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Fault diagnosis becomes more and more difficult and sophisticated task. This is so mainly due to grow-
ing complexity — contemporary technological systems are assembled from numerous components which
cooperate and recursively include other components. The main goal of this paper consists in presentation
of an approach which is able to reduce time of diagnosis and quantity of produced diagnoses by using
hierarchical, logic-based approach. The reduction is achieved here due to two main factors. The first one
is that a hierarchical model of systems is used. Such approach limits search space, because the system
is considered at various levels of details and some diagnoses which are possible potential ones at more
abstract levels can be verified to be impossible at more detailed levels. The second factor is that levels
can be described with use of different kinds of a logic-based knowledge representation, what lets fit some
best representation to a particular level.

1. INTRODUCTION

Diagnostic methodologies have emerged from numerous domains of Computer Science and Control
Theory Korbicz et al. [5]. Some of these methodologies are based on models of diagnosed systems.
In general, the models can be divided into the following groups:

e analytical models (Control Theory) e.g. physical equations, linear state equations Chow and
Willsky, [2], state observers and Kalman filters Chen and Patton, [1], etc.,

e behavioral models (Computer Science) Patton and Korbicz, [14] e.g. expert systems Jagielski, [4];
Moczulski, [10], causal graphs Ligeza and Fuster-Parra, [8], fuzzy logic Koscielny et al. [6], etc.

In the paper we shall follow some of the basic notions introduced in another model-based diagnostic
approach Reiter, [15]. Reiter defines a model as a set of components and relations among of them:

Definition 1. (Reiter). A system is a pair (SD, COMPONENTS) where:
e SD, the system description, is a set of first-order sentences;

e COMPONENTS, the system components, is a finite set of constants.

Note that all the presented before methodologies are usually flat; it means that after detection of
a fault, diagnosis is carried out for the entire system. In the presented approach, a complex system
is described by a hierarchical model where the position in vertical hierarchy represents some level
of considered details. Hierarchical approaches for solving diagnostic problems were considered by a
few authors e.g.: theoretical description of hierarchical approaches can be found in Giunchilia and
Walsh, [3] and hierarchical diagnosis based on constraints were discussed in Mozeti¢, [11].

In this paper another, model-based hierarchical approach is considered. It is based on direct
modeling of the hierarchy of system components which can recursively include other components.
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The diagnostic procedure can refer to a certain level of component representation. In the classi-
cal Reiter’s approach COMPONENTS are considered to be of atomic nature; here compler and
elementary components will be introduced.

Generally, components can be described here by any kind of model-based diagnostic methodology
which is able to produce diagnoses as sets of broken components; but in this article only two
approaches are considered:

e A model-based one with Reiter’s theory as a diagnostic procedure Reiter, [15],

e One using expert-based causal logical graphs with propagation of values in a expert graph as a
diagnostic procedure Ligeza and Fuster—Parra, [8].

The model-based description does not require causal modeling, but it is computationally harder
and not all technological components have an appropriate model useful in this kind of approach.

The expert graphs give possibility to create an efficient diagnostic description based on human
causal knowledge about relations between causes of faults and their observed manifestations. The
most important disadvantage is also lack of graphs for some components, and difficulties with
building description for more complex systems with functional dependencies among variables. In
these paper both of the approaches are combined to enable hierarchical diagnostic procedure.

Further, the causal AND/OR/NOT graphs for modeling relations among components will be
used Ligeza and Fuster—Parra, (8], Ligeza, [9]. Causal graphs are defined as acyclic, directed graphs
with nodes modeling logical functors. A type of a node of the graph can be: AND, OR or NOT.
AND nodes represent logical conjunction of predecessor nodes, OR nodes represent disjunction
of predecessor nodes and NOT arcs represent negation. AND nodes are represented in figures as
nodes with an additional arc under the nodes, OR nodes are pure graph nodes, and NOT arcs are
represented by arcs with black dot.

2. HIERARCHICAL SYSTEM MODEL FOR AUTOMATED DIAGNOSIS

The classical definition of system (1) introduced by Reiter, [15] puts forwards a single-level view
on system modeling — the system is composed of a number of equally-ranked, atomic components,
connected and interrelated. The behavior of the system is modeled with a single-level, flat first-order
theory. No internal structure of components is considered.

