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The paper deals with an application of the theory of optimum experimental design to the problem of
selecting the data set for developing neural models. Another objective is to show how to design a robust
fault detection scheme with neural networks and how to increase its fault sensitivity by decreasing model
uncertainty. It is also shown that the optimum design is independent of the parameters that enter linearly
into the neural network. The final part of this paper shows a comprehensive simulation study regarding
modelling and fault detection with the proposed approach. In particular, the DAMADICS benchmark
problem is utilized to verify the performance and reliability of the proposed technique.

1. INTRODUCTION

In spite of its incontestable appeal, the strategy of taking measurements for parameter estimation of
neural networks [11] according to optimum experimental design (OED) theory [1, 16, 15] has been
studied in extremely few works so far 3, 9, 10, 19]. Fukumizu [9, 10] developed the so-called statistical
active learning technique based on the general theory of OED. He also developed a technique that
allows obtaining the non-singular Fisher Information Matrix (FIM) [8]. These conditions are very
important because if at least one of them holds then it is impossible to use the FIM with the
classical algorithms of OED, e.g. the Wynn-Fedorov algorithm [1, 16]. In [3], the authors employed
a D-optimum experimental design [1, 16] obtained for a quadratic regression model for collecting
data for a neural network. The main drawback of this approach is the fact that it can be used for
very restricted design spaces. An obvious remedy for such a problem is to develop an algorithm that
utilizes an exact structure of the neural network rather than a polynomial of the second degree. In
[19], the author proposed a sequential experimental design algorithm that allows obtaining a one-
step-ahead D-optimum input. This algorithm can be perceived as a hybrid one since it can be used
for both training and data development. Moreover, the author proposed a fault detection scheme
for neural networks that is also used in this paper.

A fault detection process can be perceived as a two-stage procedure, i.e. residuals generation and
symptom evaluation based on these residuals [2, 12]. Under the assumption of a perfect mathematical
description of the systems being considered, a perfect residual generation should provide a residual
that is zero during the normal operation of the system and considerably different than zero otherwise.
This means that the residual should ideally carry information regarding a fault only. Under such
assumptions, faults can be easily detected. Unfortunately, this is impossible to attain in practice
since residuals are normally uncertain, corrupted by noise, disturbances and modelling uncertainty.
That is why, in order to avoid false alarms, it is necessary to assign a threshold to the residual that is
significantly larger than zero. The most common approach is to use a fixed threshold [2, 12, 17]. The
main difficulty with this kind of thresholds is that they may cause many serious problems regarding
false alarms as well as undetected faults. In other words, it is very difficult to fix such a threshold
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and there is no optimal solution that can be applied to settle such a task. One way out of this
difficult problem is to use robust residual generators that aim at decoupling model uncertainty from
the residual [2, 12, 17]. When such techniques are applied it is much easier to select an appropriate
fixed threshold providing reliable fault detection. Undoubtedly, the most common choice is to use
robust observers, such as the Unknown Input Observer (UIO) [2, 7, 17, 18]. In such observers,
the model-reality mismatch is represented by the so-called unknown input and hence the state
estimation error and, consequently, residuals are obtained taking into account model uncertainty.
This means that the effect of an unknown input on the residual is minimized. The main difficulty
is that there are situations for which the direction of faults is very similar to that of an unknown
input. This may lead to a situation in which the effect of some faults is minimized and hence they
may be impossible to detect. Other approaches that make use of the idea of an unknown input also
inherit this drawback, e.g. robust parity relation [2].

If the above-mentioned approach fails, then describing model uncertainty in a different way seems
to be a good remedy. One of the possible approaches is to use statistical techniques [1, 16] (for an
example regarding different approaches the reader is referred to [6]) to obtain parameter uncertainty
of the model and, consequently, model output uncertainty. Such parameter uncertainty is defined as
the parameter confidence region [1, 16] containing a set of admissible parameters that are consistent
with the measured data. Thus it is evident that parameter uncertainty depends on measurement
uncertainty, i.e. noise, disturbances, etc.

