.
Hence, it is expected that the stress gradient will not have a great influence on the performance of
the WBM. For a free-free corner, singularities exist when the internal angle exceeds 180◦ so that
no singularities are introduced by the homogeneous boundary conditions. However, for corners 3
and 4 the boundary conditions are not homogeneous. The possible singularities include those for
the corresponding homogeneous problem as well as those induced by the inhomogeneous conditions.
To derive the stress field caused by an applied traction, we consider an infinite wedge domain where
the following boundary conditions are applied:

σθ(r, θ) = 0

τrθ(r, θ) = 0

}
for θ = −α

2
,

σθ(r, θ) = q

τrθ(r, θ) = 0

}
for θ =

α

2
,

(68)

with 0 < r < ∞. Imposing these boundary conditions to the basic stress fields (29) of a static
infinite wedge domain leads to the characteristic system of equations:

rλs−1Ac = q, (69)
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for 0 < r <∞. The coefficient matrix is defined as

A = λs




C1 −S1 (λs + 1)C2 −(λs + 1)S2

−S1 C1 −(λs − 1)S2 −(λs − 1)C2

C1 S1 (λs + 1)C2 (λs + 1)S2

S1 −C1 (λs − 1)S2 −(λs − 1)C2


 , (70)

with

C1 = cos(λs + 1)
α

2
, C2 = cos(λs − 1)

α

2
,

S1 = sin(λs + 1)
α

2
, S2 = sin(λs − 1)

α

2
.

(71)

The vectors c and q contain, respectively, the integration constants and the applied tractions:

c = {Aλs Bλs Cλs Dλs}T , (72)

q = {0 0 q 0}T . (73)

The characteristic equations (69) only hold for all r if λs = 1. Taking into account that for corners
3 and 4 the following relations apply:

cosα 6= 0 and sinα 6= 0, (74)

yields a system of equations which is only satisfied for the trivial solution. The basic fields that
are used to arrive at this solution are incomplete. To overcome this problem, the basic fields are
supplemented with the auxiliary fields (45) in accordance with [10]. The characteristic equations
are again obtained by applying the boundary conditions to the total stress fields:

rλs−1 ln rAc′ + rλs−1
(
Ac+

∂A

∂λs
c′
)

= q, (75)

with c′ the integration constants of the auxiliary fields. Setting λs = 1 makes the second term of
the left-hand side independent of the radial coordinate. The first term contains a ln r term and can
only be made independent of r by demanding that its coefficient is zero or

Ac′ = 0. (76)

This forms no problem since the determinant of A is zero for λs = 1. Actually, the fact that the
determinant of the coefficient matrix is zero prohibited the solution of the inhomogeneous problem
with only the basic fields. The solution for the system Ac′ = 0 is

A′λs = B′λs = C ′λs = 0. (77)

The constants c are determined from the remaining conditions taking the solution for c′ and λs = 1
into account:

Ac+
∂A

∂λs
c′ = q. (78)

For a corner with internal angle α, the solution is defined as

D′λs =
cosα

2(α cosα− sinα)
q,

Aλs = 0,

Bλs = −
1

2(α cosα− sinα)
q,

Cλs =
q

4
.

(79)
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The corresponding angular stress field becomes

σθ =
2θ cosα− sin 2θ

2(α cosα− sinα)
q +

q

2
. (80)

The proposed solution clearly satisfies the imposed boundary conditions at θ = ±α/2. As the solu-
tion does not become singular in the corner point, the inhomogeneous boundary conditions caused
by the applied tractions do not introduce a singularity in the stress fields. Since the singularities
in the stress field for the static and dynamic case are asymptotically identical around the corner
point, it can be concluded that the dynamic problem is also free of singularities. Recall that the
solution (80) is only valid if the relations

cosα 6= 0 and sinα 6= 0 (81)

hold. Otherwise it is possible to define the solution for Eq. (69) and the auxiliary fields do not
appear in the resulting stress field.
In summary, only in corner 2 a singularity is expected since its interior angle just exceeds the

critical angle. The gradient in the stress field will nevertheless remain small such that it does not
influence the convergence rate of the WBM.

