Characterization Method of the Damping in Harmonically Forced Two-State Piecewise Linear Elastic Structures
Abstract
An equivalent viscous damping ratio is introduced to characterize the energy dissipation caused by the plastic impact in the periodic responses of piecewise linear elastic systems.
Keywords:
equivalent viscous damping ratio, piecewise linear elastic structures, periodic responsesReferences
1. B. Alzubaidi, R.K. Németh, Modal analysis-based calculation of periodic nonlinear responses of harmonically forced piecewise linear elastic systems, Journal of Sound and Vibration, 549: 117576, 2023, https://doi.org/10.1016/j.jsv.2023.117576.
2. M. Froozanfar, S. Moradi, R. Kianoush, M.S. Speicher, L. Di Sarno, Review of self-centering rocking systems for earthquake-resistant building structures: State of the art, Journal of Building Engineering, 84: 108607, 2024, https://doi.org/10.1016/j.jobe.2024.108607.
3. L.S. Jacobsen, Steady forced vibration as influenced by damping: An approximate solution of the steady forced vibration of a system of one degree of freedom under the influence of various types of damping, Transactions of the American Society of Mechanical Engineers, 52(2): 169–178, 1930, https://doi.org/10.1115/1.4057368.
4. P.C. Jennings, Equivalent viscous damping for yielding structures, Journal of the Engineering Mechanics Division, 94(1): 103–116, 1968, https://doi.org/10.1061/JMCEA3.0000929.
5. A. Kocsis, R.K. Németh, B. Turmunkh, Dynamic analysis of a beam on block-and-tackle suspension system: A continuum approach, Engineering Structures, 101: 412–426, 2015, https://doi.org/10.1016/j.engstruct.2015.07.022.
6. M.J. Kowalsky, M.J.N. Priestley, G.A. MacRae, Displacement-based design of rc bridge columns in seismic regions, Earthquake Engineering & Structural Dynamics, 24(12): 1623–1643, 1995, https://doi.org/10.1002/eqe.4290241206.
7. G. Lengyel, R.K. Németh, Free vibration of a cracked, pre-stressed continuous rod, Procedia Engineering, 161: 1656–1661, 2016, https://doi.org/10.1016/j.proeng.2016.08.641.
8. F. Li, X. Li, B. Li, H. Ma, B. Wen, Nonlinear dynamic modeling and vibration analysis of bearing system considering shaft current damage, Mechanics Based Design of Structures and Machines, 52(2): 1190–1210, 2024, https://doi.org/10.1080/15397734.2022.2150639.
9. G. Li, S. Wu, H. Wang, W. Ding, Global dynamics of a non-smooth system with elastic and rigid impacts and dry friction, Communications in Nonlinear Science and Numerical Simulation, 95: 105603, 2021, https://doi.org/10.1016/j.cnsns.2020.105603.
10. T. Liu, T. Zordan, Q. Zhang, B. Briseghella, Equivalent viscous damping of bilinear hysteretic oscillators, Journal of Structural Engineering, 141(11): 06015002, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001262.
11. T. Lu, M. Legrand, Nonsmooth modal analysis via the boundary element method for one-dimensional bar systems, Nonlinear Dynamics, 107: 227–246, 2022, https://doi.org/10.1007/s11071-021-06994-z.
12. T. Lu, M. Legrand, Harmonic balance-based nonsmooth modal analysis of unilaterally constrained discrete systems, Nonlinear Dynamics, 112: 1619–1640, 2024, https://doi.org/10.1007/s11071-023-09014-4.
13. G.W. Luo, X.H. Lv, Controlling bifurcation and chaos of a plastic impact oscillator, Nonlinear Analysis: Real World Applications, 10(4): 2047–2061, 2009, https://doi.org/10.1016/j.nonrwa.2008.03.010.
14. G.W. Luo, X.H. Lv, L. Ma, Periodic-impact motions and bifurcations in dynamics of a plastic impact oscillator with a frictional slider, European Journal of Mechanics – A/Solids, 27(6): 1088–1107, 2008, https://doi.org/10.1016/j.euromechsol.2008.02.005.
15. R.K. Németh, B.B. Geleji, Modal truncation damping in reduced modal analysis of piecewise linear continuum structures, Mechanics Based Design of Structures and Machines, 51(3): 1582–1605, 2021, https://doi.org/10.1080/15397734.2021.1874414.
16. S.W. Shaw, P.J. Holmes, A periodically forced piecewise linear oscillator, Journal of Sound and Vibration, 90(1): 129–155, 1983, https://doi.org/10.1016/0022-460X(83)90407-8.
17. D. Urman, M. Legrand, Nodal-boundary finite-element method for the Signorini problem in two dimensions, [in:] Proceedings of the ASME 2021 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 17–20, ASME, Virtual, Online, pp. 1–3, 2021, https://www.researchgate.net/publication/368898096_Nodal-Boundary_Finite-Element_Method_for_the_Signorini_Problem_in_Two_Dimensions.
18. C. Yoong, A. Thorin, M. Legrand, Nonsmooth modal analysis of an elastic bar subject to a unilateral contact constraint, Nonlinear Dynamics, 91: 2453–2476, 2018, https://doi.org/10.1007/s11071-017-4025-9.

