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The paper demonstrates a specific power series expansion technique used to obtain the approximate
solution of the two-dimensional wave equation in some unusual cases. The solution for inhomogeneous
wave equation, for more complicated shape geometry of the body, discrete boundary conditions and a
membrane whose thickness is not constant is shown. As solving functions (Trefftz functions), so-called
wave polynomials are used. Recurrent formulas for the particular solution are obtained. Some examples
are included.
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1. INTRODUCTION

There are three groups of the methods applied to solve partial differential equations. The first
group consists of so called analytical methods which means, that the solution fully satisfies both
field equation and all given conditions. The examples include: integral transformation method,
separation of the variables method, Green function method and so on. Analytical solutions are
not always useful for numerical calculations. For example, when the solution is given as Bessel
function series, some problems with numerical convergence arise. Moreover, analytical methods are
applicable only for simple shape of the body. The second group contains such methods as Finite
Element Method or Boundary Element Method. In this case the solution approximately satisfies
both field equation and all given initial and boundary conditions and the shape does not have to
be simple. In the third group the solution exactly satisfies the equation and approximately all given
conditions. Trefftz method is an example here. So is the method presented in this paper. Its key idea
is to determine functions (polynomials) satisfying the given differential equation and fitted to the
governing initial and boundary conditions. In this sense it is a variant of the Trefftz method [1, 2].

The method was first described in the paper [3] where it was applied to solve one-dimensional
heat conduction problems. The heat polynomials in a similar form were also used in the paper [4] to
solve unsteady heat conduction problems. Both papers describe one-dimensional direct problem for
heat equation in the Cartesian coordinate system. The method is further discussed in the Cartesian
coordinate system in papers [5, 6], describing heat polynomials for the two- and three-dimensional
case. The application of the heat polynomials in polar and cylindrical coordinates is shown in the
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papers [7-9]. A slightly different approach for one-dimensional heat polynomials is presented in the
paper [10].

In scientific literature inverse problems are often discussed. We deal with the direct problem, if
all boundary and initial conditions for the given equation are known. In the case of inverse problems
we usually have to find an extrapolation of the function. The method described here is applicable
both to direct and inverse problems. In the papers [5-9, 11, 12] the method is used to solve inverse
heat conduction problems. The paper [13] presents interesting concept of using heat polynomials as
a new type of finite element base functions.

All papers mentioned above refer to the heat conduction equation. The paper [14] deals with
numerous applications of the method in various differential equations, for example, in Laplace,
Poisson and Helmholtz equations. The one-dimensional wave equation is solved there too. The two-
dimensional wave polynomials and their derivatives extensively described in the paper [16] are used
here. Basically, the wave equation can be solved by means of various methods. Some of them are
better for infinite bodies while others for finite ones but of simple shape geometry. The method
presented here is useful for finite bodies of relatively general shape geometry.

The properties of Taylor series are important for the application of the method

d
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and Ryy1 is the remainder term. In this paper some unusual cases of the vibrating membrane
described by wave equation are considered. In Sec. 2 the wave polynomials’ method, discussed in
the paper [16], is presented. The inhomogeneous two-dimensional wave equation is solved in Sec. 3.
Section 4 describes a solution for more complicated shape geometry of the body. Here we consider
a membrane in the shape of right and curvilinear triangle. A membrane with variable thickness
is examined in Sec. 5. Section 6 deals with discrete boundary conditions for a square membrane.
Approximation of the §-Dirac for the stationary case of a circular membrane is described in Sec. 7.
Section 8 contains concluding remarks.

2. WAVE POLYNOMIALS’ METHOD

The wave polynomials’ method for the two-dimensional wave equation is accurately described in
the paper [16]. Basing on it let us consider the dimensionless wave equation

Pw  Pw  Hw
GE ™ i 2)

The wave polynomial method discussed below is a variant of the Trefftz method. As a solution of
wave equation (2) we take a linear combination of wave polynomials Vj,:

N
wR U= chv;l- (3)

n=1
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For example, the wave polynomials satisfying (2) are (see [16])

=1, Vo =z, Vs =y,
z? 2
i = —_—— - — V:_
Vi =1t, Vs 7 "3 6 zy,
2 2
Y i
= — = — V:——-———
V7 xt, Vs yt, 9 9 5

Because all polynomials V,, satisfy Eq. (2), the linear combination u satisfies Eq. (2). The coefficients
cn are chosen so as to minimize the error for fulfilling a given boundary and initial condition
corresponding to Eq. (2) (see examples).

