puter Assisted Mechanics and Engineering Sciences, 12: 175-182, 2005.
right (© 2005 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Computational grids in evolutionary
optimization of structures

Wactaw Kus

Department for Strength of Materials and Computational Mechanics,
Silesian University of Technology,

Konarskiego 18a, 44-100 Gliwice, Poland

(Received March 31, 2005)

The paper is devoted to computational grids applications in evolutionary optimization of structures. The
two grid middleware are used, UNICORE and LCG2. The distributed evolutionary algorithm is used for
optimizataion. The fitness function is computed using finite element method. Numerical examples are
presented.

1. INTRODUCTION

The shape optimization of structures can be solved using methods based on sensitivity analysis
information or non-gradient methods based on genetic algorithms [13]. Applications of evolutionary
algorithms in optimization need only information about values of an objective (fitness) function.
The fitness function is calculated for each chromosome in each generation by solving the boundary-
value problem by means of the Finite Element Method (FEM) [8, 17]. This approach does not need
information about the gradient of the fitness function and gives the great probability of finding
the global optimum. The main drawback of this approach is the long time of calculations. The
applications of the distributed evolutionary algorithms [15] can shorten the time of calculations
[9, 1-4].

The computational grids allows to use distributed computational resources. The authorization is
one of the most important elements of grids. The Public Key Infrastructure are used in most grid
projects. The Virtual Organizations (VO) created by people with similar interests or working on
similar projects allows to create grids and share resources.

The use of computational grids is effective when computational intensive tasks are performed.
The additional time is needed to execute jobs in grids (when comparing with clusters). The time is
not big and is under one minute in most cases.

The use of grid techniques in optimizations can lead to improvements in hardware and software
utilization. The other advantages of grids are simple and uniform end user communication por-
tals/programs. The first evolutionary optimization tests [10] were performed using Condor package
[5]. The plugins and programs for evolutionary optimization of structures using UNICORE environ-
ment [16] were presented in [11]. The use of LCG middleware [12] and Crossgrid [6] project resources
is presented in the paper.

2. OPTIMIZATION OF STRUCTURES USING THE DISTRIBUTED EVOLUTIONARY
ALGORITHM

Sequential genetic and evolutionary algorithms are well known and applied in many areas of op-
timization problems. The main disadvantage of these algorithms is the long time needed for com-

176 W. Kus

putation. The distributed evolutionary algorithms (DEA) works similarly to many evolutionary
algorithms operating on subpopulations. The evolutionary algorithms exchange chromosomes dur-
ing a migration phase between subpopulations. When DEA is used the number of fitness function
evaluations can be lower in comparison with sequential and parallel evolutionary algorithms. DEA
works in the parallel manner, usually. Each of the evolutionary algorithms in DEA work on a differ-
ent processing unit. The theoretical reduction of time could be bigger then the number of processing
units. The flowchart of the distributed evolutionary algorithm for one subpopulation is presented in
Fig. 1. The sample DEA with four subpopulations is shown in Fig. 2. The starting subpopulation of
chromosomes is created randomly. The evolutionary operators change chromosomes and the fitness
function value for each chromosome is computed. The migration exchanges a part of chromosomes
between subpopulations. The selection decides which chromosomes will be in the new population.

The selection is done randomly, but the fitter chromosomes have bigger probability to be in the new
population. The selection is performed on chromosomes changed by operators and immigrants. The

client/worker client/worker

compute fitness compute fitness

function value function value

¢ <
server/master " v
o chromosomes
sen romosomes evol algorithm |
to clients and receive N e
- fas valueo fitness e g
f. values l
communication . e - j
with other &° “\,—"l‘ __ migration =
subpopulations
compute fitness l : Mon ®-igy 1
function value TR e e f
client/worker

Fig. 1. The flowchart of the distributed evolutionary algorithm for one subpopulation

communication between EA

Computational grids in evolutionary optimization of structures 177

next iteration is performed if the stop condition is not fulfilled. The stop condition can be expressed
as a maximum number of iterations.

The computation of fitness function in optimization problems is performed using results of the
FEM analysis. The genes describe the shape, material properties, topology of the structure. The
structure is meshed and proper boundary conditions are applied before FEM analysis. The flowchart
of fitness function evaluation is presented in Fig. 3.

chromosome

create geometry/ material
properties on the basis
of genes values

v

create finite elements mesh
of the structure

v
apply boundary conditions

compute stiffness matrix
.'._sblv"e system of equations

7 o_omputdﬂtnoﬁs# function
- value on the basis of
displacements/stresses

[5.12] 2.39 | -1.25] 0.87 | 11.33]

fitness function
value

Fig. 3. Fitness function evaluation using FEM

3. OrPTIMIZATION USING UNICORE EAOPT PLUGIN

The UNICORE environment allows to perform computational tasks with use of computers without
deep knowledge about target computers operating systems, directory structure etc. The UNICORE
client module is written in Java and can be used on most computer systems currently available.
The client is very flexible and prepared to use third party plugins. The UNICORE define special
classes to be used in plugins like file browsers. The communication between client module and the
target system can be performed with use of predefined classes.

