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The paper develops a theory of physically non-linear vibrations of a rail-vehicle moving on a rectilinear
and non-deformable track. The vibrations are excited by snaking and lateral impacts of the wheel sets.
De Pater’s microspin model and a new simplified model of lateral impacts are applied. An algorithm
for determining quasi-steady-state vibrations of the vehicle has been formulated and programmed in
Pascal. The simulations have been performed for a Shinkansen rail-vehicle moving at service velocities
160-300 km/h.

1. INTRODUCTION

Snaking and lateral impacts of wheel sets are principal factors exciting spatial vibrations of a
rail-vehicle moving on a rectilinear track. The snaking phenomenon results from conicity of wheel
treads. Unstable snake-like motion of wheel sets is limited by a finite clearance between the wheel
flange and the rail head. In this case, there occur lateral impacts of wheel flanges onto rail heads.
Snaking and lateral impacts phenomena are strongly physically nonlinear. Other factors inducing
spatial vibrations of a rail-vehicle include: small asymmetry of rail-vehicle with respect to a vertical
plane coinciding the track axis, geometric imperfections of wheels and rails, fluctuations of stiffness
parameters of sub-track layers, blasts of wind etc.

In the 50s and 60s of the previous century, simplified models of snaking of wheel sets were applied,
among others the harmonic motion model developed by A.N. Nikolskij [1]. Valuable progress contains
Ref. [2], in which A. De Pater developed the microspin theory of a wheel set with the conical wheel
tread. De Pater assumed Coulomb’s kinetic sliding friction and a rectilinear non-deformable track.

V.K. Garg and R.V. Dukkipati [3] presented more exact modelling of the wheel-track contact
problem. They developed Hertz’s two-curvature theory of longitudinal, lateral and rotational creep of
the wheel moving on a rectilinear or horizontally curved track. The writers presented a methodology
of determining complex nonlinear equations of motion of a rail-vehicle, according to the second rank
theory. However, they did not include any numerical analyses.

J. Kisilowski et al. [4] presented a wide literature review and achievements of the research team
from the Institute of Transport, Warsaw University of Technology, in the field of modelling and
dynamic analysis of the moving rail-vehicle — track system. The writers presented planar and spa-
tial, discrete and discrete-continuous models of a rail-vehicle, with linear or nonlinear suspensions.
Equations of motion that govern vibrations of a rail-vehicle have been derived under an assumption
of large rotations of rigid bodies. A number of track models have been considered, including Euler’s
or Timoshenko’s beams resting on Winkler’s or Vlasov’s foundations. The writers have applied
Kalker’s empirical microspin theory describing snaking of wheel sets.

In this study, a theory of physically nonlinear vibrations of a rail-vehicle has been developed.
Vibrations of the vehicle moving on a rectilinear and non-deformable track are excited by snaking
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and lateral impacts of the wheel sets. There are applied de Pater’s microspin model and a new
simplified model of lateral impacts. An algorithm for determining quasi-steady-state vibrations of
the vehicle has been formulated and programmed in Pascal. The simulations have been performed
for a Shinkansen rail-vehicle moving at service velocities 160-300 km/h.

2. MODELLING SNAKING OF MOVING WHEEL SETS

A. De Pater [2] formulated the microspin theory for a single moving wheel set. In this paper, de
Pater’s theory is developed via including dynamic interactions carried by suspensions of a spatially
vibrating rail-vehicle.

The following assumptions are made:

o A wheel set is a rigid body with three planes of symmetry.
e A wheel tread is conical and compatible with the inclination of the rail tread.

e The kinetic sliding friction forces are described by Coulomb’s model.

The kinetic sliding friction ratio is constant.

There is no roughness on wheel and rail treads.

Separation of the wheel tread from the rail tread is impossible.

The clearance between the wheel flange and the rail head, measured in the central position of
the wheel set, i.e. the nominal clearance, is constant along the track.

The track is continuous, rectilinear and non-deformable.

A service velocity v of a rail-vehicle is constant.

The rail-vehicle is stiffly guided in the direction of the track axis.

