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A neural procedure was formulated in [4] as BPNN (Back-Propagation Neural Networks) for the simulation
of generalized RMA (Return Mapping Algorithm). This procedure was evaluated to be too large to make
a corresponding hybrid FEM/BPNN numerically efficient. That is why two new procedures NP1 and NP2
were formulated. A description of their efficiency is presented in the paper, related to the computation
number of computer operations and CPU time, carried out by FEM program FEAP and two hybrid
programs FEAP/NP1 and FEAP/NP2.

1. INTRODUCTION

Trained NNs (Neural Networks) are usually numerically very efficient in the operational phase. This
is a basis to formulate procedures as NNs trained off-line and then insert them into FEM programs.
Of course, it is reasonable to design such hybrid FEM /NN programs if they are more efficient than
corresponding pure FEM programs. This concerns especially material nonlinear problems which
need a complex analysis of constitutive equations. Neural procedures can be also used for the so-
called implicit modelling of material relationships [1] which can be then explored in hybrid FEM/NN
programs.

The first steps towards the approach discussed above were made in [2], where a neural procedure
was used in the analysis of a relatively simple problem of plane elastoplastic stress state. A BPNN
(Back-Propagation NN) was formulated for simulation of RMA (Return-Mapping Algorithm) (3],
which is applied in the analysis of constitutive equations at each plastically active Gauss point of
plane FEs. A simple model of Huber-Mises material with linear strain hardening was assumed. A
corresponding numerical procedure was applied to generate a great number of patterns for training
and testing of a BPNN. Inserting a trained off-line BPNN into a FE program (in [4] system ANKA
[5] was used) gives a hybrid system ANKA/BPNN. It was more numerically efficient than the pure
FE program ANKA in which the numerical RMA procedure was used. The numerical efficiency was
measured by the decrease of the number of iterations in the Newton-Raphson algorithm on the FE
system level.

The approach was developed in [4], where RMA was generalized on cross-sectional level and
numerically simulated at Gauss points of reduced integration in bending plate FEs. A great problem
for neural simulation was related to numerical generation of patterns for corresponding BPNNs
training and testing. The patterns can not be computed only on the base of material constitutive
relations but also internal plate constitutive constrains, associated with the Kirchhoff hypotheses,
had to be taken into account. The Lobatto quadrature formula was used, cf. [6], for numerical
integration of plane stresses along the plate thickness. Despite restriction of the number of Lobatto
points to J = 5 (because of pure bending only J* = (J — 1)/2 = 2 points with plane stress were
considered) a formulated BPNN: 9-40-30-8 was very large since it had 1878 network parameters.
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It affected the decrease the numerical efficiency of both the neural procedure and ANKA/BPNN
program. In what follows the discussed procedure is called NP [4].

‘A priori’ approximation of the elastoplastic stresses along the plate thickness and low numerical
efficiency of the hybrid system ANKA/BPNN induced us to reformulate the approach from [4].
In the present paper two new neural procedures NP1 and NP2 are discussed. The procedure NP1
follows the approach developed in [4]. The selection of other input and output variables made
it possible to diminish significantly the size of corresponding BPNN and increase the number of
Lobatto points to J = 9, i.e. J* = 4. This could be achieved generating the training and testing
patterns in the so-called subjective approach, i.e. taking patterns from a set of special cases of
computed plates. The second procedure NP2 is formulated at the level of Lobatto point. The main
goal of this procedure is better prediction of initial values of plastic equivalent strain in internal
iterations within a Newton-Raphson procedure inserted in program FEAP. A corresponding hybrid
program is called FEAP/NP2.

The main goal of the paper is the analysis of numerical efficiency of two new hybrid systems. This
will be done by means of the FEAP program [6] and corresponding hybrid programs FEAP/NP1
and FEAP/NP2. The computer simulations were performed on two plates of geometrical data,
boundary conditions, and loads different from those in the examples of plates used for the neural
procedures training. The efficiency is evaluated by comparison of CPU time and the number of
operations needed for execution of procedures in programs FEAP, FEAP/NP1 and FEAP/NP2.

In order to make the paper easier to read all the assumptions are collected in Sec. 2 and the
algorithms associated with neural procedures are included in Appendix.

2. ASSUMPTION USED IN THE PAPER
2.1. Kirchhoff hypotheses, generalized strains and stresses

Only rectangular plates of constant thickness h = const are considered, so Cartesian coordinates
z,y, z are applied and z € [-h/2,h/2].