For the sake of hierarchical diagnosis it is proposed to extend this definition over complezr sys-
tems, recursively composed of components having some internal structure. A complex system CS is
represented here by a set of top-level, interrelated components.

2.1. Elementary and complex components

Let there be given a set of constants ELEMENTARY COMPONENTS (EC, for short) denoting the
basic components in the sense of Reiter, [15], i.e. ones denoted by constants for which no internal
structure is ever considered. A (complex, hierarchically structured) component can be recursively
defined as follows Oleksiak and Ligeza, [12]:

Definition 2. (Component). A component c is either:
e an elementary component ¢ € EC, or

e a complex component ¢ = (CD, SUBC'), where CD is the component description (a set of first—
order sentences) and SUBC is the set of its subcomponents.
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Note that the above definition introduces a tree of component structure modeling relations among
components and their subcomponents (e.g. Fig. 1). Elementary components are leaves of the tree,
they do not have any descendants. The root of the tree will be referred to as the main component. If
¢ = (CD,SUBC) is a component, then ¢ is a direct supercomponent for any component ¢; € SUBC.
Conversely, any ¢; € SUBC is a direct subcomponent of c.

Fig. 1. The tree of component structure for a hypothetical system

We further assign the level to any node representing some components (subcomponents) in the
tree. The root node (and the main component) is assigned a level numbered 0. Any other component
is assigned level m + 1, where m is the level of its direct supercomponent. To denote the fact that
component c; is located at level j we shall write c].

Any component (either an elementary one or a complex one) can be further described by a set
of variables, typically defining its inputs and outputs. The input and output variables, together
with some other characteristics of the component (internal state variables, parameters, etc.) are
also referred to as component attributes.

The hierarchical model, similarly to the flat model, has to involve some real world observations.
The definition of observations is as follows:

Definition 3. An observation of a complex component (:17 is a finite set of first-order sentences. We
shall write (CD}, S UBC?H, OBS?) for a component with observation OBS?.

2.2. Diagnostic problem

Current observations can be consistent with predicted behavior of a component — and in such a case
the component is believed to work correctly; this is denoted as ~AB(c;) (recall that AB(c;) denotes
the fact that component ¢; behaves in an ABnormal way). If current observations are different from
what can be expected on the basis of the component description, the component is assumed to be
faulty — at least one subcomponent of it behaves in abnormal way; this is denoted as AB(c;). The
diagnostic problem for the hierarchical model can be formulated as follows:

Definition 4. (Diagnostic Problem). A diagnostic problem Pij for component CZ , defined at
level j is defined as a four-tuple

P! = (d, cD}, SUBCIY, 0BSY)

where CD{ is the model definition for component cf .8 UBC’{+1 are its subcomponents and OBsg
are the current observations at level j for component c,.
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Note that in the hierarchical approach, the diagnostic problem definition is always formulated
at a certain hierarchical level and refers to some specific component.

2.3. Inter-level observations mapping

For enabling real hierarchical diagnosis one must define a way of moving a level down, so that
information concerning level j can be efficiently assigned to components of level j + 1. Two mapping
functions for hierarchical systems are defined:

e a focus function F' allowing to focus observations on subcomponent attributes,

e a hierarchical function H allowing to map attributes to subcomponent observations.

Definition 5. (Focus function). A focus function Fij is a function mapping observations referring
to a component ¢! at level j to attributes referring to its direct subcomponents at level j + 1

F!: 0BS? £, ATTRIBUTES?*!,

where ATTRIBU TES{ *1 is a collection of sets ATRf;rl. Set ATRf{Irl includes attributes of subcom-
ponents included in diagnosis d. Diagnosis d solves diagnostic problem P;.

Definition 6. (Hierarchical function). A hierarchical function H,ZH is a function mapping
attributes referring to a subcomponent c}cﬂ at level j + 1 to its observations

HitY ATRIYY = 0BST,

Hierarchical function is mainly used for conversion of the form of diagnostic information between
hierarchical levels. Figure 2 presents both of the mapping functions in an intuitive, graphical form.

