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This work deals with the construction of a mixed and extensible domain decomposition method for incom-
pressible flows. In the scheme proposed here, the solution is sought at the intersection of two spaces, one
containing the solution of the Navier–Stokes equations considered separately in each subdomain, and the
other one containing the solutions of the compatibility equations on the interfaces. A solution verifying all
the equations of the two spaces is achieved iteratively. One difficulty is that the interface problem is large
and dense. In order to reduce its cost while maintaining the extensibility of the method, we defined an
interface macroproblem in terms of a few interface macro unknowns. The best option takes advantage of
the incompressibility condition to prescribe an interface macroproblem which propagates the information
to the whole domain by making use of only two unknowns per interface. Several examples are used to
illustrate the main properties of the method.
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1. INTRODUCTION

This paper reports a first step towards the simulation of fluid-structure interaction (FSI) prob-
lems up to a failure using multiscale domain decomposition methods (e.g., FETI [5], BDD [13] or
LaTIN [11]). The latter approach is already used for the simulation of damage in laminates under
prescribed external loads [10]. In order to deal with fluid-structure interaction problems, we seek
an extension of this method to fluid mechanics and FSI problems. Considering this particular con-
text, and in this first development, we consider a pure fluid problem and undertake its resolution
using a mixed, scalable domain decomposition approach. We use a fixed discretization within the
framework of the Finite Element Method (FEM). The question of how FSI can be handled within
this framework is the subject of a separate study [22].
The numerical resolution of fluid flow problems using the finite element method has been ex-

tensively investigated (see reference books such as [4, 23, and references therein].) For this study,
in order to avoid re-meshing, we use a Eulerian description of the problem. Domain decomposition
methods for fluid flows have been developed by many authors [1, 14, 16, 17]. In the framework of the
FETI approach [5], Toselli [19] describes a method for scalar advection-diffusion equations. In that
paper, single-level and dual-level FETI methods are applied to linear convection-dominated prob-
lems. The preconditioned nonsymmetrical condensed problem is solved by a GMRes algorithm. Li,
in [12], adapts FETI algorithms to incompressible Stokes equations and proposed as primal-, dual-
and dual-primal algorithms. There are further extensions to the linearised Navier–Stokes incom-
pressible equations and nonlinear stationary incompressible flow problems using a Picard (fixed-
point) iteration to deal with the convective nonlinear terms. In the present study, the non-linearity
arising from the convective term of the Navier–Stokes equations is treated at the subdomain level,
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instead of being linearised at the global level. FETI type methods are based on the elimination
of the subdomain’s degrees of freedom to obtain an interface problem usually solved by a conju-
gate gradient method. This type of method has been applied to incompressible flows by Vereecke
et al. [21] and Glowinski et al. [6]. A mathematical study of non-overlapping domain decomposition
method for the steady Navier–Stokes equations is available in [2].
Multigrid (MG) methods, (see, e.g., [20]) have, among many other uses, been applied to flow

problems. Two parallelized multigrid methods for viscous compressible flow were proposed in [3]; one
results from the direct parallelization of multigrid operations, and the other is based on a Schwarz
domain decomposition of the continuous problem and uses the multigrid algorithm as a solver for
local systems. The hybrid DDM/MG method appears to be less efficient than direct parallelization.
The Variational MultiScale (VMS) method was initially proposed by Hughes et al. in [9] and

applied to incompressible flows in [7]. The introduction of a supplementary micro-scale unknown
enables a modeling of the so-called unsolvable small scales in the dynamic of the problem. Their
effect is condensed on the macro-scale that corresponds to the finite element discretization, improv-
ing the quality of the solution. This method is dedicated to taking into account small-scale (i.e.,
smaller than the mesh size) phenomena such as turbulence.
The reference incompressible flow problem, presented in Sec. 2, is solved by the finite element

method on a Eulerian grid, with SUPG and PSPG stabilization. The computational domain is
divided into subdomains and interfaces; the key ingredients of this mixed domain decomposition
strategy are presented in Sec. 3. The decomposed problem is solved iteratively in Sec. 4. Then,
the introduction, at a negligible extra cost, of a scale separation and a macroproblem enables
us to accelerate the iterative resolution. In Sec. 5, two options for the implementation of the
macroproblem are proposed, with different efficiencies. Section 6 presents numerical illustrations.