1. The first Kirchohoff hypothesis implies the following displacement of plate layer at distance z
from the midsurface with deflection w(z,y) :

ow ow
u——zga—:-, v——pa—y, (1)

2. Assumption of small rotations of the normal to the plate midsurface leads to a generalized strain
vector:

K = {Kz, Ky, Kay }, (2)
o Fu e ow 5
N e VT g2’ W Sy

3. The second Kirchhoff hypothesis introduces plane stress state in any plate layer and induces a
generalized stress vector:

m = {mg, my, Mgy}, (4)

h/2 h/2 h/2
My =/ 2oadz, my =/ zoydz, Mgy =/ 2Tgydz. (5)
—h/2 —h/2 —h/2
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2.2. Elastoplastic material relations

The classical equations of the plane stress state are related to the plastic flow theory and small
(infinitesimal) strains are based on the following assumptions (matrix notation and calculus are
used in many places of the paper):

1. Total strains (and their rates or increments) can be split into elastic and plastic strains:
€ := {€z,6y, Yoy} = €° + €; (6)

2. Hooke relation for the elastic strains:

1 v 0
E
0 := {03,0y, Ty} = Ee®, where E = ] = v 1 i 0 (7)
—v -V
0:2.0 5
3. Associated flow rule:
1 2 =1 0
e =\Po, whereP=z| -1 2 0 |; (8)
0O 0 6

4. Huber-Mises yield surfaces (J2 yield criterion) with linear isotropic strain hardening:

F:=VvoTPo - \/g(cry + HeP) =0, 9)

&P = A,/goTPc; (10)

where: oy — yield point, H — strain hardening parameter, eP — effective plastic strain. The parameters
oy, H are taken from the uniaxial tension test which gives the characteristics of material with the
strain hardening moduli EP, shown in Fig. la. Parameters H and EP are related to each other by
a simple formula:

EEP (1)
E—Er’

A e | /2
Oyl— EP : T .
C]I— : 2

1.0

s

eP 5t
ey =oy/E & $ &

%Z 4

Fig. 1. a) Characteristics of materiali, b) Lobatto points j = 1,..., J along plate thickness
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2.3. Numerical integration and discretization along the plate thickness

Because of nonlinear distribution of stress along the plate thickness o4s(2) integrals (5) can usually
be integrated only by means of quadrature formulas. Following [4] Lobatto formulas [6] are used
both for function f(z) and its finite increments Af = fAr, where: f - rate of f, T — control
parameter of the considered deformation process [5]. In Fig. 1b Lobatto points j = 1,...,J are
shown for J =9 and a corresponding number J* = (J — 1)/2 = 4 which is used in the analysis of
plate pure bending (for antisymmetric functions f(z)).

Let us follow the application of Lobatto formula in the calculation of vector of moments m and
the cross-sectional tangent stiffness matrix

1 J+ :
m= / 6¢d¢ ~ 2 W60, (12)
5§ ;
9=1
J+ ctee
Am = DAk, where DP~2) W;(2EW (13)
j=1

and dimensionless variables are used from among listed below:

2 _ 1 - E 2 1 » h
C=-ﬁz, G:E?O-, EZEE, ep=;ep, AK='2€—YAK,
(14)
AN = EAX m:= . m D = —S-Dep
: oyh?™’ Eh? i

In Lobatto formulas (12)-(13) W; are weight parameters [6] and for the sake of simplicity superscript
J, denoting Lobatto point, were omitted in (14). Strains and stresses at Lobatto points are computed
by formulas:

AT = (AR, & = (E®Pey, o

where: E®PJ — tangent stiffness matrix of plane stress state at Lobatto point.

3. NEURAL PROCEDURES AND THEIR TRAINING
3.1. Formulation of BPNNs

Neural procedures correspond to trained NNs, formulated as computer simulations of numerical
functions which can be inserted into FE programs instead of them. For the bending analysis of
elastoplastic plates a neural procedure was formulated in [4] for simulation of generalized RMA
(Return Mapping Algorithm):

(mpn, Aknpt1) = (Mpgq, DY), (16)

where: my, my 1 - initial and current vectors of moments corresponding to steps n and n + 1
related to the increment of a control parameter At, Ak,41 = Kp41AT — increment of vector of
curvatures (2).

