Inverse estimation of model parameters for newborn brain cooling process simulations

  • Dominika Bandoła Silesian University of Technology
  • Ziemowit Ostrowski Silesian University of Technology
  • Marek Rojczyk Silesian University of Technology
  • Wojciech Walas University Clinical Hospital in Opole
  • Zenon Halaba Opole University
  • Andrzej J. Nowak Silesian University of Technology

Abstract

In this work, a three-dimensional simplified computational model was built to simulate the passive thermophysiological response of part of a newborn's head for neonate’s selective brain cooling. Both metabolic heat generation and blood perfusion were considered. The set of model parameters was selected and a sensitivity study was carried out. Analysis of dimensionless sensitivity coefficients showed that the most important are: the contact thermal resistance between the cool-cap and skin, the thermal resistance of the plastic wall material, and deep (arterial) blood temperature.


The function specification method was applied to estimate the value of the contact resistance. Two, four and six computationally simulated measurements with different uncertainties were used to adjust random contact resistance value to the assumed one. Results showed that when using only two measurements having 2% of the uncertainty, the error of estimation does not exceed 9.8%. However, when using six measurements having 1% of uncertainty, the resulting estimation is burdened with an error of 0.3% only.

Keywords

inverse method, function specification method, bioheat, brain cooling,
Published
Nov 15, 2019
How to Cite
BANDOŁA, Dominika et al. Inverse estimation of model parameters for newborn brain cooling process simulations. Computer Assisted Methods in Engineering and Science, [S.l.], v. 26, n. 2, p. 93-104, nov. 2019. ISSN 2299-3649. Available at: <https://cames.ippt.pan.pl/index.php/cames/article/view/260>. Date accessed: 07 dec. 2019.
Section
Articles