2. PROBLEM STATEMENT

Let us consider an unsteady homogenous incompressible flow of a viscous fluid occupying a domain
Ω bounded by ∂Ω. The flow is subjected to a Dirichlet boundary condition vd over ∂vΩ, to external
surface forces f over ∂fΩ = ∂Ω\∂vΩ, and to body forces b (e.g., gravity). The problem is formulated
using velocity and pressure variables v and p, and is governed by mass and momentum conservation
equations with a Newtonian material law.

2.1. The problem to be solved

The mass and momentum conservation equations along with the material law and the boundary
and initial conditions form the complete set of the Navier–Stokes equations:

• The conservation of mass implies that the mass of a volume which follows the flow remains
constant. The incompressibility hypothesis allows to write:

∇ · v = 0 in Ω.

• The conservation of momentum states the equilibrium between the acceleration and the applied
and internal forces:

ρ
∂v

∂t
+ (ρv · ∇)v = ∇ · σ + ρb in Ω, (1)

where σ is the Cauchy stress tensor and ρ is the density.

• Material law: for a Newtonian fluid under incompressible flow, the Cauchy stress is related to
the velocity and pressure by

σ = −pI + σ
D
= −pI + 2µ∇Sv, (2)
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where µ is the dynamic viscosity and σ
D
is the deviatoric stress tensor. ∇S is the symmetric

part of the gradient operator.

• Dirichlet boundary condition: over part of the domain’s boundary, the flow is subjected to
a prescribed velocity:

v = vd over ∂vΩ.

Note that if ∂vΩ = ∂Ω, then vd must be compatible with the incompressibility condition.

• Neumann boundary condition: over the complementary part of the boundary, the flow is sub-
jected to a prescribed traction:

−pn+ 2µ∇Sv · n = f over ∂fΩ. (3)

• Initial condition: an unsteady flow develops from a given initial configuration:

v(t = 0) = vo.

Note that vo must be divergence-free and that no initial condition for the pressure is needed. As
the flow is assumed incompressible, the density is constant and Eqs. (1), (2) and (3) can be divided
by ρ. In order to keep notations light, from now on, p will be the kinematic pressure that is the
dynamic one divided by density, ν is the kinematic viscosity and f will designate the external
prescribed forces divided by density:

∂v

∂t
+ (v · ∇)v = ∇ · σ/ρ+ b,

σ/ρ = −pI + 2ν∇Sv,

− pn+ 2ν∇Sv · n = f.

2.2. Weak form of the Navier–Stokes equations

Admissibility spaces. The trial solutions and weighting functions (v,w) and (p, q) are sought in
the following spaces:

v ∈ Vd = (H1(Ω), v = vd over ∂vΩ)× [0, T ],

w ∈ V0 = (H1(Ω), v = 0 over ∂vΩ)× [0, T ],

p, q ∈ Q = L2(Ω)× [0, T ].

In the case of a Dirichlet condition over the whole boundary ∂Ω, p is defined to within an arbitrary
constant which is removed by imposing an additional condition, such as having zero average or
being zero at a given point. The corresponding trial solution space is then Q0 = (L2(Ω)/R)× [0, T ].
After integration by parts, on a fixed grid (Eulerian form), the weak form of the Navier–Stokes

problem becomes:

Find (v, p) ∈ Vd ×Q such that ∀(w, q) ∈ V0 ×Q :
(
w, v∇v

)
Ω
+

(
∇w, 2ν∇Sv

)
Ω
− (p,∇ · w)

Ω
− (q,∇ · v)

Ω
= (b, w)