A moving wheel set in the central position, with respect to the track, is shown in Fig. 1. The
wheel and rail treads are inclined at angle . Vibrations of the set are described in the inertial
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Fig. 1. The central position of the moving wheel set with respect to the rails
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system zyz, where axes z,y, z are the principal axes of inertia of the rigid body reflecting the wheel
set. According to de Pater’s microspin theory a moving wheel set has two degrees of freedom, i.e.
u(t) — the lateral translation, (t) — the angle of snaking. The remaining displacements of the wheel
set result from stiff guiding of the vehicle, i.e. a service motion ot and a rotational motion about
axis y with angular velocity ¥/r where r is a radius of the central tread of the wheel.
Displacements u, ¢ generate longitudinal and lateral spins of velocities v;, v, which induce
Coulomb’s kinetic sliding friction forces of components Fy1, Fy1 for wheel 1 and Fj2, Fy for wheel
2 (see Fig. 2). The schemes that illustrate determination of the longitudinal and lateral sliding
velocities are shown in Fig. 3. Displacement u increases the radius of wheel 1 and decreases the
radius of wheel 2 by the same value utan~y &~ uwy. Applying the superposition rule, one obtains [2]
velocity of longitudinal spin of wheel 1:

U — O(r + wy)/r = —vuy/r, v (1)

velocity of longitudinal spin of wheel 2:

7 —9(r — uy)/r = vuy/r. (2)
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Fig. 2. Longitudinal and lateral spin velocities and sliding friction forces

Snaking angle ¢ produces lateral spin velocity —vy since the vehicle is stifly guided in the z
direction (see Fig. 3e). Taking into account the direct and indirect components of the longitudinal
and lateral spin velocities, one obtains

v ; 20 S
Up = ';_’l'u' + by, Uy = U — vy, (3)

where b is half of the rail base. The total spin velocity of the wheel equals

v=4/vZ+v2. (4)
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Fig. 3. The schemes illustrating determination of the longitudinal and lateral spin velocities

The Coulomb sliding friction force, acting horizontally on the wheel in the central point of the
wheel-rail contact area, is co-linear with the total spin velocity vector. According to Fig. 2, friction
forces’ components are expressed by the formulae

. v, .
in=uPin'a Fylzupzfv 2=1727 (5)

where Py, P, are vertical pressures of wheels 1, 2 onto the rails, and p is a wheel-rail kinetic slid-
ing friction ratio. These vertical pressures contain static and dynamic components which will be
determined in Sec. 4.

The sliding forces are the wheel-rail interaction forces predicted in the recurrent-iterative loop in
numerical integration of the equations of motion [5]. In this case the sliding friction characteristic
has to be smoothed. It can be performed with artificial supercritical viscous damping around the
singular point [5]. Formulae (5) are then modified to the form (i =1, 2):

WRZ . uza, BEY, %
Fpi= Fyi= (6)
" /'L-Plv_/\ma ’U<)\, v ﬂPi"l;Ty7 ’U<)\,

where A is a smoothing parameter. The value of A [m/s] is matched from a required accuracy of the
simulated processes.
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3. MODELLING LATERAL IMPACTS OF MOVING WHEEL SETS

Asymptotically stable or stable snake-like motions of the wheel set protect the condition |u(t)| < d
and lateral impacts of wheel flanges onto rail heads do not appear. On the other hand, unstable
motion of the wheel set induces those impacts.

In practice, wheel flanges are elastic. A simplified elastic model of the wheel flange can be
assumed in the form presented in Fig. 4. Only shear stiffness of the short cantilever is taken into
consideration. This cantilever is of length a, and of rectangular cross-section of dimensions c,, h,,
where:

a, — vertical distance of points A,, A,

A, — theoretical point of pressure of the wheel flange onto the rail head,
A. — central point of the rail tread,

¢, — width of the cantilever,

ho — thickness of the wheel flange at level A,.
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Fig. 4. Simplified elastic modelling of the wheel flange

Stiffness of the equivalent concentrated, horizontal, elastic, one-side constraint equals:

Gcoh,
ko=77 ! oi (7)

(2]

where G is a Kirchhoff’s modulus of the wheel flange material, while n =~ 1 is a corrective coefficient
resulting from the real shapes of rail and wheel flanges. Breadth of the cantilever may be assumed
to be equal half of the cord I,, hence

co =V (2r 4+ a,)ao. (8)