Computational models

The considered FE models include both a quadrilateral and a triangular discretisation. Only the
4-noded and 3-noded linear elements are used. Both the WB and FE results are compared with a
reference solution calculated with a very fine FE model with quadrilateral discretisation. The first
FE reference model consists of 366,900 dofs and will be used for the frequency response analysis
from 1 to 20 kHz. A second reference model consists of 2,977,089 dofs. This model is the reference
model for the convergence analyses at 6, 11.5 and 17.2 kHz. The wavelengths and the number of
elements per wavelength of the models at the frequencies of interest are summarised in Table 3.

Table 3. FE reference models.

frequency [kHz] λt [m] ♯ FE dofs ♯ elements/λt

FRF reference model
1 3.1064 366,900 970

20 0.1553 366,900 48

Convergence reference model

6 0.5177 2,977,089 431

11.5 0.2701 2,977,089 225

17.2 0.1806 2,977,089 150

The analysis considers several WB models which are constructed by applying a different trunca-
tion parameter T . The notation “WBM T•” will be used to indicate that the WBM with a trunca-
tion factor • is considered. As explained in Subsubsec. 4.2.1, the number of dofs of the WB models
increases with the excitation frequency. Since the problem domain is convex, a subdivision in do-
mains is not required. Since no important stress singularities are present, it is also not necessary
to include corner functions.

Response fields

Figure 9 shows the amplitude of the predicted displacement field at 11.5 kHz. The prediction result
is calculated with a WB model consisting of 96 dilatational and 96 rotational wave functions,
leading to a total of 192 dofs. The figure shows that the fixed boundary conditions at the bottom
edge are accurately represented. The accuracy of the WB prediction is displayed in Fig. 10. This
figure shows the amplitude of the absolute prediction error as compared to an FE model of 349,173
dofs. The prediction accuracy of the WB model is very good, despite the smaller system matrices.
The largest prediction error equals 5.5 · 10−11 m.
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Fig. 9. Amplitude of the forced displacement at 11.5 kHz predicted by the WBM T2.

Fig. 10. Amplitude of absolute error on the displacement at 11.5 kHz predicted by the WBM T2.

Figures 11, 12 and 13 show, respectively, the predicted stress resultants tx, ty and txy at 11.5 kHz.
The figures on the left show the predictions made by the WB model of 192 dofs; the figures on the
right show the predictions made by the FE model of 349,173 dofs. The figures indicate that also for
the derived secondary variables, there is a good agreement between the FE and WB predictions.
For the WBM, the spatial resolution of the derived variables is identical to that of the primary
variables. Thus despite the low number of dofs, the accuracy and spatial resolution of the predicted
stress resultants are still very good. As discussed before, the interior angles of corners 1 and 2
lie close to the critical value starting from which singularities are induced. The predicted stress
resultants show indeed a gradient in the vicinity of these corner points, as opposed to corners 3
and 4. The gradients are nevertheless quite small such that the accuracy of the WBM is hardly
affected.

a) b)

Fig. 11. Predicted in-plane stress resultant tx at 11.5 kHz: a) WBM T2 (192 dofs), b) FEM (349,173 dofs).

a) b)

Fig. 12. Predicted in-plane stress resultant ty at 11.5 kHz: a) WBM T2 (192 dofs), b) FEM (349,173 dofs).
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a) b)

Fig. 13. Predicted in-plane stress resultant txy at 11.5 kHz: a) WBM T2 (192 dofs), b) FEM (349,173 dofs).

Convergence analysis

To evaluate the performance of the WBM, a convergence analysis is performed at three different
frequencies. The considered frequencies are arbitrarily chosen in the low- and mid-frequency range.
The number of structural in-plane modes below the frequencies of interest is given in Table 4. For
the convergence analysis, the averaged prediction accuracy of each of the models is plotted as a
function of the computation time. The averaged prediction error is defined as the average of the
amplitude of the relative prediction error in the nrp = 2 response points:

〈ǫ〉 = 1

nrp

nrp∑

j=1

ǫj (82)

with

ǫj =

√√√√
(
wx(xj)− wrefx (xj)

wrefx (xj)

)2

+

(
wy(xj)− wrefy (xj)

wrefy (xj)

)2

. (83)

As reference solution, the FE model of 2,977,089 dofs is used. See Table 3 for the model details.