Ω
+

(
f,w

)
∂fΩ

, (4)

where (�,♦)Ω denotes
∫
Ω
� · ♦ dΩ and (�,♦)∂fΩ is

∫
∂fΩ

� · ♦ dS. Note that Eq. (4) has been

obtained through what is called the velocity-stress divergence form of the momentum equation and
thus f are boundary tractions. Let us rewrite the equation in a more compact form:

AΩ(v,w, p, q) = (b, w)
Ω
+

(
f,w

)
∂fΩ

. (5)
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2.3. Finite element discretization

Admissibility spaces. The Galerkin formulation of the Navier–Stokes problem leads to a mixed
finite element system of equations. Let V h

d , V
h
0 and Qh denote finite-dimension subspaces of Vd,

V0 and Q.

Stabilization. The Galerkin finite element method applied to the momentum equation leads to
a central approximation of the convective term (v∇v) and becomes unstable when convection
dominates over diffusion. Using standard SUPG stabilization (See, e.g., [4]), we modify the weak
form Eq. (5) by adding a weighted residual (6) of the momentum equation:

R(v, p) =
∂v

∂t
+ v∇v − 2ν∇ · ∇Sv +∇p− b. (6)

Find (v, p) ∈ V
h
d ×Q

h such that ∀(w, q) ∈ V
h
0 ×Q

h :

A
h
Ω (v,w, p, q)− (b, w)

Ω
−

(
f,w

)
∂Ω

+
∑

elements

(τsv∇w − τp∇q , R(v, p))e = 0, (7)

where τs is the SUPG stabilization parameter which, as proposed in [4], we set equal to

τs =

(
1

θ∆t
+
2||v||

h
+
4ν

h2

)
−1

,

where h is the local element size and θ = 1/2 corresponds to time integration by trapezoidal rule.

Inf-sup condition. The shape functions for the interpolation of velocities and pressures must be
chosen carefully because inappropriate choices would lead to an unstable solution. We use linear
shape functions for velocities and pressures, leading to an element which is not inf-sup stable [4].
We add a PSPG stabilization term in Eq. (7), as proposed in [18]. Parameter τp is set equal to

τp =
h2

12ν
. The use of quadratic shape functions for velocities and linear interpolation for pressures,

leading to a Taylor-Hood element which is inf-sup stable, would be the other choice. Though, in
that case, no optimal definition of parameter τs exists [4].

3. DOMAIN DECOMPOSITION

3.1. Partitioning of the domain

In a mixed framework, the fluid domain is described as an assembly of subdomains and interfaces.
Each of these components has its own variables and equations (equilibrium and behavior). Figure 1

Fig. 1. Partitioning of the domain.
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illustrates this decomposition. For the flow problem being considered, we choose to use the following
variables: the velocity and pressure fields in the subdomains, and the velocity and force distributions
at the interfaces.

3.2. Reformulation of the problem

Let the subscript �E denote the restriction of any quantity � to a subdomain ΩE, E∈E . Two
subdomains ΩE and ΩE′ are connected together by an interface ΓEE′ . The boundary ∂ΩE connects
ΩE to the neighboring interfaces through the velocity and force distributions WE and FE .
The equations of the subdomains are the Navier–Stokes equations. Concerning the admissibility

of the interface quantities,WE should be the projection of vE onto ∂ΩE and FE should be statically
admissible, i.e., −pEn+ 2ν(n · ∇S)vE = FE .
Since we are only dealing with perfect internal interfaces, we should have continuity of the

velocities and equilibrium of the forces over ΓEE′ , i.e. WE = WE′ and FE + FE′ = 0. The
interface concept can be extended to the external boundaries:

• Dirichlet boundary conditions can be expressed as WE = vd;

• Neumann boundary conditions result in FE = f .

Then, the problem becomes:

Find (vE , pE ,WE, FE)E∈ E such that:

1. for all the subdomains

(a) (vE , pE) are solutions of ((7)) over ΩE

(b) WE = vE |∂ΩE

(c) −pEn+ 2ν(n · ∇S)vE = FE

2. for all the interfaces

(a) WE =WE′

(b) FE + FE′ = 0.