Fig. 2. A hierarchical and a focus functions

Let ci“ be some direct subcomponent of cf . The observations referring to c}fl will be denoted
as OBSJ™, and there is OBSI*' € H o F(OBS?). If subcomponent it is diagnosed as faulty on

the basis of observations OBS{ at level j, then observations OBS{;+1 resulting from mapping the
observations down to level j 4 1 can fall into one of the following three categories (see Fig. 3):
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e (HoF)" - observations which are consistent with description of correct behavior of subcomponent
c,’CH; the description of incorrect behavior of component ¢! is too general. This case is similar to
the T'C abstraction Giunchiglia and Walsh, [3]. The diagnosis is refused as false,

e (H o F) - observations which are consistent with description of incorrect behavior of subcompo-
nent c,’c‘H. In this case the diagnostic procedure can be continued on lower levels of hierarchy,

e (H o F') - observations which are not consistent with any one from the two mentioned before
descriptions. The descriptions are incomplete, the suggested solution is to stop the diagnostic
procedure at this level.

Behaviors of component ¢!

undefined

j+1

Behaviors of component c/'ec!

Fig. 3. Fault mapping

3. HIERARCHICAL DIAGNOSTIC ALGORITHM

The presented algorithm is an implementation of the hierarchical diagnostic methodology and is
composed of a global diagnostic procedure and a local diagnostic procedure.

3.1. The local diagnostic algorithm

The local diagnostic algorithm diagnoses components by using proper methodology for their diag-
nostic description CD. Two kinds of diagnostic descriptions can be analyzed by the local diagnostic
algorithm: causal AND/OR/NOT graphs — diagnosing by propagation of states, and model-based
approach — diagnosing by consistency-based procedures.

The result of the local diagnosis is an intermediate graph. The main reason for use of a graph
form instead of a simple collection of diagnoses is that a graphical form is more readable for users.
The result of the local diagnostic procedure is composed as disjunction of all diagnoses for the
component where each diagnosis is represented by conjunction of faulty subcomponents.

The notation of graph nodes is similar to notation which is used for causal graphs. OR nodes
are ordinary graph nodes; they represent logical disjunction of descendant nodes. AND nodes are
nodes with an additional arc under the node; they represent logical conjunction of descendant nodes.
Leaves of graphs are labeled by component names.

When it is necessary to calculate diagnoses from an intermediate graph then the state of its root
node is set to “true”. Further calculations are done according to state propagation rules in causal
AND/OR/NOT graphs. If state of a leaf is “true”, the component, whose name is on the label, is
considered as faulty and becomes a part of a diagnosis.
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The intermediate graph for a hypothetical valve is presented in Fig. 4. Diagnoses for the system
are: dg = {f, a} and d; = {e}.

{'F! ‘1} {E}

Fig. 4. The intermediate graph for a valve

3.2. The global diagnostic algorithm

The result of diagnostic process for a complex component is a collection of alternative diagnoses.
Each diagnosis is an explanation of abnormal behavior of the complex component and includes some
of its subcomponents. All subcomponents in a diagnosis have to be faulty for keeping consistency
between observations and complex component description C'D.

The logical aspect of hierarchical diagnostic reasoning requires that the following formula is
recursively satisfied:

4=V (A 4B@™).

dreD; CZL+1 €dy,

Recursion of the formula is finished when either the collection of diagnoses for a complex component
is empty or a component is an elementary component. More precisely, the diagnostic procedure is
stopped and returned in the form of a tree of diagnoses when:

1. A diagnosed component is an elementary component. The algorithm turns back to its supercom-
ponent and the component is recognized as an atomic element of a diagnosis.

2. It is impossible to establish values for suitable number of attributes or observations for a com-
ponent. The component is treated as an elementary component.

3. Local diagnostic procedure is finished without any diagnosis. This happens if either observations
generate a conflict in a causal graph or observations are not generating any conflict in a model.
The algorithm turns back to supercomponent, the currently examined diagnosis is skipped, and
the next diagnosis in order is analyzed.

4. The established values of some attributes are in conflict with either domains of attributes or
other conditions imposed on attributes. The algorithm turns back to its supercomponent, the
current diagnosis is skipped, and the next diagnosis in order is analyzed.