Table 4. Number of normal modes below the frequencies considered by the convergence analysis.

frequency [kHz] ♯ normal modes

6 6

11.5 22

17.2 48

Figure 14 compares the convergence rate of the WBM with that of the FEM. It is seen that
the convergence rate of the FEM with quadrilateral discretisation is slightly higher than this of the
triangular discretisation. In general, quadrilateral plane elements exhibit a faster convergence, but
their performance is more sensitive to distortions of the element shape [26]. Given the moderate
geometrical complexity of the considered problem, the better performance of the quadrilateral
elements is logical. Furthermore, Fig. 14 shows that the WBM achieves a substantially higher
prediction accuracy than the FEM. At 17.2 kHz, the WBM achieves a prediction accuracy of 0.1%
after 0.1 CPU seconds, whereas the FEM with quadrilateral discretisation needs almost 1000 CPU
seconds to achieve the same accuracy. The WBM achieves a significant increase in computational
efficiency as compared to the FEM. However, the figures also show that the accuracy of the WBM
stagnates at a certain prediction error. This effect becomes more apparent for higher frequencies.
Figure 15 shows the WB convergence curves at 17.2 kHz for three different FE reference models.
All three convergence curves show a stagnation, but the stagnation level decreases as the mesh of
the FE reference model is refined. Therefore, it is likely that the stagnation of the WB prediction
accuracy is not caused by a limitation of the prediction accuracy of the WBM but by the decreasing
accuracy of the FE reference model for increasing frequency.
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Fig. 14. Comparison of the convergence of the FEM with quadrilateral (− ⋄ −) and triangular (−×−)
discretisations and the WBM (−∇−): a) 6 kHz, b) 11.5 kHz, c) 17.2 kHz.
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Fig. 15. Influence of the FE reference model on the convergence of the WBM at 17.2 kHz: FE reference of
366,900 dofs (− ∗ −), 1,458,906 dofs (− · −), 2,977,089 dofs (−∇−).

Frequency response analysis

This section presents the results of a frequency response analysis to compare the performance of
the WBM and FEM over a wider frequency range. Figure 16 plots the predicted displacement
amplitude for response point w1 calculated with the FEM and the WBM. Both predictions are
compared with an FE reference model consisting of 366,900 dofs (see Table 3). The figure on
the top gives the prediction made by the reference model and the WB model. The WB model
is constructed using a truncation parameter T = 1. Figure 17 shows how the total number of
wave functions increases with frequency. Half of the wave functions are used to approximate the
dilatational strain and the other half to approximate the rotational strain. The computation time
as a function of the excitation frequency is shown in Fig. 18. The main part of the computation
time is spent in building the frequency dependent model. The model construction time is shown
in Fig. 18a. The time required for the remaining frequency dependent tasks, such as creation of
wave functions, model solution and post-processing of the results, is shown in Fig. 18b. In total
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Fig. 16. Frequency response function for response point w1 (dashed: FE reference 366,900 dofs; solid: WBM T1
(top) or FEM 3,774 dofs – 4elements/λb (bottom)). The WBM T1 and FEM of 3,774 dofs have a comparable

computational load.
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Fig. 17. Number of wave functions for the WBM with T = 1.
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Fig. 18. Frequency dependent computation time for the WBM with T = 1: a) cpu time for model
construction, b) cpu time for remaining tasks.