4. SINGLE-SCALE ITERATIVE STRATEGY

The reformulated problem 3.2 is solved using a two-stage iterative strategy; at Iteration n+1, one
has to:

1. find (vE, pE ,WE , FE)n+1 which verify the set of equations 1 along the search direction Z
−;

2. find (ŴE , F̂E)n+1/2 which verify the set of equations 2 along the search direction Z
+.

4.1. Convergence criterion

The iterative process can be viewed as the search for solutions within two spaces alternatively: the
linear space of the interface quantities defined by the interface relations, and the nonlinear space of
the subdomain variables defined by the Navier–Stokes equations and the projection relations onto
the boundaries. Starting from a solution in one space, we seek a subsequent solution in the other
space by following the search direction Z+ or Z− (see Fig. 2). The solution of the problem is at the
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Fig. 2. Schematic representation of the iterative strategy.

intersection of the spaces, where it verifies all the equations. The convergence criterion is defined
as the distance between the solutions sn+1/2 and sn+1:

η2CR =

∑
E∈E

||WE − ŴE ||
2
W,∂ΩE

+ ||FE − F̂E||
2
F,∂ΩE∑

E∈E
||WE + ŴE ||

2
W,∂ΩE

+ ||FE + F̂E||
2
F,∂ΩE

,

||�||2W,∂ΩE
=

∫

∂ΩE

� · z�,

||�||2F,∂ΩE
=

∫

∂ΩE

� · z−1�.

4.2. The subdomain stage at Iteration n+ 1

At this stage, we seek the velocitiesW n+1
E and the forces Fn+1

E at the interfaces along with the veloc-

ity field vn+1E and the pressure field pn+1E within the subdomains, knowing the fields Ŵ
n+1/2

E , F̂
n+1/2

E

and the descent search direction Z−. A subdomain’s trial solutions and test functions are sought
in the following spaces:

vE, wE ∈ VE = H1(ΩE),

pE, qE ∈ QE = L2(ΩE),

WE ∈ VΓE
=

(
H1(∂ΩE),WE = vE|∂ΩE

)
,

W ∗

E , FE , F
∗

E ∈ V
∗

ΓE
= H1(∂ΩE).

The fields which are known at this stage are designated with a hat (�̂), and the superscript n+1

is omitted for the unknowns. Find (vE , pE ,WE , FE) such that:

• (FE − F̂E) + z(WE − ŴE) = 0 over ∂ΩE

• vE, pE are Navier–Stokes solutions within ΩE.

The search direction operator z establishes a Robin condition for the whole boundary ∂ΩE. Param-
eter z can be interpreted as the influence on ΩE of its complementary part Ω \ΩE . The discussion
on the search direction will continue in Subsec. 5.4.
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In the weak form, the previous two equations together lead to:

Find (vE , pE ,WE)E∈E such that ∀w,W
∗ = w|∂ΩE

, q:

AΩE
(v,w, p, q) +

(
zWE,W

∗
)
∂ΩE

= (b, w)ΩE
+

(
F̂E + zŴE ,W

∗

)
∂ΩE

. (8)

Problem (8) is nonlinear and is solved by the Newton-Raphson method with SUPG and PSPG
stabilization.

4.3. The interface stage at Iteration n+ 1/2

The interfaces connect subdomains to one another or to the boundaries through mixed force and
velocity distributions. Each internal interface has two sides whose quantities are denoted � and
�′. The external interfaces (at the boundary of the domain) have only one side on which only �

exists. At the interface stage, we designate the unknowns with a hat (�̂).

4.3.1. Search directions

The search directions are parameters of the method which connect the solutions within the subdo-
mains and at the interfaces. Here, the search direction Z+ at the interface stage writes:

F̂ − F − z(Ŵ −W ) = 0.

The operator z is a parameter of the method. It acts on the interface fields, but does not couple
the normal and tangential components together. Thus, for a given interface with the normal n, it
can be written as

z = znn⊗ n+ zt(I − n⊗ n).