For purposes of neural simulation different input and output variables can be selected. In Fig.
2a the procedure formulated in [4], called for short NP [4], as a BPNN is shown. The input and
output vectors have the following components:

x = {Akpy1, {6-%}} e RY, Y= {Dfﬁna {A)‘ +1}} € RM (17)
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where: N = 3+ 3J7, M = 6 + J* - dimension of input and output spaces. The increment of
curvatures Ak, 11 and initial stresses at Lobatto points {7} are used as BPNN inputs. The consis-
tent cross-sectional stiffness matrix Dn‘fH and increments of yielding multiplier { AN, +1) at Lobatto
points are computed as BPNN outputs. Then using formulas shown in Appendix the current stress
{07 .} at Lobatto points can be computed and then current moments mp, ;.

The neural procedure NP1 has the following input and output vectors, Fig. 2b:

X= {mn+1: {e }} € :RN Y {mn+17 {Aen+1 } € RM, (18)

where: my, , ; — vector of trail elastic moments in generalized RMA (16), én = Aen o) — initial equiv-
alent strain and its increment at Lobatto point, N = M = 3+ J* — number of inputs and outputs.
Having the values of outputs the current effective stress at Lobatto points {o? w41} can be computed

using the algorithm discussed in Appendix, as well as the consistent stiffness matrices Enﬂfl and

Dn+1

ARnq1 DeP
e BPNN

{741} NP[4] {szhug} AR {O"ZLH}

Myt

b)
m;, 1 rhn+1
—5|  BPNN |/ . "
en NP1 LT AN L e
: ﬁ
c)
ghJ _
=—=>| BPNN | %an AN ol EeP
Ja; 1 NP2 et =pl ntn B
ﬁ

Fig. 2. BPNNs used in procedure NP[4] and in new procedures NP1 and NP2

The neural procedure NP2 was formulated to be used at each Lobatto point. NP2 is based on a
simple BPNN whose input and output vectors are shown in Fig. 2c, i.e:

el Dt e R, y=62, (19)

where: J37 ., = J;7 .1 /oy - 2nd invariant of trial deviator plane stress tensor. It has been shown
in Appendix that after computation of the current equivalent strain e}’ "1, the current value plastic

increment A)\n 41, the vector of current stress an 4+1 and consistent stiffness matrix E p’1 can be
calculated.

3.2. Training and testing of BPNN neural procedure

The main problem of the BPNN formulation is related to selection of sets of patterns which are
used for the network design, training and testing [7]. The design of a network is usually preformed
on subsets of the training set, to select the best network from the sequence of candidate BPNNs [8].
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The quality of such a BPNN is measured by different network errors [8]. Then the validated
BPNNs are trained on the full training set of patterns and tested on an independent testing set.

In [2, 4] two approaches were used for generating patterns by numerical procedure or a FEM
program. The firs approach was called a “subjective” or “example-type” approach since the patterns
were taken from FE computations at several schemes of plates. The second approach was called an
“objective” or “constitutive-type” since patterns could be generated only on the base of constitutive
equations. The constitutive-type patterns are more general since they are independent of geometrical
data, boundary conditions and loading patterns of the plate schemes used in the first approach.

The constitutive-type approach was successfully explored in the analysis of a plane stress problem
[2] but it was difficult to generate it over cross-section of the bending plate. A serious difficulty is
related to the Kirchhoff constraints which couple constitutive equation of all the Lobatto points.
An attempt was made to overcome in [4] by considering special loading paths but they had to be
related, in fact, to selected plate schemes in order to generate FEM patterns.

As a result of research discussed in [4] a large network BPNN: 9-40-38-8 was formulated using J =
5 Lobatto points, i.e. considering coupling constitutive equations at two plate layers corresponding
to J*(5 —1)/2 = 2 Lobatto points. This decreases, of course, the accuracy of approximation of
the stress field in comparison with continuous displacement filed and stress filed plate bending.
Moreover, the numerical efficiency of the hybrid ANKA/BPNN program was nearly the same as
the efficiency of the part FE program ANKA [5].

The example-type approach was explored but instead of one plate schemes [4] two plate schemes of
data shown in Fig. 3a,b were applied. The plates were subjected to single parameter load P = A P*,
where: A — load parameter, P* = {P;" [N]} - reference load vector of components 7 = 1,2,3 corre-
sponding to concentrated forces and P} [N/m?] = const is a uniform distributed load.

a) b) c)
Yo e Y ., Gauss
' x ~ T/ points
: P. Pj "
E ¢ x n/ .
(9] P" : | 7
8 : i\ = CoNst
~ : P P i = {w, 4z, @y, Xay}
: E =200GPa, v=0.3
e ' E, =0.01E, oy = 200MPa
¥ 100 cm ¥ ¥ 100 cm y h=25cm,J=9