The plugin can be used to prepare evolutionary optimization job. The parameters of the dis-
tributed evolutionary algorithm like number of chromosomes, genes, subpopulations, probabilities
of operators, constraints on design variables can be load using plugin. The EAOPT plugin is also
responsible for transferring files to target computer, job execution. The transfer of output files are
also performed after computations.

The optimization is performed on the target computer/cluster using EAOPT - distributed evo-
lutionary algorithm implementation. The EAOPT program and EAOPT plugin for UNICORE are
both implemented by the author.

178 W. Kus

The EAOPT plugin is shown in Fig. 4.

300 Monionng
¢ B osMew Gatsway
& [1stest e

Fig. 4. The EAOPT plugin

4. EVOLUTIONARY OPTIMIZATION USING GRID BASED ON LCG MIDDLEWARE

The goal of the LCG project [12] is to create middleware (based on Globus Toolkit) which allows
to create big grids. The LCG project is connected with Large Hadron Collider project realized in
CERN. Many European grid projects uses LCG as software basis, for example Crossgird [6], EGEE
[7]. The grids consists of user interface (computer for submitting, monitoring jobs), resource broker
(computer which authorizes users, transfers files across grid, decides which resources will be used by
user), gatekeepers (computers which translate the resource brokers job requests into working nodes
job requests), working nodes (computers executing jobs) and storage elements (computers allowing
to high performance access to storage data). The computer elements of the grid are distributed in
many sites. The user perform action using user interface. The job submition is presented in Fig. 5.
The resource broker decides on the basis of job descripion provided by the user, current sites load
and virtual organization policies, which computing elements should be used. The communication
between computational sites and user are performed using resource broker, also jobs monitoring and
fetching jobs results.

The simplest way to use such grids is to submit evolutionary optimization job. The Crossgrid
project testbed allows to use MPICH [14] jobs. The distributed evolutionary algorithm can be
implemented using MPICH library. There is submition of one job for one optimization problem.

Computational grids in evolutionary optimization of structures 179

User
Interfacg (un

Gatekeeper(GK)
+
Working Nodes (WN)
1. Submit job :&;gggted
vl
Resource
Broker(RB)

SITEC 2. Job transfer to WN

Gatekeeper(GK)
+ G
Working Nodes (WN)

3. Job accepted

il seB

Fig. 5. The job submition in the grid

The other method is to use grid jobs during fitness function evaluation. The submition of job
takes some time and such approach will be efficient only when fitness function evaluation is time
consuming. The flowchart od such algorithm is presented in Fig. 6.

: create
starting subpopulation
-
send jobs to the grid evolutionary algorithm
and wait for results il operators
fitness
f. values *
communication
with other & '; migration i
subpopulations l
l ' selection 5
Y

stop condition >N—

o:umpuuﬂhm : o
«fonclonvalus

SR s

Fig. 6. The distributed evolutionary algorithm using many grid jobs

180 W. Ku$

5. NUMERICAL TESTS
5.1. Test with use of UNICORE environment

The goal of the test is to solve identification problem. The identification problem can be expressed
as optimization problem. The aim of the identification is to find position of the center and radius
of a void in the steel plate on the base of measured displacements.

The geometry of the plate is presented in Fig. 7. All the lengths and positions are in milimeters.
The plate is made from elasto-plastic material. The displacements are measured in sensor points

(Fig. 7).

o

[1100 \/__sensor points

Fig. 7. The geometry of the plate

SASRRRRNRENNNNNN

s e T i T 2 R s R0

The fitness function is expressed as:
n

F=Z|u’i_ﬁ'i| (1)
i=1

where n is number of sensor points, u; are equivalent displacements in i-th sensor point and ; are
equivalent displacements in i-th point computed using FEM for current chromosome.

The parameters of the distributed evolutionary algorithm are: number of subpopulations — 2,
number of chromosomes — 10, number of variables — 3. The gaussian mutation and simple crossover
operators were used. The genes of the chromosomes contains floating point values.

The constraints on gene values are imposed. The (10.90) for z and y coordinates, (2.45) on r
value.

The test was performed using UNICORE plugin EAOPT. The computational resources of De-
partment for Strength of Materials and Computational Mechanics were used.

The best result found in first and last iteration are presented in Fig. 8. The gray levels represents
equivalent stresses in plate. The solid color means plastic strains areas in structure.

The results are also presented in Table 1. The results in the last iteration are very close to the
searched one.