The final result of diagnostic process can be shown in visual form as a simple tree of diagnoses
Tr (e.g. Fig. 5). Each complex component ¢] labels a component node; the node is an OR node.
Each diagnosis dj of complex component ¢ is represented by a descendant node of the component
node. Nodes labeled by diagnoses are diagnosis nodes and they are AND nodes.
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Each subcomponent of component ¢ which belongs to a diagnosis is a descendant of the diagnosis
node. Diagnosis nodes can be expanded to component nodes and component nodes can be expanded
to further diagnosis nodes (if diagnoses exist). The highest complex component in hierarchy is
represented by a root of Tx. The rest of the tree is built recursively down according to results of
diagnosis of complex components. Consider a tree modeling the hierarchical diagnostic procedure,
such as one presented in Fig. 5. Let us introduce the following definition:

Definition 7. A hierarchical diagnosis for any component c. at level j is any subtree satisfying the
following conditions:

e the root of the subtree is any of the diagnosis nodes located directly under component node cZ ,

e for any component node ck in the tree, at most one subtree with its root node being a diagnosis
node for the component node ct is belongs to the tree defining the hierarchical diagnosis.

With respect to the above definition any component in the tree modeling hierarchical diagnosis
can be expanded (down) and a hierarchical diagnosis for it is developed in this way; for the leaf
nodes, however, no expansion is possible (they are elementary diagnoses). The hierarchical diagnosis
for the whole system is built as a subtree satisfying above definition and with root diagnosis node
located directly under component cJ.

Fig. 6. Tree of diagnoses Tr with marked hierarchical diagnosis {c%, 2, 2, ci}

Note that for a given component, various diagnoses can be defined with respect to the degree of
expansion. For example, there are two different hierarchical diagnoses marked in Figs. 5 and 6.
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The global diagnostic procedure carries on diagnosis of the whole system and the diagnosis is
based on results obtained from the local diagnostic procedure. The global diagnostic algorithm is
based on top-down search in the tree of diagnoses. Such a search has two basic versions: depth-first
search and breadth-first search.

The simplest sketch of the depth-first searching procedure is as follows:

2. P 5Dl

(]

3. SELECT p, k THAT c,*' € d, IS NOT PROCESSED AND d, € D).
4. IF k EXISTS THEN j =j+1, =k AND GOTO 2.

5. IF j =0 THEN EXIT.

6. IF k NOT EXISTS THEN j = j—1 AND GOTO 3.

The diagnoses for the whole complex system can be shown when the diagnostic procedure is
finished. The limitation of complexity by hierarchization is possible for all types of refutation proce-
dures, if the number of outputs of components is limited and lower than the number of components
at a diagnosed level Oleksiak, [13]. Otherwise, the situation depends on complexity of the original
refutation procedure.

4. THE FOCUS FUNCTION
4.1. Model-described components

Attributes for model-described levels are inputs and outputs of subcomponents. Values of attributes
depend on: the model, observations and the diagnosis.

If we assume that faults are generated by a minimal number of faulty subcomponents from conflict
sets (minimal hitting sets) then all inputs and the output of each subcomponent will be calculated
without any additional measurements Oleksiak, [13]. So, it is useful for components where it is
impossible to get any further information about subcomponents than values of inputs and outputs
of the components. Moreover, diagnoses being minimal hitting sets are usually consistent with real
reasons of malfunctions; so, there is high probability that such diagnoses are correct.

Otherwise, values of some inputs and outputs of subcomponents cannot be determined and the
values have to be completed by additional observations. Note that further analysis of subcomponents
on lower hierarchical levels is, in most cases, impossible without values of all attributes (values of
inputs and outputs of subcomponents).

4.2. Graph-described components

Observations and intermediate symptoms taking part in diagnosis of a graph-described subcompo-
nent sp, become directly attributes of the subcomponent.

Let the list Hy include history of state propagation in a causal graph G for a diagnosis d. Then
it is possible to determine all nodes which take part in creation of diagnosis d and they are either
manifestation symptoms or intermediate symptoms. The nodes (symptoms) constitute a set P; and
they become attributes of each subcomponent included in diagnosis d.

Graph description has one unpleasant property: a lot of diagnostic information is lost during
mapping through graph-described components. Deficit of information is especially harmful when
subcomponents are described by their models. If values of some attributes are unknown or not
precisely evaluated then not all the conflicts are generated for model-described subcomponents, since
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some ways of calculation of conflicts become unavailable. When not all conflict sets are generated
then not all diagnoses are generated, moreover some diagnoses can be incorrect.

It is possible to carry out such diagnosis but it is also necessary to be aware that the set of
diagnoses can be incomplete. One can propose some approaches to keep information flow among
the distinguished levels of hierarchy at a satisfactory level of precision:

e additional measurements and interaction with users,

e guaranteeing that there are no model-described components below graph-described components
in the hierarchical model,

e parameterization of subcomponents by typical values for certain kinds of faults,

e use of some additional knowledge holders for graph-described components Oleksiak, [13].