Fig. 3. a, b) Schemes of plates, c) 4-node element of 16 DOF
with four Gauss points of reduced integration

Square, 4-node compatible FE with 4 x 4 Gauss points of reduced integration and J = 9 Lobatto
points were assumed (i.e. J* = 4 is twice higher than J* = 2 in [4]), cf. Fig. 3c. The patterns were
generated in 384 Gauss points using six combinations of reference loads |P;| = 1.0 N and variables
load parameter step AA to reach A < 260. In case of NP1 procedure P = 1.5e5 patterns were
generated by means of FEAP program [6]. A set of L = 2.0e4 patterns was randomly selected for
the network training and the remaining 7" = 1.3e5 patterns were used for the network testing.

The candidate network for the procedure NP1 were assumed to be BPNNs of structure 7-H-7,
corresponding to N = M = 7 inputs and outputs, cf. (18). One hidden layer of H = 5, ..., 20 bipolar
sigmoidal and identity linear output activation functions [8] were assumed. The NN simulator [9]
was used and Rprop learning method [8] was explored. The initial parameters of considered BPNNs
were evaluated by the simulated annealing method using procedures from [9].

A standard cross-validation method was used for the design of an optimal number of hidden
neurons. The design process started from H = 5 and then the computation process H + 5 — H
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started. For the trained network BPNN: 7-15-7 the optimal value H = 15 gave the mean square
error [8] MSEL ~ MSET = 0.002.

The design of neural procedure NP2 was performed on the base of patterns of generated by
above mentioned plate schemes. A set of 6.7e5 patterns was generated at four Lobatto points
corresponding to J* = 4. From among them L = 1.0e4.0 patterns were randomly selected for the
training of candidate networks BPNN: 2-H-1. Following the cross-validation procedures applied to
design of NP1 the network BPNN: 2-15-1 was the optimal one (network errors were MSEL =~
MSET =~ 0.001).

The designed procedures NP1 and NP2 correspond to small networks BPNN: 7-15-7 and BPNN:
2-15-1, respectively. Similarly as in [4], procedure NP1 simulates action of the generalized RMA.
The neural procedure from [4], NP [4], corresponds to a large BPNN: 9-40-30-8 with 1878 network
parameters and BPNN: 7-15-7 in NP1 has only 232 parameters. It is worth emphasizing that NP1
was formulated for J = 9 Lobatto points and NP [4] for J = 5.

The procedure NP2 is applied not at the plate cross-sectional level but at the Lobatto point
level. The procedure plays an internal role in RMA as a predictor in the iterative algorithm for
computing current stresses at a Lobatto point.

The new procedures were incorporated into FEAP program and corresponding hybrid programs
are called FEAP/NP1 and FEAP/NP2.

4. TESTING OF HYBRID PROGRAMS FEAP /NP1 AND FEAP /NP2

Testing of new hybrid programs was carried out on examples of two plates PL1 and PL2 shown in
Fig. 4. Plates have different boundary conditions and plate PL1 has a central square hole. The plates
PL1 and PL2 are different schemes than the plates shown in Fig. 3, used for the neural network
training. All material parameters of PL1 and PL2 are the same as shown in Fig. 3. Plates PL1 and
PL2 are loaded by a concentrated force P4 = AP}, P; = 1.0 N.

4

100 cm

01 HLA4

: 100 cm y 55 Mo B 2%

d d

Fig. 4. Plates PL1 and PL2 used for testing of
hybrid programs FEAP /NP1 and FEAP/NP2

In Fig. 5 there are shown equilibrium paths Py — wy for plates PL1 and PL2 computed by the
program FEAP and hybrid program FEAP/NP1. There no are differences between the results by
FEAP and FEAP /NP2 since the procedure NP2 can not change the results obtained by FEAP — the
procedure can only reduce the number of iterations steps in at the Lobatto point level.

In Fig. 6 there is shown the influence of the number N = 7,12,...,37 of load parameter incre-
ments AA (or AP for Py = 1.0N) on the equilibrium points P, — wy for plate PL1. It is visible
that all the points corresponding to different length of AA are placed at practically the same curve
55 A (wA).
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Fig. 5. Equilibrium paths Pa — wa for plates PL1 and PL2 computed
by different computer programs
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Fig. 6. Equilibrium paths points of plate PL1 corresponding to computed by FEAP and FEAP/NP2 the
number of load increments N = 7,12,...,37

5. COMPARISON OF RESULTS OF COMPUTATIONS BY PROGRAMS FEAP,
FEAP/NP1 AND FEAP /NP2

Due to the use of consistent stiffness matrices the iteration is quadratically convergent for each
iteration step in the Newton-Raphson method [3]. The neural simulations are related either to the
cross-section level (procedure NP1) or to the Lobatto point level (procedure NP2). That means
that the numerical efficiency of neural procedures can be measured with respect to the number of
internal iterations performed within each Newton-Raphson step. Because of a very short execution
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time per one iteration of procedures NP1 and NP2 the total number of iterations or CPU times
were counted, associated with one equilibrium path using different number N of increment steps.