The knowledge about parameter uncertainty makes it possible to design the so-called adaptive
threshold [7]. The adaptive threshold, contrary to the fixed one (cf. Fig. 1), bounds the residual at
a level that is dependent of model uncertainty, and hence it provides more reliable fault detection.
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Fig. 1. Principle of an adaptive threshold

The paper is organized as follows: Sec. 2 proposes to use a neural-network-based technique that
makes it possible to design an adaptive threshold. It is also shown that the size of residual bounds
generated with the proposed technique is strongly related with measurement schedule that is used
while developing the neural model, i.e. it is shown that the application of OED may decrease these
bounds. Section 3 presents important properties regarding OED applied to neural networks. These
properties are very useful while using OED in practice. Finally, the last part is devoted to an
illustrative example.

2. MOTIVATION AND PRELIMINARIES

Let us consider a feed-forward neural network given by the following equation:

TREREF (P(")Uk)T p®, (1)
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where ym € R stands for the model output, g(-) = [91(-),-- ., 9n,(-),1]T, where gi(-) = g(-) is a
nonlinear differentiable activation function,

p™M(1)T
P — : (2)
p™ (np)T

and p) € R™*! are the matrix and the vector, respectively, representing the parameters (weights)
of the model, and nj, is the number of neurons in the hidden layer. Moreover, u; € R**1 y; =
7 0 WSt BE TERET 1]T, where Uik, ¢ = 1,...,n, are the system inputs. For the sake of notational
simplicity, let us define the following parameter vector:

T E
p=|(p9) 0P WT,.... b

where p € R", n, = nj(n, +2) + 1. Consequently, Eq. (1) can be written in a more compact form:

Ym,k = f(pa uk)a (3)

where f(-) is a nonlinear function representing the structure of a neural network.
Let us assume that the system output satisfies the following equality:

Yk = Ymk + €& = f(P, uk) + €, (4)

where € is i.i.d and N(0, 02). It can be shown [1, 16] that the bounds (100(1— «) confidence interval)
of the system output can be approximated as follows:

. 2 . 1/2
yp = f(p,u) — 202, & (1+17Pr) 7, (6)

)1/2 : (7)

where p stands for a least-square estimate of p, n; denotes the number of input-output measurements
used for parameter estimation, tg{Enp is the t-Student distribution quantile, 62 is the variance
estimate, ry, = 0f(p, ux)/0p, and P! is the Fisher information matrix defined as

o 2 =
ve = (D, w) + tﬁf_npa (1+r;Pry

nt
Pl Zrkrr{. (8)
k=1

As shown in [4], the above technique can be effectively applied to confidence interval prediction
of neural network models. In this paper, it is proposed to use (5) for the purpose of robust fault
detection. If the bounds (5) are given, then the adaptive threshold for the residual z; = y; — Ym, k
is given by

a/2 a/2

o 1/2 = 1/2
~tol2a (1 +5FPr) Y < 5 <a2, 6 (14 xFPr) . ©)

Consequently, the decision logic can be realized as follows:

If the residual zx = Yk — ym k satisfies (9), then there is no fault symptom, else (9) indicates that
a fault symptom occurs.

One of the main advantages of the proposed approach is the fact that it is possible to increase
fault sensitivity by decreasing parameter uncertainty of (1). This can be achieved with the appli-
cation of the theory of experimental design [1, 16]. Indeed, it is easy to see that the length of the
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confidence interval (5) is strongly related with the Fisher information matrix (8), which depends on
the experimental conditions &€ = [uy, ..., uy,]. Thus, optimal experimental conditions can be found
by choosing u;, % = 1,...,n4, so as to minimize some scalar function &(-) of (8). Such a function
can be defined in several different ways [1, 16]:

e D-optimality criterion:

&(P) =detP, . (10)
e E-optimality criterion (Amax(+) stands for the maximum eigenvalue of its argument):