3. INHOMOGENEOUS WAVE EQUATION

Let us consider the inhomogeneous wave equation

L(w) = Q@ y,1), @)
02 o o
where L = % 92 —8—&—2- We assume that the function Q(z,y,t) is analytical or Q(z,y,t) €
CN*1. As an approximation of the solution we get:
N
w%u:chVn—l—wp. (5)
n=1

Because all polynomials V}, satisfy the wave equation (2), their linear combination also satisfies it.
Additionally, w, denotes the particular solution for the inhomogeneous wave equation (4). Boundary
and initial conditions determine the coefficients ¢,,.

3.1. Particular solution

Just like for other equations [14] the solution w, by means of power series for @, can be calculated
as follows:

wp:L_l(Q)
= -1 i Z kM Q(20, yo, to) ZEGH™
= dzkoylotm klim!
n=0 k+l+m=n
o0

=5 S et N (6)
n=0 k+l+m=n
1 9*+HImQ(zo, 3o, to)

klm)! dzkoylotm

If Q(z,y,t) € CN*! the sum is finite and we can calculate the particular solution only ap-

proximately. In practice we use the finite sum in both cases. Therefore, we obtain an approximate
solution. It is easy to prove that for the particular solution recurrent formulas can be given:
wpl(xkyltm) = L_l(.’l,‘kyltm)
1 k+2, 1
= ——(—x 1 o mim — DL e oy 2

~i(l — )L™ (22 =2m)) (7)

where £ =z — 20, =y — yo,t =t — tp and agm =



366 A. Maciag, J. Wauer

or
wpa(ay't™) = L7 (ahy't™)
= ml(l—_i_-ﬁ(—xkyH?tm +m(m — 1)L-—1(l.kyl+2tm_2)
~ k(= DL (A2 m) -
or
wps(2*yHt™) = L1 (Fylt™)
e 2)1(m = (—zFy tlm + 2) + k(k — 1)L} (@~ 2Hem+2)
+1(l = DL (zFy!-2em+2y), 3

In these formulas it is assumed that a term on the right-hand side equals zero if the corresponding
subscript takes a negative value.

Proof. As an example we prove relation (7). To prove it, it is sufficient to calculate L(wp;)
as follows:

L(wp) = =

(k o 2)(k = 1) < ( 1) k+2yltm 2
+ (k +2)(k + Da*yt™ + 1(1 — 1)zh+2y - 2m

+m(m — 1)z*+2ym-2 _ I(l- 1)mk+2yl“2tm) = ghyh™

This proves the relation (7). The proof for relations (8) and (9) is similar.

3.2. Example: vibration of a square membrane

The first example shows the vibration of a square membrane with constant and non-constant source.
The equation of motion reads

Pw 02 0w
LYo = 8271;) =+ 3y? +Q(z,9,t), (z,9)€ (0,1) x (0,1), ¢>0

and is completed by initial and boundary conditions, respectively:

wwy0=0, 2En0_, (10)
w(0,3,t) = w(l, 1) = w(z,0,6) = w(z, 1,6) = 0. )

We consider two kinds of the source. The first is @ = const = 0.1 and the second is Q = %sin(%rt).

The exact solutions for these cases can be found in [17].
In the case Q = const = 0.1 the exact solution is given as

sin(kmz)sin(lmr
ol 5 Z (Iry)

V (k)2 + (Im)2

./0 /0 /0 sin(kwx)siu(lwy)sin( (k”)z‘*'(lﬁ)?(t—T))deydx.
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The solution w(z,y,t) is approximated in accordance with Eq. (5). Here we have

1 1 1
e 3 60
Because the function u satisfies the wave equation (linear combination of wave polynomials),
we minimize || w — u || recording to boundary and initial conditions. We look for an approximate
solution u in the time interval (0, At). Therefore, the coefficients ¢, have to be chosen appropriately
so as to minimize the functional

2

I _/ / z,y,0 w(z,y,0)| dydz
hw—/

=0

J/

-~

cond.(10)
2

1 1
+/ / Ou(z,y,0) dw(z,y,0) dydz
=0

cond. (10)