The horizontal pressures of the wheel flange onto the rail heads, shown in Fig. 5, are calculated
from simple formulae
0 3 u(t) <d, 0 u(t) > —d
Py(t) = Pro(t) = ) )
b (t) {mmm—ﬂ, u(t) > d, ha(t) {—%m@+ﬂ, u(t) < —d. )



346 M. Klasztorny

2 e
0 —_—

r l (X) y -
£ a

2 5 =
0% P = Prrtuis

P2 Ph @

b b

— —
gt

|
:
!
Fig. 5. The horizontal pressures of the wheel flanges onto the rail heads

4. THE PHYSIC MODEL AND DIFFERENTIAL EQUATIONS OF MOTION OF A RAIL-VEHICLE

Trains composed of rail-vehicles on independent double-axle trucks are commonly serviced on high-
speed railway lines. In this study the following assumptions are made:

e a vehicle has two independent double-axle trucks,

a vehicle has two vertical planes of symmetry, in the longitudinal and transverse directions with
respect to the track axis,

a vehicle contains four wheel sets, two truck frames and the body, treated as rigid solids,

railway motors are rigidly mounted to the truck frame,

the first- and second-stage suspensions of the vehicle are viscoelastic and linear,

vibrations of the vehicle satisfy a small displacement condition.

Vibrations of the vehicle are considered in the Cartesian inertial system zyz with the origin
coinciding the mass centre of the body (Fig. 6). Axis z is parallel to the track axis, while axes y, z
are principal axes of inertia of the body. The rail-vehicle has 23 DOF related to the generalised
displacements shown in Fig. 6. Each wheel set has 2 DOF (lateral displacement and snaking angle).
Each truck frame or the body has 5 DOF related to lateral displacement, overshooting (vertical
displacement), duck-like motion (rotation about axis z), galloping (rotation about axis y) and
snaking (rotation about axis z). All displacements are related to mass centres of the vehicle’s solids.
Vibrations of a moving rail-vehicle are described by vector q = col(q1, 42, ..., g23) of generalised
coordinates which are measured from the static equilibrium in the central position of the vehicle on
a rectilinear non-deformable track.

The first- and second-stage suspensions are configured as shown in Figs. 7, 8. The rail-vehicle
has 20 first-stage suspensions, i.e. 8 vertical translation elements, 8 horizontal translation elements
and 4 rotational elements working in the horizontal plane. A system of 10 second-stage suspensions
consists of 4 vertical translation elements, 4 horizontal translation elements and 2 rotational elements
working in the horizontal plane.

The kinetic energy of the rail-vehicle equals

Ty s,
E; = 54" Bq, (10)
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Fig. 6. The generalised coordinates of the multi-body model of a rail-vehicle
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Fig. 7. The first-stage suspensions of a rail-vehicle
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where
B = diag (My, Jwz, My, Juwz, My, Juzy My, Juz, My, My, iz, Iy Jf2s
Mf, Mfa Jf:l:’ ']fya szv Mb) Mba Jb:l:1 be: Jbz)

is a mass matrix. In formula (11) the following geometric-mass characteristics are introduced:
M, — mass of a wheel set,

(11)

Je=vdi — mass moment of inertia of a wheel set with respect to axis z and z,

M; — mass of the truck frame — railway motors subsystem,

Jiz,Jiy, Jfz  — mass moments of inertia of the truck frame — railway motors subsystem,
with respect to the local principal central axes parallel to z,y, z,

M, — mass of the rail-vehicle body,

Joz, Joy, Jb — ~mass moments of inertia of the rail-vehicle body with respect to the principal

central axes x,v, z.
The following symbols are now introduced:

e the interactions carried by the first-stage suspensions and respective deformations of the elastic
elements:

Rp = COl (Rpl,Rpg, ceny Rq,go) y up = CO] (upl,upz, ...,’u,pgo) y

e the interactions carried by the second-stage suspensions and respective deformations of the elastic
elements:

RS = col (Rsh RS27 ceey RSIO) ) Uy = col ('U'sl, Ug2y vy ule) )

e diagonal stiffness and damping matrices describing the first-stage suspensions (Fig. 7):
{kp} = diag (k1v, k10, k10, k10, k10, k10, K10, K1vs K10, K1k, Kk, K1k K1, K1k, K1k, ks,
kl(p) kllp; kltpa kl‘p) )
{Cp} = dlag (Cl’lh Clv) Clv, Clv, Clv, Clv, Cluy Cluy Clhy C1hy C1h, Clhy C1h, Clh; C1h, Clh,
Clyp) Cly; Clyp, cl(p) )
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Fig. 8. The second-stage suspensions of a rail-vehicle
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o diagonal stiffness and damping matrices describing the second-stage suspensions (Fig. 8):