Table 1. The results of identification

design | exact | value for error value for error
variable | value | the best chromosome | in the first | the best in last
in the first iteration | iteration in last iteration | iteration
z 35 60.431 72.6% 35.001 0.005%
Y 50 48.035 3.929% 48.980 2.040%
r 10 10.064 0.646% 10.064 0.646%

Computational grids in evolutionary optimization of structures 181

exact location
found location

found location

Fig. 8. The best result in first and last iteration

5.2. Test with use of LCG2 middleware

The shape optimization problem is solved using evolutionary algorithm. A steel plate with circular
hole is considered (Fig. 9a). The optimal position of the center of the hole (z,y) is searched. The
structure is made from an elastic material. The aim of the optimization is the minimization of
equivalent stresses values in the structure. The area of the structure is constant. The fitness function
is expressed as follows:

F= /oequ (2)

n

where: 0eq are computed equivalent stresses.

(100,200)

a)

-
|
>a
<
e
| —

(0,100) -
<l 8

-
g P

10 |«

e

<

o i g

|

. o
<] A

(0'0 77777777777

100 s

182 W. Kus

The parameters of the evolutionary algorithm are as follows: a number of genes 2, a number of
subpopulations 2, a number of chromosomes in subpopulation 4, a number of generations 10. The
best result is shown in Fig. 9b.

The LCG2 middleware and Crossgrid testbed were used during test. The three sites were used
during preparation of the test Laboratorio de Instrumentacao e Fisica Experimental de Particulas
in Portugal, CESGA-Centro de Supercomputacion de Galicia in Spain and CYFRONET, Cracow
in Poland.

6. CONCLUSIONS

Two grid types of grid middleware were presented. The UNICORE plugin allows to perform evolu-
tionary optimization tasks. The combination of the UNICORE environment with specialized plugin
and the distributed evolutionary algorithm allows to solve optimization problems using easy user
interface. The existing grids testbeds allows to perform numerical test using advanced middlewares
and many computer resources. The coupling of distributed evolutionary algorithm, finite element
method and computational grid creates modern, powerful and efficient structures optimization tool.

ACKOWLEDGMENT

The research is financed from the Polish science budget resources in the years 2005-2008 as the
research project.

REFERENCES

[1] T. Burczyniski, W. Kus. Distributed evolutionary algorithms in shape optimization of nonlinear structures.
Lectures Notes on Computational Science 2328, Springer, 2002.

[2] T. Burczynski, W. Kus, A. Dlugosz, A. Poteralski, M. Szczepanik. Sequential and Distributed Evolutionary
Computations in Structural Optimization. Lecture Notes on Artificial Intelligence 3070, Springer, 2004.

[3] T. Burczynski, W. Ku§, A. Diugosz, P. Orantek. Optimization and defect identification using distributed evolu-
tionary algorithms, Engineering Applications of Artificial Intelligence 17 (4): 337-344, 2004.

[4] T. Burczynski, W. Kus, Optimization of structures using distributed and parallel evolutionary algorithms Parallel
Processing and Applied Mathematics, PPAM2003, Revised papers, Lecture Notes on Computational Sciences
3019, Springer, 572-579, 2004.

[5] Condor, High Throughput Computing, http://www.cs.wisc.edu/condor/

[6] Crossgrid project home page, http://www.crossgrid.org

[7] EGEE Enablig Grids for E-Science in Europe home page, http://www.eu-egee.org

[8] M. Kleiber (ed.), Handbook of Computational Solid Mechanics, Springer-Verlag, 1998.

[9] W. Kus, T. Burczynski. Evolutionary optimization of elasto-plastic solids. In: T. Burczyriski and W. Cholewa
eds. Methods of Artificial Intelligence in Mechanics and Mechanical Engineering , Gliwice, 2000.

[10] W. Kus, T. Burczynski. Computer implementation of the coevolutionary algorithm with Condor schedule,
KAEIOG 2004, Kazimierz, 2004.

[11] W. Ku$, T. Burczynski. Distributed evolutionary algorithm plugin for UNICORE system, Proc. 4-th Cracow
Grid Workshop, Cracow, 2004.

[12] LCG project home page, http://lcg.web.cern.ch/LCG /default.htm

[13] Z. Michalewicz, Genetic algorithms + data structures =evolutionary algorithms. Springer-Verlag, Berlin, 1996.

[14] MPICH project home page, http://www-unix.mcs.anl.gov/mpi/mpich/

[15] R. Tanese. Distributed Genetic Algorithms. Proc. 3-rd ICGA, 434-439, J.D. Schaffer ed. San Mateo, USA, 1989.

[16] UNICORE Plus Final Report — Uniform Interface to Computing Resources, Joint Project Report for the BMBF
Project UNICORE Plus, Grant Number: 01 IR 001 A-D, 2003.

[17] O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method. The Basis, Vol. 1-2, Butterworth, Oxford, 2000.