/At/ [0, 3,2) ( Ty, 1) dydt

J

cond. (11)

At
/ / [u(1,y,t) ly, ]2dydt

S

cond. (11)

/At/ [u(z,0,t) (:1: 0, t)]zdmdt

J

cond. (11)

At
/ /[umlt xlt]2dxdt

)

cond. (11)
(12)

The necessary condition to minimize functional I is

af

B, (13)

1
In the case Q = msin(Zvrt), the exact solution is given as

Z sin(kmrz)sin(lmy)

V (k)2 + (I7)?
/ / / sin(knz)sin(lry)sin(2wh)sin(y/ (k7)? + (I7)2(t — 7))drdydz.
0o Jo Jo

w(z,y,t)
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The solution w(z,y,t) is approximated in accordance with Eq. (5) again. Here we put

wp (£) + wpa (t*)wpa (t)

1 f: d¥sin(2nt)
10 dtk

k=1

t=0

wp=

The coefficients ¢, have to be chosen as in the previous case. All the results below are obtained

for At =1.

Figure 1 shows the exact and the approximate solutions (by polynomials from order 0 to 9) for

1 : L B L
point z =y = 0.5: a) Q = const = 0.1, b) Q = Esin(Qmﬁ). Note, that the approximate solution in

the Fig. 1b) is very good in time interval (0;1.5) although it was calculated in time interval (0;1).
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Fig. 1. Exact and approximate solutions for point & = y = 0.5: a) Q =const =0.1,b) Q = Esin(%rt)

4. MORE COMPLICATED SHAPE OF THE BODY

The wave polynomials’ method is most useful for bodies of more complicated shape. Unfortunately,
the exact solution is frequently unknown.

Two-dimensional wave equation describes vibrations of the membrane. In this section we consider
two cases: membrane in the shape of a right triangle and a curvilinear triangle.

4.1. Membrane in the shape of right triangle

Let us consider the wave equation for a right triangle, describing the vibrations of the membrane:

Pw  w  w
at2_6x2+6y2’ z € (0,1), O<y<-—z+1, t>0
to be completed by initial and boundary conditions, respectively:
ow(z,y,0
W@ u,0) = wo(e,p) =~z +y-1), 2ELI_, (19)
w(0,y,t) = w(z,0,t) = w(z, y,t)|z4y=1 = 0. (15)

The solution w(z,y,t) is approximated in accordance with Eq. (3). Because the function u
satisfies the wave equation (linear combination of wave polynomials), we minimize || w—u || recording
to boundary and initial conditions. We look for an approximate solution u in the time interval (0, At).
Therefore, the coefficients ¢,, have to be chosen appropriately to minimize the functional
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I~/ / [u(z, y,0) — wo(z,y)]? dydaz

cond. (14)

Ul Tou(z,y,0)  Bw(z,y,0)]?
) ) o ) ) d
5 /0 /0 [ ot TR R

| S A
=0

cond.(14)

/ AT 0 ) e

=

cond. (15)

/ & / (u(z, 0, ) (a: 0 t)]Qdmdt

J

cond. ( 5)

+f/At/ [u(z, -z +1,t) — w(z, -z + 1, t)]2dxdt. (16)

5}

cond.(15)

The necessary condition to minimize the functional I is described by conditions (13). As a result
linear system of equations can be written as

AC =B (17)

where C = [cy,...,cn|T and the elements of the matrices A and B are
& —z+1
o= [ [ Vi@ u,0V(e, 00
0o Jo

b V(= y,0) 8Vj(z,9,0)
+/0/0 o 5 dydx

At 1

+ / / Vi(0,4,4)V;(0, y, t)dydt
0 0
At i

+ / / Vi(z,0,t)Vi(z, 0, ) dedt
0 0

At pl
+\/§/ / Vi(z, —z + 1,t)Vj(z, —z + 1, t)dadt,
o Jo

1 —z+1
= / / Wil y, 0)wols, )dpdi

Note that a;; = aj; (matrix A is symmetrical) which facilitates calculations. From Eq. (17) we
obtain coefficients c,:

C=418B

In time intervals (At, 2At), (2At, 3At),. . . we proceed analogously. Here, the initial condition for time

interval ((m — 1)At,mAt) is the value of function u at the end of interval ((m —2)At, (m — 1)At).
All the results below are obtained for At = 1.
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We obtain the approximation in the whole time interval (0, At). For example, in Fig. 2, for time
t = 0: a) the exact solution, b) an approximation by polynomials from order 0 to 9, c) the difference
between a) and b) are shown. Figure 3 shows an approximation by polynomials from order 0 to 9
for time: a) t = 0.15, b) ¢t = 0.5, c¢) t = 0.8. Figures 2 and 3 show that the boundary conditions are
adequately fulfilled and the physical character of the vibrations is preserved.
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Fig. 3. Solution for time: a) t = 0.15, b) t = 0.5, ¢c) t = 0.8
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Let ug denote the approximation (3) by polynomials from order 0 to K. To verify the quality
of the solution we define an average, relative difference between solutions ux and ug_1:

oAt fo_gH_1 fol (ug(z,y,t) — uk—1(z,y,t))2drdydt

D)=
- oAt fo_m-H fol(uK—1(:r,y,t))2dxdydt

(18)

Figure 4 shows the difference D(K) which depends on the order K for At = 1. Figure 4 suggests
that in this case the method is convergent. Obviously, this is not a proof of convergence. The detailed
discussion on convergence of this method can be found in the papers [14] and [16].

4.2. Membrane in the shape of a curvilinear triangle

Let us consider the wave equation in a curvilinear triangle describing the vibrations of the membrane:

Pw  Pw  dw
= 0,1 0 1—-22, t>0
52 8x2+8y2 z € (0,1), <y<Vi-z2, t>

to be completed by initial and boundary conditions, respectively:

ow(z,y,0)
ot

w(0,y,t) = w(z,0,t) = w(x,y,t)|z2442=1 = 0. (20)

Just as in the case of the right triangle we can obtain the approximation in the whole time
interval (0, At). In Fig. 5, for time ¢ = 0 a) the exact solution, b) an approximation by polynomials
from order 0 to 9, c) the difference between a) and b) are shown. All the results below are obtained
for At = 1. Figure 6 shows an approximation by polynomials from order 0 to 9 for time a) ¢t = 0.15,
b) t = 0.45, c¢) t = 0.8. Figures 5 and 6 show that the boundary conditions are well fulfilled and the
physical character of the vibrations is preserved. By analogy with Sec. (4.1) we define an average,
relative difference between solutions ug and ug_1:

'LU(.’E, y,O) e ’LU()(.’ZI, y) = —.’Ey($2 =+ y2 e l)a = 07' (19)

At (VIS L (2,1, 8) — uk—1 (2, , £))2dzdydt
e At (V122 . (21)

o Jo fol(UK—l(x, y,t))2dadydt

a) b) c)

Fig. 5. Solution for time ¢t = 0: a) exact, b) approximation, c) difference

Figure 7 shows the difference D(K') which depends on the order K for At = 1. Figure 7 implies
that in this case the method is convergent.
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Fig. 6. Solution for time: a) t = 0.15, b) t = 0.45,c) t = 0.8
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Fig. 7. Difference D(K)

5. MEMBRANE WITH VARIABLE THICKNESS

The vibrations of a membrane with variable thickness are described by the equation

%271: = % (f(w,y)g—:) + a% (g(x,y)g—t;))- (22)

An analytical solution of the Eq. (22) in general is not known. We assume that g(z,y) = const
x
and f(z,y) = 1 — =. This case describes the vibrations of the membrane whose thickness is not
constant. Let us consider the free vibrations of a square membrane:

e equation of motion:

O%w 0 T\ Ow &%w
Pa_0((.5\0) . P2 pe@ya0n, toa -

e initial conditions:

w(@,u,0) =un(z,y) =ala - Dyl -1), 228 g, 24

e boundary conditions:

w(0,y,t) = w(l,y,t) = w(z,0,t) = w(z,1,t) = 0. (25)
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As a solution of the wave equation (23) we take a linear combination of wave polynomials V,,
in accordance with Eq. (3). Here the wave polynomials (Trefftz functions) should satisfy Eq. (23).
Similarly as for other equations (see [14] and [16]), the wave polynomials for Eq. (23) can be obtained
using Taylor series (1) for function w. Let the function w(z, y, t) satisfy the wave equation (23). We
assume that w € CV*! in the neighbourhood of (o, yo,t0) = (0,0,0). Then, the Taylor series for
function w is