{ks} = diag(kav, k2v, k2v, k2v, kan, Kan, k2n, kon, k2g, k2p) 5
{cs} = diag(cav, cav; 20, C2u, C2h, C2hy Cohy C2hy C205 C2p) -

Taking into consideration Figs. 6-9, one can determine transformations from the generalised
coordinates q to deformations of stiffness and damping elements in the first- and second-stage
suspensions (compression = positive deformation):

u=A,q, u;=A~A.q. (12)

a)

V777477, Y7447 V270777,

n R

B

[Ns/m]’T [N/m] * R

TR7Y, /"7// 7777
b)

Ll k };4/({«

[Nm/rad] R

= c =
[Nms/rad] r* R

T

Fig. 9. Positive senses of force and moment interactions carried by suspensions

Transformation matrices Ap, Ag, given in formulae (13), are expressed in terms of the following
geometric parameters of the rail-vehicle:

a — half of an axial spacing of the trucks,

hy — a vertical distance of the first-stage horizontal suspensions from point Oy,

¢ — half of the wheel base in each truck,

by — a vertical distance of the second-stage horizontal suspensions from point Oy,
b, — a vertical distance of the second-stage horizontal suspensions from point O,
e — half of the transverse spacing of the first-stage vertical suspensions,

f — half of the transverse spacing of the second-stage vertical suspensions.

where Oy, O, are mass centres of the truck frame — railway motors subsystem and the rail-vehicle
body, respectively. In practice, the first-stage vertical suspensions are outside the wheels, i.e. e > b.
In order to protect clarity in Fig. 6, the symbols of these suspensions are marked between the wheels.
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Vectors of interactions carried by the first- and second-stage suspensions are calculated form
well-known formulae:

R‘P = {kp} up + {cp} 1:‘lp ) R = {ks} u; + {cs} L (14)

The static vertical pressures of the wheels onto the rails, resulting from rail-vehicle’s weight,
equal

G = 0.5(0.25M, + 0.5M; + M,,) g, (15)

while the dynamic vertical pressures of the right and the left wheel of the j-th wheel set, resulting
from spatial vibrations of the vehicle, are calculated from the formulae
b+e b—e
Pnj = = Rpaj-1+ B

b—-e b+e
S Yoo, SN

j=1,23, 4 (16)

The total vertical pressures of the wheels onto the rails, P; and P,, occurring in Egs. (5), are
respective sums of the static pressure G and dynamic vertical pressures given by formulae (16). In
Egs. (4)-(6) the following expressions are to be substituted

vy i : i
Vr = —qj-1 + bgo;, vy = §2j—1 — Uqa;j, (17)

while u (t) = ¢2;—1 in Eq. (9).
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The external load of the rigid bodies that create the rail-vehicle is constituted by the interactions
carried by the first- and second-stage suspensions, the sliding friction forces Fy1;, Fzaj, Fy1j, Fy2;
and the horizontal pressures of the rail heads onto the wheel flanges, Pp1j, Phoj, where j = 1,2,3,4
is a number of a wheel set.

A vector of the generalised loads of wheel sets has the final form:

Pho1 — Pri1 — Fyi1 — Fya |
i (lel 5 Fz?l) b

Prag — Pria — Fy12 — Fypo
— (Fp12 + Fr22) b

Praz — Ppi3 — Fy13 — Fyo3
ve (F113 +F1:23) b

Proy — Prig — Fy14 — Fyoq

| — (Fria+ Fraq) b

.

Forces Ry, Rs, R, are working on displacements determined by q. The total work of the
external load equals

L=-uw R, —u; Ry +u Ry, (19)
where
U, =Ayuq, A,=[,0], I=diag(l,1,..,1), dimI=8x38. (20)

Substituting formulae (12), (20); into Eq. (19) yields the final formula

L=q'F, (21)
where
F=-AR, - AR, + AjR,. (22)

After substituting forms (10), (21) into the first-rank Lagrange’s equations, one obtains matrix
equation of motion of the rail-vehicle, written partly in the implicit form, i.e.