5. THE HIERARCHICAL FUNCTION

The hierarchical function maps attributes to observations. The role of this function is usually aux-
iliary and reduced to conversion of diagnostic information from one form to another. We can dis-
tinguish here four possible configurations of two hierarchical levels and two types of description:

e Model-model configuration. The hierarchical function maps attributes which represent a sub-
component inputs or outputs to the same inputs or outputs on the lower level of hierarchy.
Sometimes, it is necessary to have an additional conversion, e.g. an integer value is divided into
bits,

e Model-graph configuration. Observations in the graph are usually propositional symbols with
boolean values, subcomponent attributes are converted to observations by pre-specified rules
e.g.

IF flow(valvel) > 15 THEN valve_full_open := TRUE ELSE valve_full _open := FALSE.

o Graph-model configuration. The hierarchical function for this case depends on additional solu-
tions used with focus function for improving mapping of diagnostic information. Two typical
solutions are similar to these which were presented in previous points e.g.:
auxiliary model: position := position(encoder),
rules: IF NOT encoder ok AND flow_max THEN position := 15 AND value := 30,

e Graph-graph configuration. The situation is quite similar to previous point.

6. EXAMPLE

The root of the tree of components is a simple arithmetic circuit (Fig. 7) Reiter, [15].

The circuit consists of three multipliers: m1, m2, and m3; and two adders: al and a2. The values
of inputs are A = 3, B =2,C = 2,D = 3, and E = 3. The values of outputs are F' = 23 and G = 12.
So, there is an inconsistency between the measured value of output F' and its predicted value.

For the arithmetic circuit, minimal conflict sets are: {al, m1, m2}, {al, a2, m1, m3}. Diagnosis
(minimal hitting sets) are: dop = {al},d; = {ml1},ds = {m2,m3},ds = {a2, m2}.

Let us consider diagnosis dp = {al}. Focus function maps observations to attributes of the
diagnosis subcomponents ATR}iO ={X=6 Y =6F =23}

Subcomponent al can be described by the model which is presented in Fig. 8. Hierarchical
function “distributes” values of attributes to observations at this level: 0X = 0,1X = 1,2X = 1,
3X=0,0V.i=0;4Y-= 1,2Y. = 1,3 =0,0F =1;1F =1,2F =1,3F =04F =1.
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A minimal diagnosis at this level is {o, £1}. If components included in the diagnosis are complex
components then diagnosis can be continued at lower level of hierarchy.

Some diagnoses can be limited by the focus function. For example, one from the diagnoses for the
arithmetic circuit in Fig. 7 is {m1}. The value at the output of faulty subcomponent {m1} should
be equal 17. Now, let us take a look on multiplier {m1} at a lower level of hierarchy (Fig. 9).

The model of the multiplier shows that the multiplier is not capable of producing output value
equal 17 (15 is maximum). 17 is out of domain of the multiplier output and diagnosis {m1} will be
rejected.

The tree of components for the hierarchical model of the circuit is presented in Fig. 10.

And one more example of limitation which is typical for graph-described components and occurs
when any behavior of subcomponents, either normal or abnormal, cannot explain observations.
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Fig. 10. The tree of component structure for the circuit

In other words, a logical function, which is coupled to the expert graph, cannot be fulfilled for
current observations and any values of other parameters.

For example, Fig. 11 presents simple expert graph modeling AND gate. The gate has two inputs
in1(AND) = 0, in2(AND) = 0 and one output output(AND) = 1. Such values of observation cannot
be explained by any value of variable AB(AND).

output(AND)

in1(AND) in2(AND) AB(AND)

Fig. 11. Causal graph for AND gate

Reasons for such situation are either weakness of the model or intentional elimination of some
states from the model.

7. CONCLUDING REMARKS

This article presented a flexible and easy methodology for hierarchical modeling and diagnosing
of complex technical systems with different kinds of diagnostic descriptions for components. The
computational cost of the diagnostic procedure depends on models and complexity of the local
diagnostic procedures, but hierarchical diagnosis is less costly than single-level diagnosis in most
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typical cases. It is possible to prove that hierarchical approach is always better if number of sub-
components output for a model-described components is not higher than number of subcomponents
Oleksiak, [13].
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