P(P) = Amax (P), (11)
e A-optimality criterion:

&(P) = trace P, (12)

e G-optimality criterion:

(&) = max $(§,u), (13)
where
$(€,u) = ry Pry. (14)

A D-optimum design minimizes the volume of the confidence ellipsoid approximating the fea-
sible parameter set of (1). An E-optimum design minimizes the length of the largest axis of the
same ellipsoid. An A-optimum design suppresses the average variance of parameter estimates. A
G-optimum design minimizes the variance of the estimated response of (1). Bearing in mind the fact
that the primary purpose of this work is to develop a reliable technique for designing an adaptive
threshold, it is clear from (9) that the G-optimality criterion should be selected.

When some experiments are repeated, the number n, of distinct u;’s is smaller than the to-
tal number of observations n;. The design resulting from this approach is called the continuous
experimental design. The Fisher information matrix can then be written as

Ne
D P (15)
k=1

where pp = wg/nt, wi is the number of repetitions of measurements under the experimental con-
dition ug. The fundamental property of continuous experimental design is the fact that the D-
optimality and G-optimality criteria are equivalent (the Kiefer-Wolfowitz equivalence theorem [1,
16]). Another reason for using D-optimum design is that it is probably the most popular criterion.
Indeed, most of the algorithms that are presented in the literature are developed for D-optimum
design. Bearing in mind all of the above-mentioned circumstances, the subsequent part of this paper
is devoted to D-optimum experimental design. First, let us consider a neuron model with the logistic
activation function:

b1

s 1+ e—P2uk—p3’ (16)

Ym,k

It is obvious that continuous experimental design for the model (16) should have at least three
different support points (n, = 3 for (16)). For a three-point design, the determinant of the Fisher
information matrix (15) is

((€%2 — €®1)x3 + (%2 — €2z + (%! — €%3)x2)?
(ed HiRfemm-papamscny)s ’

4
det Pl = %muzmezzl 272,223 (17)
y



Designing neural-network-based fault detection systems... 283

where z; = pau; + p3. Knowing that the minimization of (10) is equivalent to the maximization of
(17), a numerical solution regarding D-optimum continuous experimental design can be written as

6_{111 ug U3}
B M2 H3

1.041 — ps3 —1.041 — p3 3 —P3
s o 0 A e 1
i P2 D2 p2 (18)
1 1 :

i
3

where z3 is an arbitrary constant satisfying z3 > ¢, ( &~ 12. In order to check if the design (18) is
really D-optimum, the Kiefer—Wolfowitz equivalence theorem [1, 16] can be employed. In the light
of this theorem the design (18) is D-optimum when

#(u) = ri Pry < ny, (19)

where the equality holds for measurements described by (18). It can be seen from Fig. 2 that the
design (18) satisfies (19). In order to justify the effectiveness of (18), let us assume that the nominal
parameter vector is p = [2,0.5,0.6]T. It is also assumed that n; = 9. This means that each of the
measurement, consistent with (18) should be repeated 3 times. For the purpose of a comparison, a
set of n; points was generated according to the uniform distribution U(—4,40). It should also be
pointed out that e was generated according to N(0, 0.12). Figure 3 presents feasible parameter sets
obtained with the strategies considered.
These sets are defined according to the following formulae [16]:

P {p RS i — F(p,u))? < a2xz";,m} , (20)
i=1

where Xg,n , is the Chi-square distribution quantile. This simple example exhibits serious advantages
that can be gained while applying OED theory to a more complex model (1).
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Fig. 2. Variance function for (18) and ¢ = 20
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Fig. 3. Feasible parameter set obtained for (18) (smaller) and for a set of randomly generated points