B§=F. (23)

Convergence of the iterative process in numerical integration of Eq. (23) can be increased via
transferring linear components from vector F on the left side of Eq. (23). Taking into account
formulae (12, 14, 22), one obtains matrix equation of motion of the moving rail-vehicle in the
following final form:

Bi+Cq+Kq=F(q,q), (24)
where
C=A]{c;} Ap+AT {c;}A,, K=A7{k}A,+A7{k}A,, F(q,q) =A Ry (25)

Equations (24) are still partly in the implicit form. The left sides of Eq. (24) are linear. Physic non-
linearity connected with snaking and lateral impacts of wheel sets is hidden in vector F. Equations
(24) govern transient and quasi-steady-state vibrations of a moving rail-vehicle. A recurrent-iterative
algorithm for numerical integration of matrix equations of motion like Eq. (24), based on linear

prediction of the interactions and Newmark’s average acceleration method [6], has been published
in Ref. [5].
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Snaking of wheel sets at a given service velocity ¥, may be asymptotically stable, stable or
unstable. A snaking process can be initialised assuming non-zero initial values of the generalised
velocities related to the vehicle body or/and the trucks. A large number of introductory simulations
performed by the author have pointed that type of vibrations and quasi-steady-state vibrations
are independent of initial conditions. Assuming only one non-zero initial velocity vo3 = 0.01 rad/s
results in relatively fast stabilization of the vehicle’s vibrations. The initial accelerations are then
equal (see Eq. (24))

§(0) =-B7'Cq(0). (26)

5. ANALYSIS OF SPATIAL VIBRATIONS OF A MOVING SHINKANSEN RAIL-VEHICLE

Taking into consideration the vibration theory of a rail-vehicle developed in this study, a computa-
tional algorithm for determining quasi-steady-state responses has been formulated and programmed
in Pascal.

There is considered a repeatable rail-vehicle of Shinkansen trains [7]. Values of the parameters
describing the spatial model of the rail-vehicle have been taken from Refs. [7, 8]. Part of those
parameters had to be estimated since there is no literature data for them. The parameters’ values
assumed in this paper are collected in Table 1.

Table 1. Values of the parameters describing a spatial model of a Shinkansen rail-vehicle

parameter unit value | parameter unit value
M, kg 2400 Cou N s/m 21675
Jgd kg m? 1350 kon, N/m 443500
M; kg 4950 Con N s/m 21675
Jte kg m? 1950 ko N m/rad | 1419000
Jiy kg m? 6150 2 N m s/rad 68800
Jgs kg m? 7900 T m 0.50
M, kg 36000 ao m 0.015
i kg m? 85700 ho m 0.030
Joy kg m? | 1894000 n 1 1
bz kg m? 1800000 I m 25.00
k1 N/m 1270000 2a m 17.50
Cly N s/m 9815 2c m 2.50
k1in N/m 1270000 2e m 1.90
Cih N s/m 9815 2f m 2.10
ki, N m/rad | 1435000 by m 1.10
Cip N m s/rad 11000 by m 0.30
koy N/m 443500 h¢ m 0.60

The parameters describing the rails have the following values: 2b = 1.50 m, v = 1/40 = 0.0025,
d = 1.5 cm, p = 0.06. The parameters of numerical integration of Eq. (24), according to the algorithm
published in Ref. [5], equal: time step » = 0.0001 s, smoothing parameter A = 0.01 m/s, accuracy
of iteration € = 0.01 N. These values of the numerical parameters protect accuracy 0.001 mm in
translations and 0.001 mrad in rotations.

The simulations have been performed for service velocities ¥ = 160 — 300 km/h. Figures 10-21
present quasi-steady-state vibrations at selected service velocities (230, 250, 270 km/h) in the form
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| Shinkansen Rail-vehicle, v=230 km/h, q1(t) [mm] |

EETRIMANIN
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Fig. 10. Time history gi(t) of a Shinkansen rail-vehicle at service velocity 230 km/h

.5_ool Shinkansen Rail-vehicle, v=230 km/h, _q2(t) [mrad] ]
Ddbtunbbtn
T

Fig. 11. Time history g2(t) of a Shinkansen rail-vehicle at service velocity 230 km/h
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Shinkansen Rail-vehicle, v=230 km/h, q19(t) [mm] '
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Fig. 12. Time history qi9(t) of a Shinkansen rail-vehicle at service velocity 2:30 km/h