the WB model needs 95 CPU seconds to calculate the entire frequency response function, which
consists of 1,900 frequency lines. As indicated in Fig. 16, the WB prediction corresponds very well
with the reference result over the entire frequency range. The FE model, whose result is shown in
the bottom figure, consists of 3,774 dofs and the largest element size is 0.034 m (4 elements/λb).
The FE model needs approximately the same computation time as the WB model to calculate
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the frequency response function, i.e. 93 CPU seconds. The FE prediction is only accurate in the
low-frequency range. Starting from 1 kHz the FE prediction suffers from dispersion errors which
result in a frequency shift compared to the reference results. Especially for the higher frequencies,
the WB model achieves a substantially higher prediction accuracy compared to the FE model, even
though both require the same computational load. The frequency response analysis confirms the
results of the convergence analysis, namely that the WBM is capable of predicting more accurate
results with a smaller computational load, especially for increasing frequency.

5.2. L-shape

The second example considers a non-convex problem geometry such that a division in subdomains
becomes necessary. It consists of an aluminium, L-shaped structure with a thickness of h = 0.002 m
(E = 70 ·109 N/m2, ν = 0.3, ρ = 2790 kg/m3). The location of the corner points is given in Table 5.
As indicated in Fig. 19 two edges are fixed, while the other edges are free. Along one of the edges,
a normal in-plane force of 1 N/m is applied. There are eight response points whose coordinates are
listed in Table 6.

Table 5. Corner points of the L-shape.

corner point x [m] y [m]

1 0 0

2 1 0

3 1 −0.5
4 1.5 −0.5
5 1.5 0.5

6 0 0.5

x
y

w1

w2

w3

w4 w5

w6

w7 w8

1

2

3 4

56

Fig. 19. L-shaped problem geometry.

Table 6. Response points for the L-shape.

response point x [m] y [m]

w1 1 0.35

w2 0.8 0.15

w3 0.4 0.35

w4 0.4 0.15

w5 1.35 0.05

w6 1.15 -0.1

w7 1.15 -0.34

w8 1.35 -0.34
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Stress singularities

Three combinations of boundary conditions occur in this problem, i.e., fixed-fixed, free-free and
fixed-free. For each of these combinations it is impossible to define an analytical solution for the
dynamic infinite wedge problem. The singularities must be classified starting from the solutions of
the corresponding static problem (see Table 1). Consider first the stress field resulting from the
homogeneous boundary conditions. For free-free and fixed-fixed corners, singularities appear if the
internal angle exceeds 180◦. Hence, singularities can be expected in corner 2 (α = 270◦) for which
both radial edges are fixed. The characteristic equation for a fixed-fixed infinite wedge corresponds
with

sinλsα = ±λs
1 + ν

3− ν
sinα. (84)

To determine the static eigenvalues, this nonlinear system of equations must be solved. Since this
solution cannot be performed analytically, the system of equations is solved numerically in Matlab.
The used algorithm is based on the trust-region dogleg method, which is a variant of the Powell’s
dogleg method [25]. The solution of the system is calculated for a large number of start values to
obtain all possible solutions. Solution of the system of equations leads to the static eigenvalues:

λs1,2 = 0.6040,

λs2,2 = 0.7445,
(85)

for an infinite wedge of 270◦. No logarithmic stress fields are present in the solution since the
rank of the coefficient matrix equals its order for each of the eigenvalues. Substitution of the static
eigenvalues in the system of equations resulting from the application of boundary conditions, shows
that the eigenvalue λs1,2 induces an anti-symmetric radial displacement field wr and a symmetric
angular displacement field wθ. The second eigenvalue λs2,2 provokes a symmetric radial and anti-
symmetric angular displacement field. Since only power singularities appear in the static stress
fields, the dynamic eigenvalues can be chosen to yield asymptotically the same singular behaviour
in the dynamic stress fields:

λ∗l1,2 = λt1,2 = λs1,2 + 1,

λl1,2 = λ∗t1,2 = λs2,2 + 1.
(86)

For a fixed-free infinite wedge the critical angle is 60◦. Corners 1 and 3 have an internal angle of
90◦ such that also here singularities can be expected. The corresponding characteristic equation is
given in Table 1. For an internal angle of 90◦ the static eigenvalues which induce a singularity are