3. PROPERTIES AND ALGORITHMS
3.1. Independence of linear parameters

The dependence on parameters that enter nonlinearly (18) into the model is an undesirable char-
acteristic of nonlinear optimum experimental design. In this section, it is shown that experimental
design for a general structure (1) is independent of the parameters that enter linearly into (1). First,

let us obtain ry = %%:)Lk)
T
ae. ke aym,kT aym,k: o 6ym,k = (21)
*T p0 ap™(1) T Bp) (ny)
where
OYm. k (n)
op® 8 (Puy), (22)
aym,lc @ 1 (T (n)(; .
Bp(")(z’) =p;’g (ukp (z)) ug, 0 T (23)
and ¢'(t) = dg(t)/dt. Thus, rj can be written in the following form:
ri = Piryg, (24)
where
Pl dla'g (1nh+1a Pg )151.4—1, 2 7p£1,12 lnr—}-l) (25)
and
T
Bk = [g (p(n)uk) ’g/ (ugp(n)(l)) ur
5 o
o (e ) uf | (26)

Equation (26) can be written in a more condensed form by using the Kronecker product:

rig = [g (P(”)uk)T, (g' (P(")uk) ® uk)T}T, : (27)



Designing neural-network-based fault detection systems... 285

where

gt)=1g®),--.d @) (28)
The Fisher information matrix is now given by

ne

TS
Z T1,kT1k
k=1

Thus, the determinant of P~! is given by

nt
det (P_l) =det (Pl)2 det ( Zrl,krlT,k) =

nt
Pl = o mer= Py P;. (29)
k=1

k=1
n
= l‘hl (pgl))2(nr+1) det < irl,kr{k> ’ (30)
=1 k=1

From (30) it is clear that the process of maximizing the determinant of P! with respect to u is
independent of the linear parameters p'. This means that at least a rough estimate of P (™ is required
to solve the experimental design problem. Indeed, it is rather vain to expect that it is possible to
obtain a design that is to be appropriate for all the networks of a given structure. It is very easy
to imagine two neural networks of the same structure that may represent two completely different
systems. If some rough estimates are given, i.e. they can be obtained with any training method for
feed-forward neural networks [11], then specialized algorithms for D-optimum experimental design
can be applied, e.g. the celebrated Wynn—Fedorov algorithm [1, 16].

3.2. Singularity of the Fisher information matrix

The Fisher information matrix P~! of (1) may be singular for some parameter configurations, and
in such cases it is impossible to obtain its inverse P necessary to calculate (5) as well as to utilize
the specialized algorithms for obtaining the D-optimum experimental design [1, 16]. Fukumizu
[8] established conditions under which P! is singular. These conditions can be formulated as follows:

Theorem 1. [8] The Fisher information matrix P~ of (1) is singular iff at least one of the following
conditions holds true:

1. there exists j such that [Pj1,...,P;.]T =0,
2. there exists j such that pgl): 0,
3. there exist different ji and jo such that p™(j1) = £p™ (ja).

A direct consequence of the above theorem is that a network with singular P! can be reduced to
one with a positive definite P~! by removing redundant hidden neurons. Based on this property it
is possible to develop a procedure that can be used for removing the redundant neurons without
performing the retraining of a network [9].

If the conditions of Theorem 1 indicate that P~ is not singular, then the strategy of collecting
measurements according to the theory of D-optimum experimental design (the maximization of the
determinant of P~1) guarantees that the Fisher information matrix is Positive definite. This permits
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approximating an exact feasible parameter set (20) with an ellipsoid (cf. Fig. 3 to see the similarity
to an ellipsoid), and hence it permits using (9) as an adaptive threshold.

Unfortunately, the conditions of Theorem 1 have strictly theoretical meaning as in most practical
situations the FIM would be close to singular but not singular in an exact sense. This makes the
process of eliminating redundant hidden neurons far more difficult and there is no really efficient
algorithm that can be employed to settle this problem. Indeed, the approach presented in [10] is
merely sub-optimal. On the other hand, if such an algorithm does not give satisfactory results, i.e.
the FIM is still close to the singular matrix, then FIM should be regularized in the following way [1,
p. 110]:

P;l=Plid, (31)

for € > 0 small but large enough to permit the inversion of P_!. The main drawback of the above
approach is the fact that there is no clear rules for selecting e. In this paper, we propose to use
a completely different approach that is more appropriate for the models (1). As has already been
mentioned, from (30) it is clear that the process of maximizing the determinant of P~ with respect
to u is independent of the linear parameters p!. This means that p! can be set arbitrarily. This
implies that it can be employed as an elegant tool for controlling the value of the determinant (30).
Thus, before the iterative algorithm for finding D-optimum design is started (e.g. the Wynn-Fedorov
algorithm [1, 16] used in this work), it is necessary to select p’ so as to ensure that the matrix P~!
is far from singular. Contrary to the solution presented in [1, p. 110], setting p' is an easy task.

4. EXPERIMENTAL STUDY WITH THE DAMADICS BENCHMARK

DAMADICS (Development and Application of Methods for Actuator Diagnosis in Industrial Control
Systems) was a Research Training Network (RTN) funded by the European Commission within the
5-th Framework Programme. This multidisciplinary and complementary RTN DAMADICS was
focused on drawing together wide-ranging techniques and fault diagnosis within the framework of
a real application to on-line diagnosis of a 5-stage evaporisation plant of a sugar factory in Lublin,
Poland. The network focuses on the diagnosis of valve (cf. Fig. 4) plant actuators and looks towards
real implementation methods for new actuator systems. The sugar factory is a subcontractor (under

Fig. 4. Actuator and its scheme
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the Technical University of Warsaw) providing real process data and the evaluation of trials of fault
diagnosis methods.

The control valve is the mean used to prevent, allow and/or limit the flow of sugar juice through
the control system (a detailed description of this actuator can be found in [5]. As can be seen
in Fig. 4, the following process variables can be measured: C'V is the control signal, P1 is the
pressure at the inlet of the valve, P2 is the pressure at the outlet of the valve, T'1 is the juice
temperature at the inlet of the valve, X is the servomotor rod displacement, F' is the juice flow at
the outlet of the valve. In Fig. 4, additional three bypass valves (denoted by z1, z2, and z3) can be
seen. The state of these valves can be controlled manually by the operator. They are introduced
for manual process operation, actuator maintenance and safety purposes. The data gathered from
the real plant is available on the DAMADICS website [5]. Although a large amount of real data is
available, these data do not cover all faulty situations. Thus, an actuator simulator was developed
with MATLAB Simulink (available on [5]). The main reason for using the data from the simulator is
that the achieved results can be easily compared with the results achieved with different approaches,
e.g. [13, 14, 18].

The main objective of the subsequent part of this section is to develop a neural network that
can be used for fault detection of an industrial valve actuator. The above task can be divided into
the following steps: Step I: training of a network based on the nominal data set. Step 2: design
of the experiment based on the network obtained in Step 1. Step §: training of a network based
on the data obtained with the experimental design. Based on the experience with an industrial
valve actuator, it was observed that the following subset of measured variables is sufficient for fault
detection purposes: u = (CV, P1,1), y = F.

In Step 1 a number of experiments (the training of a neural network with the Levenberg—
Marquardt algorithm [16]) were performed in order to find a suitable number of hidden neurons
np (cf. (1)). As a result, a neural model consisting of np, = 12 hidden was obtained. The main
objective of Step 2 was to utilize the above model and the Wynn-Fedorov algorithm [16] in order
to obtain D-optimum experimental conditions. First, an initial experiment was generated in such
a way so as to equally divide the design space of u (see [5] for details ). Next, in order to prevent
the fact that the FIM is almost a singular matrix it was appropriately transformed with the use
of the linear parameters p;. Finally, the Wynn—Fedorov algorithm was applied. Figure 5 shows the
support points (n, = 156) and the variance function for the obtained D-optimum design. Moreover,
Fig. 6 presents the support points and their respective weights. Based on the obtained continuous