When this type of domain decomposition is applied to subdomains with linear elastic material law,
optimum expressions of the search directions can be obtained. In the present case, two parameters
zn and zt express different impedances in the normal and tangent directions.

4.3.2. Calculation of the interface fields

Perfect interfaces. Perfect interfaces have two sides (each with a search direction) and two
behavior laws. Since the search directions are local operators in space and the equations are verified
in a weak sense, one gets four point-wise relations leading to the following system:

AQ̂−

[
F − zW

F ′ − zW ′

]
= 0,

with Q̂ = [F̂ , zŴ ]T and A =

[
1 −1

−1 −1

]
, whose solution is

Ŵ = Ŵ
′

=
1

2
(W +W ′) +

1

2
z−1(F + F ′),

F̂ = −F̂
′

=
1

2
(F − F ′)−

1

2
z(W −W ′).
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Boundary conditions. Dirichlet and Neumann interfaces have only one side and two unknowns.
Similarly, one gets:

Ŵ =W d,

F̂ = F + z(W d −W ),

for a prescribed velocity Interface and

F̂ = F d,

Ŵ =W + z−1(F d − F ),

for a prescribed traction Interface.

Example: Poiseuille flow. Let us consider an established flow between two plates along a length
L = n× l, where n is the number of subdomains used in the simulation and l = 0.2 m. H = 1 m is

the distance between the plates. The prescribed velocity is parabolic, with vd = U
4y(H − y)

H2
ex.

Fig. 3. Decomposition of the Poiseuille flow problem.

For this very simple problem, where the non-linear convective term plays vanishes in the mo-
mentum equation, the obtained results are not satisfying. The domain decomposition method we
proposed, without scale separation, leads to a convergence rate which depends on the number of
subdomains, as shown in Fig. 4. It can be easily argued that for more complex problems, the
performances would probably be worse.

Fig. 4. The error indicator as a function of the number of iterations for the domain decomposition method
without scale separation.
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5. THE MACROPROBLEM BASED ON GLOBAL VOLUME CONSERVATION

Domain decomposition methods need a global problem to maintain the same convergence rate with
increasing number of subdomains. In some methods, the global problem is the interface problem
based on the Lagrange multipliers. In the LaTIn family of methods, a macroproblem is defined,
based on equilibrium of forces and moments and continuity of displacements at a macroscopic
scale. The macroscopic quantities are defined by chosing a basis on each interface (for example,
constant and linear components) and can be adapted to the problem at hand (a basis containing
discontinuous function is used for crack propagation [8]). Here, we propose an original macroproblem
for incompressible flows. On the basis of global volume conservation, we introduced a macroproblem
in order to enable rapid propagation of the information to the whole set of subdomains. Two ways
of building this problem, both based on the fact that for an incompressible flow ∇ · v = 0 in V , led

to different efficiencies. At convergence, ŴE =WE = vE|∂ΩE
, therefore:

∫

∂ΩE

Ŵ · n dS = 0 ∀E ∈ E , (9)

n being the outward unit normal to Subdomain ΩE. n is defined locally, for each element of ∂ΩE .
Equation (9) involves only velocity averages, i.e., macroparts (M ) as defined below:

�M = �Mn0 =
1

mes(Γ)

∫

Γ

� · n0 dS n0,

� = �Mn0 +�m,

n0 is a unit normal to Interface Γ. Two normals to Interface Γ have already be defined: n pointing
outwards ΩE and n

′ pointing outwards ΩE′ . Choosing n0 corresponds to choosing a preferred orien-
tation of the normal, it can be n or n′ indifferently, but one has to keep in mind that n0 is a locally
defined unit normal vector, that is defined for each element of Interface Γ. The complementary

micropart Ŵ
m
= Ŵ − Ŵ

M
is not involved in (9). We enforce this macroequation at each iteration.

The first macroproblem is a projection of Ŵ onto the space defined by (9). The second macroprob-
lem involves both the macrovelocities and macroforces while relaxing the search directions. The
proposed scale separation enables us to have a macroproblem with only one unknown per field,
making it very small.