λs1,1 = 0.7583 and λs1,3 = 0.7583. (87)

The resulting displacement fields include both a symmetric and anti-symmetric component. Also
in this case, no auxiliary fields participate in the solution such that the dynamic solution is asymp-
totically equivalent in the vicinity of the corner point if

λl1,• = λ∗l1,• = λt1,• = λ∗t1,• = λs1,• + 1, (88)

where • corresponds to the considered corner 1 or 3.
The resulting stress fields must be extended with the stress fields induced by the inhomogeneous

boundary conditions. For corners 4 and 5 a non-zero traction is applied along one radial edge, while
the other edge is free of tractions. Determination of this stress field is performed in a similar way
as for the first example taking into account that in this case cosα = 0. The resulting integration
constants:

Aλs = 0, Bλs =
q

2
and Cλs =

q

4
(89)
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with q the applied boundary traction, lead to the following stress field:

σθ =
q

2
sin 2θ +

q

2
. (90)

The stress field does not exhibit a singularity in the corner point and will therefore not be taken
into account in the dynamic solution.
In conclusion, stress singularities can appear in corners 1, 2 and 3. The corner functions which

correctly represent the singular behaviour in the vicinity of these corner points are summarised in
Table 7.

Table 7. Eigenfunctions and eigenvalues for the L-shaped problem.

corner angle eigenfunction eigenvalue

1 90◦

Υl1,1 = cos(λl1,1θ)Jλl1,1
(klr) λl1,1 = 1.7583

Υl2,1 = sin(λ∗l1,1θ)Jλ∗

l1,1
(klr) λ∗l1,1 = 1.7583

Υt1,1 = cos(λt1,1θ)Jλt1,1
(ktr) λt1,1 = 1.7583

Υt2,1 = sin(λ∗t1,1θ)Jλ∗

t1,1
(ktr) λ∗t1,1 = 1.7583

2 270◦

Υl1,2 = cos(λl1,2θ)Jλl1,2
(klr) λl1,2 = 1.7445

Υl2,2 = sin(λ∗l1,2θ)Jλ∗

l1,2
(klr) λ∗l1,2 = 1.6040

Υt1,2 = cos(λt1,2θ)Jλt1,2
(ktr) λt1,2 = 1.6040

Υt2,2 = sin(λ∗t1,2θ)Jλ∗

t1,2
(ktr) λ∗t1,2 = 1.7445

3 90◦

Υl1,3 = cos(λl1,3θ)Jλl1,3
(klr) λl1,3 = 1.7583

Υl2,3 = sin(λ∗l1,3θ)Jλ∗

l1,3
(klr) λ∗l1,3 = 1.7583

Υt1,3 = cos(λt1,3θ)Jλt1,3
(ktr) λt1,3 = 1.7583

Υt2,3 = sin(λ∗t1,3θ)Jλ∗

t1,3
(ktr) λ∗t1,3 = 1.7583

Computational models

The analysis only considers FE models consisting of a linear 4-noded discretisation. As reference
solution, a very fine FE model is used. The reference model for the frequency response analysis con-
sists of 121,503 dofs, whereas the reference model for the convergence analysis consists of 3,007,503
dofs. Table 8 gives the details of both reference models.

Table 8. FE reference models.

frequency [kHz] λt [m] ♯ FE dofs ♯ elements/λt

0.5 6.2128 121,503 887

15 0.2071 121,503 29

2.5 1.2426 3,007,503 887

9 0.3451 3,007,503 246

15.1 0.2057 3,007,503 146

Since the problem domain is non-convex, the WBM requires a subdivision in domains for con-
vergence reasons. As shown in Fig. 19, the problem domain is divided in two subdomains. Stress
singularities are expected to occur such that also WB models with corner functions are considered.
The models that include the corner functions listed in Table 7, are indicated by CF.

