Experimental Verification of a Numerical Model of RC Beam with CFRP Rope Strengthening

  • Michał Szczecina Department of Civil Engineering and Architecture, Kielce University of Technology
  • Paweł Tworzewski Department of Civil Engineering and Architecture, Kielce University of Technology
  • Kamil Bacharz Department of Civil Engineering and Architecture, Kielce University of Technology

Abstract

This paper presents results of experimental tests and numerical analysis of reinforced concrete (RC) beams containing an additional carbon fibre rope strengthening. Two single-span RC beam specimens with classical reinforcing bars and stirrups and one carbon fibre rope as near-surface mounted (NSM) strengthening were tested in a four-point bending test. The paper presents and compares the results registered by the ARAMIS system during the test of two beams with carbon fibre rope under monotonic load with the results obtained in finite element analysis with Abaqus software using the concrete damaged plasticity model for concrete.

Keywords

RC beams, CFRP strengthening, FEM, Abaqus, CDP model,

References

[1] T. Urban. Strengthening of reinforced concrete structures with traditional methods [in Polish: Wzmacnianie konstrukcji żelbetowych metodami tradycyjnymi]. WN PWN, 2015.
[2] M. Rajczyk, D. Jończyk. Strengthening of concrete structures with FRP fiber composites [in Polish: Wzmacnianie konstrukcji betonowych kompozytami włóknistymi FRP]. In: M. Major, Zeszyty Naukowe Politechniki Czestochowskiej – Budownictwo, 21: 261–265. Wydawnictwo Politechniki Częstochowskiej, 2015.
[3] R. Kotynia. Adhesion of composite reinforcement to concrete in reinforced concrete elements reinforced with composite materials [in Polish: Przyczepność zbrojenia kompozytowego do betonu w żelbetowych elementach wzmocnionych za pomocą materiałów kompozytowych]. Zeszyt nr 16, Wydawnictwo Katedry Budownictwa Betonowego Wydziału Budownictwa i Architektury Politechniki Łódzkiej, Łódź, 2008.
[4] R. Kotynia. Analysis of reinforced concrete beams strengthened with near surface mounted FRP reinforcement. Archives of Civil Engineering, 2: 305–317, 2006.
[5] R. Kotynia. Strengthening of reinforced concrete beams using polymer composites [in Polish: Wzmacnianie zelbetowych belek na scinanie za pomoca kompozytów polimerowych]. Politechnika Łódzka – Zeszyty Naukowe Nr 1106, Rozprawy Naukowe, Łódz, 2011.
[6] M. Kałuża, T. Bartosik. Structure strengthening with materials based on carbon, glass and aramid fibers [in Polish: Wzmacnianie konstrukcji materiałami na bazie włókien węglowych, szklanych i aramidowych]. Materiały Budowlane, 2: 36–38, 2007.
[7] Sika Wrap FX-50C product data sheet, https://gbr.sika.com/.
[8] P. Tworzewski, B. Goszczyńska. An Application of an Optical Measuring System to Reinforced Concrete Beams Analysis. In: Proceedings of 2016 Prognostics & System Health Management Conference – Chengdu (PHM-2016 Chengdu), China, 2016.
[9] J. Lubliner, J. Oliver, S. Oller, E. Oñate. A plastic-damage model for concrete. International Journal of Solids Structures, 25(3): 299–326, 1989.
[10] J. Lee, G.L. Fenves. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8): 892–900, 1998.
[11] Abaqus/CAE, User’s guide, ver. 6-12.2, Dassault Systemes Simulia Corp., 2012.
[12] M. Szczecina, A. Winnicki. Selected aspects of computer modeling of reinforced concrete structures. Archives of Civil Engineering, 62(1): 51–64, 2016.
[13] G. Devaut, J.L. Lions. Inequalities in mechanics and physics. Springer, Berlin Heidelberg, 1976.
[14] J. Szarliński, A. Winnicki, K. Podleś. Concrete structures in plane states [in Polish: Konstrukcje z betonu w płaskich stanach]. Politechnika Krakowska, Kraków, 2002.
[15] T. Jankowiak, T. Łodygowski. Identification of parameters of concrete damage plasticity constitutive model. Foundations of Civil and Environmental Engineering, 6: 53–69, 2005.
[16] T. Jankowiak, T. Łodygowski. Quasi-static failure criteria for concrete. Archives of Civil Engineering, 56(2): 123–154, 2010.
[17] T. Jankowiak. Damage criteria of concrete under quasi-static and dynamic load [in Polish: Kryteria zniszczenia betonu poddanego obciazeniom quasi-statycznym i dynamicznym]. Ph.D. thesis, Poznan University of Technology, 2010.
[18] A. Szwed, I. Kamińska. On calibration of constitutive model parameters of concrete and laboratory tests serving that aim [in Polish: O kalibracji parametrów modelu konstytutywnego betonu i badaniach doświadczalnych temu służących]. Chapter VIII in: E. Szmigiera, P. Łukowski, S. Jemioło [Eds]. Concrete and concrete structures – tests [in Polish: Beton i konstrukcje z betonu – badania], pp. 93–110. Warsaw University of Technology, Warsaw, 2015.
[19] EN1992-1-1 (2004) Eurocode 2 – Concrete structure – Part 1-1: General rules and rules for buildings.
[20] V. Červenka, L. Jendele, J. Červenka. ATENA program documentation. Part 1 – Theory. Červenka Consulting, Prague, 2012.
Published
Dec 31, 2019
How to Cite
SZCZECINA, Michał; TWORZEWSKI, Paweł; BACHARZ, Kamil. Experimental Verification of a Numerical Model of RC Beam with CFRP Rope Strengthening. Computer Assisted Methods in Engineering and Science, [S.l.], v. 26, n. 3–4, p. 137–151, dec. 2019. ISSN 2956-5839. Available at: <https://cames.ippt.pan.pl/index.php/cames/article/view/269>. Date accessed: 22 feb. 2025. doi: http://dx.doi.org/10.24423/cames.269.
Section
Articles