5.1. Uncoupling of the micro and macro parts

The microparts and macroparts of the interface fields belong to two orthogonal spaces:
∫

Γ

Ŵ · F̂ dS = mes(Γ)ŴM F̂M +

∫

Γ

Ŵ
m
· F̂

m
d S,

thus: (Ŵ , F̂ )Γ = (Ŵ
M
, F̂

M
)Γ + (Ŵ

m
, F̂

m
)Γ.

5.2. Least-squares solution

Using the interface fields calculated as described in Subsubsec. 4.3.2, we build new macroveloci-
ties BM :

Find BM which makes stationary the Lagrangian:

∑

i

1

2

∫

Γi

(BM − ŴM )2 dS +
∑

E∈E

µE

∫

∂ΩE

BMn0 · n dS.
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In order to do that, we set fixed velocities along ∂vΩ and modify the velocities of the internal
interfaces and of the interfaces with prescribed tractions. This problem does not modify the interface
force fields F̂ and does not improve the domain decomposition method, as shown in Fig. 5 for the
Poiseuille flow problem. Only, the slight oscillations on the curves in Fig. 4 have disappeared.

Fig. 5. Error indicator as a function of the number of iterations for the first macroproblem.

5.3. Relaxation of the search direction

In a weak sense, the search direction equation for the macroparts can be written as: find F̂M , ŴM

such that ∀ ŴM∗:

∑

E∈E

∫

∂ΩE

(
(F̂M − FM )− zn(Ŵ

M −WM )
)
ŴM∗ = 0, (10)

with the constraint from the macroproblem
∫

∂ΩE

ŴM · n dS = 0 ∀E ∈ E .

This constraint is enforced via a Lagrange multiplier µE for each subdomain:

find F̂M , ŴM , µE such that:

∑

E∈E

∫

∂ΩE

(
(F̂M − FM )− zn(Ŵ

M −WM)
)
n0 · Ŵ

M∗n0 + µEŴ
M∗n0 · n = 0 ∀ ŴM∗,

∑

E∈E

µ∗E

∫

∂ΩE

ŴMn0 · n = 0 ∀ µ∗E.

The previous equations are written in vector form. Indeed, the scale separation is dependent on
the choice of a preferred normal orientation n0 for each interface. Volume conservation is expressed
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by looking outwards from the subdomains, i.e., by using n. Considering a particular interface and
assuming, for example, that n = n0 = −n

′ for each element of ∂ΩE leads to the following system:

(F̂M − FM )− zn(Ŵ
M −WM) + µEn · n0 = 0,

(F̂ ′
M
− F ′M )− zn(Ŵ ′

M
−W ′M ) + µE′n′ · n0 = 0,

with the interface behavior, one gets

(F̂M − FM )− zn(Ŵ
M −WM) + µE = 0,

(−F̂M − F ′M )− zn(Ŵ
M −W ′M)− µE′ = 0.

Boundary conditions. In the particular case of interfaces involving boundary conditions, one
gets

(F̂M − FM )− zn(Ŵ
M −WM) + µE = 0.

The prescribed conditions (ŴM = ŴM
d or F̂

M = F̂M
d ) define the admissibility spaces of the

macroquantities. Thus, there is only one equation in the macroproblem for each boundary condition
interface.

Poiseuille flow. The second formulation of the macroproblem enables rapid propagation of the
pressure and velocity information. During the first iteration, a pressure gradient is already es-
tablished in the whole domain and the magnitude of the velocity is much closer to the value at
convergence. The delayed exchanges of forces and velocities encountered with the version of the
macroproblem described (Subsec. 5.2) previously no longer occur, which makes the method very
efficient. Indeed, the convergence rate does not depend on the number of subdomains in the prob-
lem. Figure 6 shows clearly that regardless of the number of subdomains the same level of error is
reached for a given number of iterations.