Shinkansen Rail-vehicle, v=230 km/h, g23(t) [mrad] ]
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Fig. 13. Time history g23(t) of a Shinkansen rail-vehicle at service velocity 230 km/h
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Shinkansen Rail-vehicle, v=250 km/h, q1(t) [mm]

-15.0 {\
0
t[s
15.0 : V L ]
0 0.90 1.8 2.7 3.6 5.00

Fig. 14. Time history ¢i1(t) of a Shinkansen rail-vehicle at service velocity 250 km/h
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Fig. 15. Time history g2(t) of a Shinkansen rail-vehicle at service velocity 250 km/h
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Shinkansen Rail-vehicle, v=250 km/h, q19(t) [mm]
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Fig. 16. Time history qi9(t) of a Shinkansen rail-vehicle at service velocity 250 km/h
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Fig. 17. Time history g23(t) of a Shinkansen rail-vehicle at service velocity 250 km/h
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Shinkansen Rail-vehicle, v=270 km/h, q1(t) [mm]
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Fig. 18. Time history ¢i(¢) of a Shinkansen rail-vehicle at service velocity 270 km/h
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Fig. 19. Time history g2(t) of a Shinkansen rail-vehicle at service velocity 270 km/h
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L‘Shinkansen Rail-vehicle, v=270 km/h, q19(t) [mm]
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Fig. 20. Time history qi9(t) of a Shinkansen rail-vehicle at service velocity 270 km/h
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Fig. 21. Time history gz3(t) of a Shinkansen rail-vehicle at service velocity 270 km/h
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of intervals of the time histories of selected generalised coordinates of the vehicle. Service velocity
230 km/h is close to the asymptotic stability limit. At this velocity a random motion of the wheel
sets is observed. Service velocity 250 km/h results in periodic motion of the wheel sets. At velocity
270 km/h random motion of the wheel sets appears again.

The following conclusions related to a Shinkansen vehicle, based on analysis of the simulation
results at velocities = 160 — 300 km/h, have been formulated:

1. At velocities 160-220 km/h a snake-like motion of wheel sets is asymptotically stable.

2. At velocities 230-300 km /h a snake-like motion of wheel sets is unstable but limited by clearance
d between wheel flanges and rail heads. Vibrations of the trucks and the rail-vehicle body are
also limited and satisfy a small displacement condition.

3. The shape of quasi-steady-state vibrations of a rail-vehicle depends on the value of service velocity
from the range 230-300 km/h. There are observed either periodic or random vibrations of the
vehicle.

4. The average snaking frequency of wheel sets in the unstable interval is nearly independent of the
service velocity and equals about 2.2 Hz.

5. The asymptotic stability limit is between 220 and 230 km/h.

It must be noted that the simulation results and the conclusions ought be verified for the exact
values of the parameters for a Shinkansen rail-vehicle model.

6. CONCLUSIONS

Matrix equation of motion (24) describes physically non-linear spatial vibrations of the model of a
rail-vehicle with two independent double-axle trucks. This model has 23 DOF and is internally geo-
metrically invariable and externally geometrically variable. External geometric variability is limited
by a finite clearance between wheel flanges and rail heads.

Snaking of wheel sets may by asymptotically stable, stable or unstable. Unstable motion of wheel
sets induces lateral impacts of wheel flanges onto rail heads, limiting vibrations of the vehicle.

The snaking process of wheel sets has been considered using de Pater’s model [2], described by
a single material constant (1) and three geometric parameters of the wheel-rail subsystem (b, r, ).
The lateral impacts are taken into account applying a simplified model of a wheel set with linearly
elastic wheel flanges.

Quasi-steady-state vibrations of the rail-vehicle were derived from simulations of transient vi-
brations which relatively quickly tend to the quasi-steady-state response. The simulations in a time
interval lasting 1-3 minutes have appeared adequate. There are observed either periodic or random
quasi-steady-state responses.

A nonlinear theory of vibrations of a rail-vehicle, developed in this paper, may be incorporated
in modelling the bridge — track — moving train system as well as may be applied in calculating the
running comfort coefficients of the train.
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