ow ow Bwt

Pwz? Pwy? FPwt? 0w 0w 0w

+W7+6—y§7+—6t—2§+wwy+mmt+wyt+"'+RN+l.
0w

ot?
ow ( t2) ow ow

w(x7y’ t) == w(O’O)O) +

Eliminating the derivative by Eq. (23) yields

w(z,y,t) = w (0’0’0)+8—x z— g

i i L o (26)
8x3\ 2 2 2. 48 2\2 2

o gty Gl by SR
azoy\"? " 4 ) T Buot 12) Tayal T

The coefficients following the derivation terms on the right-hand side are wave polynomials
awk+l+m

oz oylorm
no vggz. Further Vi = wvooo, Vo = v100, V3 = vo10, Va = woo1, V5 = v200, V6 = vo20, V7 = w110, V8 =
v101, Vo = V011, - . . - From (26) we have

satisfying (23). Let vy, denote the coefficient at the derivative . Note that there is

t2

=1, V“’:“’_Z’ V3=y, Va=t

2 2 2 4 2 2

4 t xt t Y t

=R =t St Tgiid £ Vi S 27
V= bs o v el o4

£2 t3

V7=xy—y—, Vs=at— — Vo=ut. =

4 12’

The polynomials (27) satisfy Eq. (23). Hence their linear combination satisfies this equation, too.
The coefficients ¢y, in (3) are chosen (as in Secs. 3 and 4) so as to minimize the error for fulfilling the
given initial (24) and the boundary (25) condition corresponding to Eq. (23). Figure 8 shows a) the
initial condition, b) an approximation by all polynomials from vggp to vk, where k+1+m =9, for
time t = 0, c) the difference between a) and b). All results below are obtained for At = 1. Figures
8 shows that the boundary conditions are well fulfilled.

In this case the thickness of the membrane is not dependent on y. Additionally, the initial
condition is symmetric in accordance with plane y = 0.5. Therefore, the solution of the problem
(23)—(25) should be symmetric in accordance with plane y = 0.5, too. Because the thickness of the
membrane is linearly dependent on z, the solution should be asymmetric in accordance with plane
2 =05

Figure 9 shows an approximation of the solution by all polynomials from wggg to vy, where
k+1l+4+m=29, for time a) t = 0.3, b) t = 0.5, c)t = 0.9. It is the view from the axes z and y.

The figure 9 shows that the physical character of the vibrations is preserwed. As in Sec. 4, we
define an average, relative difference between solutions uyx and ug_1:

OAt f()1 fol (UK(‘T, Y, t) = ’U.](__l(ll, Y, t))2d$dydt

D)=
= OAtf()1 fol(uK—l(x,y,t))2dmdydt
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Fig. 8. Solution for time ¢ = 0: a) exact, b) approximation, c) difference
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Fig. 9. Solution for time: a) t = 0.3, b) ¢t = 0.5, c) t = 0.9.
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Here ux means the approximate solution by all polynomials from vggo t0 Vgim where k+1+m = K.
Figure 10 shows the difference D(K) which depends on the order K for At = 1. Figure 10
suggests that in this case the method is convergent.

6. DISCRETE BOUNDARY CONDITIONS

The considered wave polynomials’ method is relatively flexible when applied to continuous or discrete
initial and boundary conditions. Moreover, it is used to solve inverse problems, for which one or more
conditions are not known. Initial and boundary conditions are used to calculate the coefficients c,
in the approximate solution (see (3) and (5)). The adequate functional is dependent upon the kind
of initial and boundary conditions. The integrals appear in the functional in the case of continuous
conditions. When discrete conditions are given the integrals are substituted by sums.

Let us consider the vibrations of the membrane suspended in discrete points, described by the
following mathematical model:

e equation of motion:
0w = 0w 5 0w
o2~ 0x?  oy?’

e initial conditions:

(z,y)-€4(0,1)-%.(0,1), t>0, (28)

ow(z,y,0)

w(z,y,0) = wo(z,y) = z(z — 1y(y — 1), Ev =0, (29)
e boundary conditions:
w(xhyj)t) = Ov for (xiayj) = B, (30)

where

B = {(0;0), (0;0,25)(0;0,5), (0,0, 75), (0; 1), (0, 25; 0), (0, 25; 1), (0, 5; 0),
(0,5;1), (0,75;0), (0,75;1), (1;0), (1;0, 25)(1;0,5), (1;0, 75), (1; 1) }.