Fig. 6. The error indicator as a function of the number of iterations for the second macroproblem.
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5.4. Influence of the search directions

After studying the influence of Parameter zn on the convergence rate, we observed the existence of
one optimum parameter (i.e., one which achieves the smallest error at a given iteration) for each
problem.
The search direction has the dimension ρν/L. The Poiseuille flow problem was solved for various

values of the viscosity ν, the prescribed velocity U and the characteristic length L = H (which is
the length between the two plates). Figure 7 shows that the convergence of the iterative process was
faster in the range [5ρν/L, 50ρν/L]. Therefore, we chose this range for subsequent search directions.
This optimum range does not depend on the prescribed velocity.

Fig. 7. The error ηCR as a function of the dimensionless search direction in various cases.

The method should now be tested on more complex examples, involving non-linearity and time
dependence.

6. EFFICIENCY OF THE METHOD

6.1. Benchmark 1: 2D flow around a fixed cylinder

Problem statement. The benchmark proposed by Schäfer and Turek [15] enables us to compare
our results with reference results in order to assess the quality of the numerical resolution of the
fluid flow problem. This 2D test case concerns the simulation of the flow past a circular cylinder
of diameter D = 0.1 inside a channel of width H = 0.41 and length L = 2.2. The inflow boundary
condition is a prescribed parabolic velocity and the outflow corresponds to a zero prescribed traction
condition. The geometry of the problem is shown in Fig. 8. For the stationary case, the inflow
condition is parabolic (11).

vd = Umax ×
4y(H − y)

H2
Umax = 0.3. (11)

The viscosity is ν = 10−3 m2/s and the density is ρ = 1 kg/m3. The Reynolds number is defined
by Re = U∞D/ν, U∞ = 2Umax/3. The drag and lift coefficients are defined from the resultants of
the forces applied to the cylinder:

cD =
2FD

ρDU2
∞

, cL =
2FL

ρDU2
∞

.
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Fig. 8. Geometry of the benchmark.

Results for stationary flow. When the Reynolds number is set to Re = 20, the flow is known
to be stationary, so we drop the time derivative term in the momentum equation, and change the
stabilization parameter τs consequently. Figures 9 and 10 show the fields calculated by the domain

Fig. 9. Calculated fields: pressure (top) and velocity (bottom) at Iteration 1. The interfaces are wrapped by
the velocity field and pictured in grey. Twenty-two and 88 subdomains were used.

Fig. 10. Calculated fields: pressure (top) and velocity (bottom) at Iteration 15. The interfaces are wrapped
by the velocity field and pictured in grey. Twenty-two and 88 subdomains were used.
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decomposition method using 22 (top) and 88 (bottom) subdomains and the second macroproblem
previously described (Subsec. 5.3). Pressure and velocity fields are depicted with associated color
scales, as well as streamlines, interfaces of the domain decomposition and velocity profile on the
interfaces. It can be seen that as soon as Iteration 1 take place the flow develops in the whole
domain. Results at Iteration 15 are shown for visual evaluation of what ηCR ≤ 10−3 achieves. The
associated convergence results are shown in Fig. 11. One can see that the macroproblem enables
faster convergence. With 22 subdomains, it can be seen that the convergence is anyhow faster.
However, for the first 15 iterations the slope is the same. At iteration 15, the error indicator
is less than 10−3. For the remaining part of the iterations, the 88-subdomain decomposition is
disadvantaged, due to the presence of interfaces in the recirculation zone. This local phenomenom
is not captured by the macroproblem, yielding slower convergence.

Fig. 11. The error as a function of the number of iterations for the stationary flow around a cylinder.

Drag and lift coefficients. Here, a lift coefficient of 0.015 and 0.013 and a drag coefficient of
5.64 and 5.65 are computed with 22 and 88 subdomains, respectively. This is in agreement with
the results reported in [15] which range from 0.014 to 0.011 and from 5.57 to 5.59, respectively.
Nevertheless, considering that less than 35,000 unknowns were employed, these results cannot be
considered so bad. The recirculation length is of 0.85 and pressure drop 0.12 which is again in good
accordance with reference results ([0.842, 0.852] and [0.1172, 0.1176], respectively).