0.3 U|

Fig. 5. Variance function and the corresponding support points
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Fig. 6. Support points and their respective weights

design, a set consisting of n; = 500 points was obtained and used for data generation. It should be
strongly stressed that the data were collected in the steady-state of the valve because the utilized
model (1) was static. Finally, the new data set was used for training the network. The objective
of the subsequent part of this section is to use the obtained network for fault detection as well
as to compare its performance with that of a network obtained for a nominal data set. Table 1
shows the results of fault detection for a set of faults being specified for the benchmark. Figures 7
and 8 show exemplary residuals and their respective bounds (9) obtained for the faults fi; and
J13, respectively. It can be observed that the neural network obtained with the use of D-optimum
experimental design (Figs. 7a—8a) makes it possible to obtain more accurate bounds than those
obtained with a neural network trained with a nominal data set (Figs. 7b-8b). This implies that
the application of D-optimum design makes it possible to design a more reliable and sensitive fault
detection system. As can be observed in Table 1, almost all faults specified for the benchmark can

Table 1. Results of fault detection (D — detected, N — not detected, X — not specified for the benchmark,
S - small, M - medium, B - big)

Fault Description
fi Valve clogging
fa Valve plug or valve seat sedimentation
fr Medium evaporation or critical flow
fs Twisted servomotor’s piston rod
fio | Servomotor’s diaphragm perforation
f11 | Servomotor’s spring fault
fi2 | Electro-pneumatic transducer fault
fi3 | Rod displacement sensor fault
fis | Positioner feedback fault
fi6 | Positioner supply pressure drop
fiz | Unexpected pressure change across the valve
fis | Fully or partly opened bypass valves
fio | Flow rate sensor fault

DOXZXUOUOAXKO Z20MXUORE
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Fig. 7. Residuals for fi1

be detected. The main reason why the faults fg and fig (small and medium) cannot be detected is
that their effect is exactly at the same level as that of noise. However, it should be pointed out that
this was the case for other techniques [14, 18] tested with the DAMADICS benchmark.
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Fig. 8. Residuals for fi3

5. CONCLUDING REMARKS

The paper proposes a complete design procedure concerning the application of neural networks
to robust fault detection. In particular, a unified framework for optimum experimental design for
neural networks was presented. Special attention was focused on industrial applications that require
the generation of bounds describing possible system behaviour. In the light of this requirement, D-
optimality was selected as an uncertainty measure of a neural network. An important property of
the independence of the design of parameters that enter linearly into the neural network was shown.
This property was also employed to prevent the singularity of FIM. This is especially important
from the point of view of the Wynn-Fedorov algorithm because it evaluates the FIM in order to
obtain the D-optimum design.
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The main drawback of the presented approach is associated with an appropriate selection of
the initial experimental design, i.e. the starting point of the Wynn-Fedorov algorithm. This is
especially important when complex neural networks are employed, i.e. networks with a high number
of parameters. Unfortunately, there is no optimal solution to this problem and, hence, the trial-
and-error approach should be utilized. It should also be pointed out that the experiment designing
procedure is usually limited owing to “reality” constrains, e.g. in process industry, it may be not
allowed at all to manipulate a system in a continuous production mode. On the other hand, data
acquisition with optimum experimental design is much less restricted in practice than using pseudo-
random binary sequences (which is a common input signal in many system identification schemes).
Another important difficulty is related to the need for using the global optimisation routine in
the Wynn-Fedorov algorithm. This routine should be very effective and reliable so as to attain a
high-quality final solution.

The proposed fault detection scheme was tested on the DAMADICS benchmark problem. The
experimental results show that the approach makes it possible to obtain a suitably accurate math-
ematical description of the system with small modelling uncertainty. The developed model was
employed to design a fault detection scheme for the valve actuator. In order to perform a com-
prehensive fault detection study, the MATLAB SIMULINK simulator of the valve actuator was
employed. The obtained results show that almost all faults can be detected except for two small or
medium ones. The authors hope that the results presented in this paper will encourage engineers
to apply the proposed technique in industrial practice.
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