The solution w(x,y,t) is approximated in accordance with equation (3). Because the function
u satisfies the wave equation (linear combination of wave polynomials), we minimize || w — u ||
recording to the boundary and the initial conditions. We look for an approximate solution u in the
time interval (0, At). Therefore, the coefficients ¢, have to be chosen appropriately to minimize the
functional

d==p1
I= j) /0 [u(x,y,O) = wo(x,y)]zdyda;‘

~~

cond.(29

)
Ll [Bu(z,y,0)  Ow(z,y,0) ]
+/0/0 [ 5 — 5 ]dydx

| A—
=0

S

cond.(29)

rAL 2
+ Z (/ [u(xi,yj,t)-—w(zi,yj,t)] dt).
(z:;)€B 70 T

J

-~

cond.(30)

The coefficients ¢, are calculated in Secs. 3 and 4. All the results below are obtained for (At = 1.)
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We obtain the approximation in the whole time interval (0, At). For example, in the Fig. 11 for
t = 0, a) the exact solution, b) an approximation by polynomials from order 0 to 9, c) the difference
between a) and b) are shown. Figure 12 presents an approximation by polynomials from order 0 to
9 for time a) t = 0.2, b) t = 0.6, ¢) t = 0.9. Figures 11 and 12 show that the boundary conditions
are well fulfilled and the physical character of the vibrations is preserved. The coefficients ¢, are
calculated as in Secs 3 and 4. All the results below are obtained for At = 1.

a) b) c)

0.02
001

+0.01
H0.02

Fig. 11. Solution for time t = 0: a) exact, b) approximation, c) difference
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Fig. 12. Solution for time: a) t = 0.2, b) t = 0.6, c) t = 0.9

7. APPROXIMATION OF THE J-DIRAC FOR STATIONARY CASE
OF CIRCULAR MEMBRANE

A wave polynomial method can be also used for an approximate solution of Poisson’s equation
in a polar coordinate system. Let us consider axial symmetric stationary case of the membrane,

described by the following mathematical model:

Pw 10w o(r)
Tt =1 T<OBR) e
w(R) = 0. (32)

The exact solution of the problem (31)—(32) and for R = 0.2 is

wilicis ﬁm(%)



Wave polynomials for solving different types of... 377

To calculate the approximate solution of the problem (31)—(32) we use the definition of the J-Dirac
and we assume, that [18]
k2 e—k2r2

o(r) ~ S (33)

Then, an approximation of the Eq. (31) is

0*w v 10w k2e—k'r’

or2  ror 10w

As an approximation of the solution we follow Eq. (5). Here the polynomials V;, are well known
harmonic polynomials in a polar coordinate system and wy, is a particular solution. To solve Eq. (34)
we follow steps described in Sec. 3. We expand the right side of the Eq. (34) into Taylor series. As

in formula (6) we use the invert operator for Eq. (34). It is easy to prove that for the operator
8 80

(34)

L= W + ;'a—’r we have [14]
SIS ,,.n+2
L (r)—————(n+2)2.

Figure 13 shows the exact solution of the problem (31)-(32) and the approximate solutions for
N = 7 in formula (5) and for £ = 5,10,15,20,25,30 in formula (33). Figure 13 shows, that if
k — oo, the approximate solution is convergent to the exact solution.

0.1 02
£

Fig. 13. Exact and approximate solution of Poisson equation

8. CONCLUDING REMARKS

A new technique for solving the two-dimensional homogeneous and inhomogeneous wave equation
has been developed. The wave polynomials’ method presented in this paper is a straightforward
method for solving wave equations in finite bodies. It is also useful when the shape of the body
is more complicated. The coefficients c¢,, are determined by calculating integrals - for most shapes
it does not cause any problems. It is very interesting that this method can be used for various
modifications of wave equation (for example, a membrane with variable thickness). In many cases
the method leads to determining Trefftz functions for the considered equation. Thanks to it we
obtain the solution wholly satisfying the given equation. Therefore, the wave polynomials can be
used as new base functions of finite elements. The method presented here is relatively flexible for
initial and boundary conditions which can be continuous or discrete. Moreover, it is useful in the
case of inverse problems where one or more conditions are not known. The examples show that the
approximations of the exact solutions are very good.
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