Response fields

A first evaluation of the prediction accuracy of the WBM is based on the predicted response fields.
The amplitude of the predicted displacement field at 9 kHz is shown in Fig. 20. The WB model



Simulation of in-plane vibrations of 2D structural solids with singularities using. . . 165

Fig. 20. Amplitude of the forced displacement at 9 kHz predicted by the WBM CF T2.

consists of 200 wave functions for the first subdomain, 152 wave functions for the second subdomain
and 12 corner functions, leading to a total of 364 dofs. The figure shows that the boundary and
interface conditions on the displacement field are accurately represented. The amplitude of the
absolute prediction error of the WB result is shown in Fig. 21; the FE model of 121,503 dofs is
used as reference. Despite the smaller system matrices of the WBM, its prediction accuracy is very
good.

Fig. 21. Amplitude of absolute error of the displacement at 9 kHz predicted by the WBM CF T2.

Figure 22 shows the predicted stress resultant tx at 9 kHz. The prediction is made by the WB
model described in the previous paragraph. It is seen that in corners 2 and 3 the stress resultant
exhibits a large gradient, indicating that the stress fields become singular in these corners. In
corner 1 the stress resultant tx does not exhibit a strong gradient at the considered frequency.
Figure 23 plots the predicted stress resultant tx as a function of the x-coordinate along the line
y = 0. For x = 1.5 m, the stress resultant equals 1 N/m, which corresponds with the applied
boundary force along that edge. As demonstrated by the previous figure, the stress resultant does
not exhibit a strong gradient in corner 1 (x = 0 m). In corner 2 (x = 1 m), the gradient is much
more pronounced. Thanks to the included corner functions, the WBM is capable of representing
the singularities and associated gradients in the actual stress field accurately. Since the solution
expansion of the FEM only consists of polynomial functions, the stresses predicted by the FEM
are inaccurate in a small region near the edge, even when a fine discretisation is used.

Fig. 22. In-plane stress resultant tx at 9 kHz predicted by the WBM CF T2.
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Fig. 23. In-plane stress resultant tx along the line y = 0 at 9 kHz predicted by the WBM CF T2.

Convergence analysis

The performance of the WBM is evaluated by a convergence analysis at the frequencies 2.5, 9 and
15.1 kHz. The number of structural in-plane modes below the frequencies of interest are given in
Table 9. Figure 24 plots the averaged prediction error defined in Eq. (82) as a function of the

Table 9. Number of normal modes below the frequencies considered by the convergence analysis.

frequency [kHz] ♯ normal modes

2.5 5

9.0 43

15.1 113

a) b)

cputime (s)

〈ǫ
〉

10−3 10−2 10−1 100 101 102
10−3

10−1

101

103

cputime (s)

〈ǫ
〉

10−3 10−2 10−1 100 101 102
10−3

10−1

101

103

c)

cputime (s)

〈ǫ
〉

10−3 10−2 10−1 100 101 102
10−3

10−1

101

103

Fig. 24. Comparison of the convergence of the FEM (− ⋄ −), the WBM (−×−)
and the WBM CF (−∇−): a) 2.5 kHz, b) 9 kHz, c) 15.1 kHz.
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computation time for the three frequencies. As reference solution the FE model with 3,007,503
dofs is used. The details of this model can be found in Table 8. First, the figure indicates that the
inclusion of corner functions accelerates the convergence of the WBM. Compared with the FEM,
the WBM CF exhibits a substantially higher convergence rate. However, the WB convergence curve
at 15.1 kHz shows a stagnation. This phenomenon also appeared for the previous example. It is
likely that the stagnation of the convergence curves is caused by the decreasing accuracy of the
reference model.