The computations were performed on Intel Pentium 4 CPU 2.00 GHz using the program FEAP,
FEAP/NP1 and FEAP/NP2. In what follows the total number of internal TIT or the time of their
execution TIME [sec] are given as associated with computation of N incremental steps. The exact
number of iteration TIT was counted by the GPROF program [11] but TIME could be only roughly
estimated. Of course, the corresponding figures for FEAP are associated with the same iterations
which were simulated by FEAP/NP1 and FEAP/NP2.

In Table 1 there are shown results for N = 37 steps for both tested plates PL1 and PL2. On the
base of figures listed in Table 1 the computational efficiency of procedures NP1 and NP2 measured
by decrease of number of iterations or CPU time in comparison with numerical procedures explored
in FEAP, can be evaluated as 1.8%—20%.

Table 1. Total number of internal iterations TIT and their
execution total time TIME [sec] for N = 37 loading steps

Plate TIT for: TIME |[sec]| for:

FEAP | FEAP/NP2 | FEAP | FEAP/NP1 | FEAP/NP2
PL1 | 664734 606071 0.30 0.24 0.26
PL2 | 447397 438931 0.48 0.43 0.45

A more detailed analysis was made for the efficiency of procedure NP2. In Table 2 and Fig. 7
there are shown results for TIT and TIME depending on the number of loading steps N.

Table 2. Total number of internal iterations TIT and their execution time TIME [sec]
depending on the number of loading steps N for plate PL1

Number 56 TIME [sec]
of steps for: for:
N FEAP | FEM/NP2 | FEAP | FEAP/NP2
07 179008 141939 0.07 0.06
12 254588 172613 0.09 0.09
1T 336125 245793 0.13 0.12
22 416064 333015 0.17 0.16
27 493935 427949 0.22 0.20
32 573797 523508 0.26 0.22
37 664734 606071 0.30 0.26

From the Fig. 7a it is evident that using FEAP the number of iterations TIT depends linearly
on the number of loading steps N. A deviation of TIME from linear dependence on N, cf. Fig.
7b, is caused by difficulty with measuring the execution time. The graphics TIT(N) and TIME(N)
made for FEAP /NP2 are affected by the neural simulation errors. Taking into account the discussed
effects the numerical efficiency of neural procedure NP2 inserted into FEAP/NP2 can be roughly
evaluated as decreasing by about 17% the number of internal iterations made by the corresponding
numerical procedure inserted into FEAP.

The main question that should be answered concerns the numerical efficiency of the hybrid
procedures from the point view of execution time whole programs. It was stated that in case of
FEAP the number of total internal iterations TIT makes up about 4% of the total execution time.
From this point of view the total efficiency of hybrid programs FEAP/NP1 and FEAP /NP2 can be
evaluated by about 0.7% decrease of the time executed by FEAP.
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Fig. 7. a) Total number of internal iterations TIT and b) Total time TIME [sec| for
execution of TIT for plate PL1 and different loading steps N

5.1. Final remarks and some conclusions

In the paper two new neural procedures NP1 and NP2 have been formulated. The first procedure
NP1 follows the approach in [4], where a procedure called for short NP [4] also simulates a generalized
RMA (Return Mapping Algorithm) on the cross-sectional level. The main goal of the formulated
NP1 has been to eliminate defects of NP [4], i.e. a large size of corresponding network BPNN
formulated in [4] and its dependence on the approximation of stress field distribution along the
plate thickness by J = 5 Lobatto point quadrature formula.

The second procedure NP2 has been formulated on the Lobatto point level, cf. Appendix, in
order to predict better the initial values in the iterative computation of stresses at the considered
Lobatto point.

Both procedures NP1 and NP2 were trained on patterns generated by the FE program FEAP
using the “example-type” approach related to the computation of six schemes of elastoplastic plate
bending. After training the neural procedures were inserted into the hybrid programs FEAP /NP1
and FEAP/NP2.