6.2. Benchmark 2: flow across a square cavity

A question that arises is how the method behaves when using interfaces that are not either parallel or
orthogonal to the main direction of the flow. Let us consider a square decomposed into 10×10, 7×7
or 5×5 square subdomains, each with 10 elements in the x and y directions. The boundary conditions
are a prescribed parabolic horizontal velocity over the bottom left interface, and free outflow over the
upper right interface, as represented in Fig. 12. Maximum velocity is 0.3, viscosity is 10−2, leading
to Reynolds number Re = 30. This test case illustrates the method when domain decomposition
interfaces are of arbitrary orientation with respect to the flow field. Figure 13 shows the evolution of
the error indicator as a function of the number of iterations for the three decompositions. One can
judge that the method performs identically for each decomposition. Figure 14 shows the computed
velocity (with streamlines) and pressure fields at Iterations 1, 3, 5, 7 and 9 with 100 subdomains.
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Fig. 12. Problem setup for the square cavity.

Fig. 13. The error indicator as a function of the number of iterations for the square problem.

Fig. 14. Calculated fields: velocity (left) and pressure (right) at Iterations 1 (top) and 20 (bottom) for
10× 10 subdomains. The interfaces are wrapped by the velocity field and pictured in grey.
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6.3. Benchmark 3: Non-stationary flow around a cylinder

When set to 100, the Reynolds number reflects a transient flow. Periodic vortex shedding occurs in
the cylinder’s wake. The problem is no longer stationary, and we use a Crank-Nicholson time inte-
gration scheme. At each time step, the Navier–Stokes problem is solved by the proposed multiscale
method. The SUPG stabilisation parameter has to be adapted to:

τSUPG =

(
2

∆t
+
2||v||

h
+
4ν

h2

)
−1

.

The time step is set to ∆t = 20 ms and the initial condition is a fluid at rest (v = 0, p = 0). The
flow is progressively raised from Umax = 0 to Umax = 1.5 over 50 time steps. The computation then
goes on for seven seconds.
We can see from Fig. 15 that the expected periodic vortex shedding occurs behind the cylinder.

Figure 16 shows the drag and lift coefficients on the cylinder. The vortex shedding is pseudo-
periodic, after a transition period of five seconds. A Strouhal number can be extracted from Fig. 16.
It is defined from the frequency of the oscillations of the lift coefficient by

St =
Df

2Umax/3
.

With a Fourier transformation of the lift coefficient, the Strouhal number is evaluated at St = 0.293,
within 1% from the value reported in [15].

Fig. 15. Pressure and velocity magnitude at time t = 8 s, using 88 subdomains. Streamlines are represented
over the velocity field.

Fig. 16. Calculated lift and drag coefficients for time between 0 and 8 s, using 88 subdomains.
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7. CONCLUSION

This paper presents a domain decomposition method dedicated to the incompressible flow of vis-
cous fluids governed by the Navier–Stokes equations. The mixed Framework used at the interface
level allows to formulate the interface connection problem both for the continuity and equilibrium
conditions. The non-linear problems on the subdomain level are solved by a finite element method
with appropriate stabilizations. The integral form of the divergence-free velocity field condition on
each sub-domain allows to build a very small global interface problem whose aim is to improve
the scalability of the method. The later involves two unknowns per interface only, which leads to
nearly no additional numerical cost. First, we attempted to solve this problem using a least-squares
algorithm, but did not achieve the expected level of performance because this approach does not
account for the pressure macroquantities. Then, by enforcing the constraints at the macroscopic
level using a Lagrange multiplier in each search direction equation, we ended up with an efficient
macroproblem resulting in rapid propagation of the macroquantities throughout the computational
domain. The domain decomposition method using this macroproblem has a good numerical scala-
bility even though when interfaces are used in areas prone to strong recirculation the convergence
rate depends on the number of subdomains used in the calculations. Therefore, we are working on
the possibility to slightly adapt the macrobasis in those regions.
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