Frequency response analysis

A frequency response analysis allows to compare the results of the WBM and FEM for a frequency
range rather than at discrete frequencies. Figures 25 and 26 plot the displacement amplitude for
response point w1 in the low- and mid-frequency region, respectively. The predictions made by the
WBM and FEM are compared with the result of the FE reference model of 121,503 dofs. Table 8
lists some model details. The figures on the top give the prediction made by the reference and
WB model. The WB model is built with a truncation parameter T = 1. Figure 27 displays the
number of WB dofs as a function of frequency. The computation time is shown in Fig. 28. Only
the construction and solution times are included since the time required for the remaining tasks
is negligible. The major part of the computation time is dedicated to the construction of the WB
model. In total the WBM needs 288 CPU seconds to calculate the frequency response function.
The bottom figure shows the predictions made by the FEM and the reference model. The FE
model consists of 19,833 dofs. The largest element size equals 0.027 m, where the shear wavelength
at 15 kHz is 0.2071 m (7 elements/λt). It takes the FE model 500 CPU seconds to calculate the
frequency response function. For the low-frequency range, indicated in Fig. 25, both the results
of the FEM and WBM correspond very well with the reference solution. However, starting from
approximately 6 kHz the FE prediction starts to deteriorate. Figure 26 shows the predictions in
the mid-frequency range. Also in this frequency range, the WB results correspond very well with
the reference solution. The accuracy of the coarse FE result is however rather poor. Hence, for the
mid-frequency range the WBM achieves a substantially higher prediction accuracy compared to
the FEM, despite the lower computation time of the WBM.
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Fig. 25. Frequency response function for response point w1 (dashed: FE reference 121,503dofs; solid: WBM
CF T1 (top) or FEM 19,833 dofs – 7elements/λt (bottom)). The WBM CF T1 and FEM of 19,833 dofs have

a comparable computational load.
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Fig. 26. Frequency response function for response point w1 in the mid-frequency range (dashed: FE reference
121,503dofs; solid: WBM CF T1 (top) or FEM 19,833 dofs – 7elements/λt (bottom)). The WBM CF T1 and

FEM of 19,833 dofs have a comparable computational load.
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Fig. 27. Number of dofs for the WBM CF with T = 1.
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Fig. 28. Frequency dependent computation time for the WBM CF with T = 1
(building model (grey), solving model (black)).

Finally, the influence of the corner functions is shown in Fig. 29. This figure plots the dis-
placement amplitude predicted with the WBM with and without corner functions. The truncation
parameter is T = 1 for both models. Except for the 12 corner functions, the models are identical.
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Fig. 29. Frequency response function for response point w1 (dashed: WBM; solid: WBM CF ).

As can be seen in Fig. 29, there is a substantial difference between both prediction results. The
corner functions clearly improve the prediction accuracy of the WBM.

6. CONCLUSIONS

This paper extends the application range of the novel WBM to the prediction of the in-plane
behaviour of 2D structural solid problems. The basic principles of the WBM are similar to those for
plate bending problems [34]. The field variables are approximated by an expansion that satisfies the
governing dynamic equations a priori. The only approximation errors are induced in the boundary
and interface conditions. Minimisation of these errors leads to the solution of the system. Special
attention is paid to problems in which stress singularities occur. For a polygonal domain, stress
singularities can appear in a corner point if the interior angle of the corner exceeds a critical
value. The critical value depends on the type of boundary conditions applied along the edges
adjacent to the corner. In case that singularities appear in the problem solution, the conventional
set of wave functions is extended with some corner functions that are capable of representing
the singularity correctly. An asymptotic analysis of the infinite wedge domain allows to define
the appropriate corner functions. In some specific configurations, logarithmic singularities appear.
Currently, no dynamic solution has been defined that is capable of representing the logarithmic
singularity accurately. To guarantee the general applicability of the WBM, the influence of these
singularities on the performance of the WBM should be evaluated. And if necessary, the appropriate
corner functions must be defined.

The capabilities of the WBM are demonstrated through two numerical examples. Both examples
indicate that the proposed WBM achieves accurate results. Extension of the expansion set with a
few corner functions for each corner in which singularities occur, accelerates the convergence of the
WBM significantly in case of stress singularities. Furthermore the performance of the WBM has
been compared with that of the FEM, where both a quadrilateral and triangular discretisations
are considered. The WBM exhibits a substantially increased convergence rate over the FEM. Con-
sequently, the WBM is capable of making accurate predictions up to a higher frequency than the
FEM for the same computational load, which indicates the potential of the WBM as an efficient
mid-frequency prediction technique.
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