The numerical efficiency of procedures NP1 and NP2 has been examined by computation of two
plates PL1 and PL2 by means of programs FEAP, FEAP/NP1 and FEAP/NP2. The numerical
efficiency has been defined a as decrease of, the number of total internal iterations TIT (or the
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corresponding execution time) carried out by means of neural procedures inserted into FEAP /NP1
or FEAP /NP2 in comparison with TIT execute by FEAP.

It has been stated that the numerical efficiency of hybrid programs, i.e. also numerical procedures,
is on average about 17%. From the viewpoint of the execution of total program the efficiency of
hybrid programs is significantly lower since it can by evaluated as a decrease by about 0.7% of the
number of numerical operations (or corresponding computational time) performed.

The results mentioned above were obtained for a very simple elastoplastic material (initially
isotropic with the Huber-Misis-Hencky yield function surface, isotropic strain hardening and as-
sociated flow rule). In cases of more complicated materials, the neural procedures can also be
formulated [10] and their numerical efficiency and efficiency of corresponding hybrid programs may
be much more prominent.

Appendix

A.1. Computation following procedure NP [4]
The algorithm is related to the input and output vector (17) which can be written in following form:
X= {AKn+17 O-Tl}, Y(8z1) = {AATH—D D:&-l}a (Al)

where: n, n+1 — starting and current states, o, = {07}, — vector of stress at j = 1,...,Jt Lobatto
points, AXp41 = {AN},41 — vector of yielding parameter increments at J* Lobatto points. The
algorithm of computation 0,41 and m,; starts from known values of NP [4] procedure, Fig. 2a
and formulas related to RMA [3]:

1. At each Lobatto point 7 = 1,...,J% compute algorithmic stiffness matrix

& = [E7! + ANP] L (A2)

2. Compute vectors of consistent stress and current stress:

cAal ., =B(AN),
ol 1 =0+ A

n

A (A3)
n+13

3. Using Lobatto formula 12 compute vector of cross-sectional generalized stress (vector of mo-
ments)

g
Wil = Z Wjal 2. (Ad)
i=1

A.2. Neural algorithm related to neural procedure NP1

The following input and output vectors are accepted in neural procedure NP1, cf.(18):

X = {m:z+1’ eg}) Y= {mn+1a Aeﬁﬂ}, (A5)
where: e} = {el’}, el = {eP’ ,} - vectors of equivalent strains at Lobatto points j = 1,..., J*.

The algorithm for inputs and outputs vectors (A5) enables us to make computation at Gauss
points. The algorithm for FEAP /NP2 has sequence following steps:
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1. Table vector of current curvature increments Aky,+1 and compute trail stress
my, 1 = mp + DAKp1; (A6)

2. At each Lobatto point j increment of equivalent strain is simulated by NP2 output Ael 1=
{Ael? +1} so compute

R o) P
n+1 =€, + Aen-{-l?

PGt - i 0
oy + Heb?

where: oy, H — yield point and strain hardening modulus of material characteristics shown in
Fig la;

3. Using (A2) compute =’
4. Using (A3) compute 07, 1;

5. Compute consistent elastoplastic matrix E®P/ at Lobatto points j:

al,,=Pol,, b, =Ha,, (A8)
359
i Hanilo‘zlﬂ (A9)
n+l = QHA)\J ’
T Tj
Eepj = ‘=‘J n+1b ! 1/( n+1 T an+lbzl+1) (AlO)

6. Compute consistent cross-sectional, elastoplastic stiffness matrix using (13):

J+
D®=2) W;s]E™, (A11)
j=1

A.3. NP2 as predictor of initial value of AN

Neural network is used at each Lobatto point j. According to (19) it has the following input vector
and scalar output:

X = {egj’ J2*,3n+1}’ Y= 6234-1 (A12)
Using NP2 the following algorithm is preformed:
1. Compute current stress and strain vector

an = e” + AKn_H, Ony1 = E(eny1 — €3); (A13)

* *7 2 2 5 » 3 % 2
PIEN Fnil z,Jn = \/; (oy + HeP) < 0 then plastic process is passive, otherwise plastic process is

active so is necessary to find consistent plastic multiplayer AN . Equation F(AMN) = 0 is solved
by employing Newton’s method, whose initial value for an iterative solution is computed by NP1.
From NP1 e}’ | is computed and next from (A8) initial (predictor) value of plastic multiplier.

3. Using (A2) compute E7;

4. Compute consistent elastoplastic matrix E®® at Lobatto points j from (A10).
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