The Overview of Optimization Methods Applied to Truss-Z Modular System
Abstract
Extremely Modular Systems (EMSs) are comprised of as few types of modules as possible and allow creating structurally sound free-form structures that are not constrained by a regular tessellation of space. Truss-Z is the first EMS introduced, and its purpose is to create free-form pedestrian ramps and ramp networks in any given environment. This paper presents an overview of various multi-objective optimization methods applied to Truss-Z structures.
Keywords
Truss-Z, Extremely Modular System, Discrete Optimization, Multi-objective,References
1. R.E. Smith, Prefab architecture: a guide to modular design and construction, John Wiley & Sons, Hoboken, NJ, 2011.2. M. Zawidzki, Discrete Optimization in Architecture – Extremely Modular Systems, Springer Briefs in Architectural Design and Technology, Springer Singapore, 2017, doi: 10.1007/978-981-10-1109-2.
3. M. Zawidzki, Selected applications of computational intelligence methods to optimization in architecture, Workshop on Engineering Optimization, November 4th 2019, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland, 2019, http://bluebox.ippt.pan.pl/~ptauzow/WEO/presentations/Prezentacja%20MZ.pdf.
4. P. van Beek, Backtracking search algorithms, [in:] Foundations of artificial intelligence, F. Rossi, P. van Beek, T. Walsh [Eds], Vol. 2, pp. 85–134, Elsevier, Amsterdam, 2006.
5. D.E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, Mass., 1968.
6. E. Gurari, CIS 680: DATA STRUCTURES: Chapter 19: Backtracking Algorithms, 1999, online course available at https://web.archive.org/web/20070317015632/http://www.cse.ohio-state.edu/~gurari/course/cis680/cis680Ch19.html#QQ1-51-128.
7. M. Zawidzki, K. Nishinari, Modular Truss-Z system for self-supporting skeletal freeform pedestrian networks, Advances in Engineering Software, 47(1): 147–159, 2012, doi: 10.1016/j.advengsoft.2011.12.012.
8. Z. Michalewicz, D.B. Fogel, How to solve it: modern heuristics, Springer Verlag, Berlin, 2013, doi: 10.1007/978-3-662-07807-5.
9. I. Rechenberg, Evolution strategy – optimization of technical systems according to the principles of biological evolution [in German: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution], PhD thesis, 1971.
10. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1996.
11. M. Zawidzki, K. Nishinari, Application of evolutionary algorithms for optimum layout of Truss-Z linkage in an environment with obstacles, Advances in Engineering Software, 65: 43–59, 2013, doi: 10.1016/j.advengsoft.2013.04.022.
12. E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1: 269–271, 1959, doi: 10.1007/BF01386390.
13. D.R. Morrison, S.H. Jacobson, J.J. Sauppe, E.C. Sewell, Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning, Discrete Optimization, 19: 79–102, 2016, doi: 10.1016/j.disopt.2016.01.005.
14. M. Zawidzki, Retrofitting of pedestrian overpass by Truss-Z modular systems using graphtheory approach, Advances in Engineering Software, 81: 41–49, 2015, doi: 10.1016/j.advengsoft.2014.11.004.
15. A. Gottlieb, G.S. Almasi, Highly parallel computing, Benjamin/Cummings Publishing, Redwood City, CA, 1989.
16. M. Zawidzki, J. Szklarski, Effective multi-objective discrete optimization of Truss-Z layouts using a GPU, Applied Soft Computing, 70: 501–512, 2018, doi: 10.1016/j.asoc.2018.05.042.
17. M. Zawidzki, Optimization of multi-branch Truss-Z based on evolution strategy, Advances in Engineering Software, 100: 113–125, 2016, doi: 10.1016/j.advengsoft.2016.07.015.
18. A. Tugilimana, A.P. Thrall, R.F. Coelho, Conceptual design of modular bridges including layout optimization and component reusability, Journal of Bridge Engineering, 22(11), 04017094, 2017, doi: 10.1061/(ASCE)BE.1943-5592.0001138.
19. B.R. Torstenfelt, A. Klarbring, Structural optimization of modular product families with application to car space frame structures, Structural and Multidisciplinary Optimization, 32(2): 133–140, 2006.
20. E. Moses, M.B. Fuchs, M.B. Ryvkin, Topological design of modular structures under arbitrary loading, Structural and Multidisciplinary Optimization, 24(6): 407–417, 2002.
21. C.W. Zhou, J.P. Lainé, M. Ichchou, A.M. Zine, Multi-scale modelling for two-dimensional periodic structures using a combined mode/wave based approach, Computers & Structures, 154: 145–162, 2015.
22. M. Zawidzki, Ł. Jankowski, Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint, Smart Structures and Systems, 21(6): 715–725, 2018, doi: 10.12989/sss.2018.21.6.715.
23. LRFD Guide Specification for the Design of Pedestrian Bridges, American Association of State Highway and Transportation Officials (AASHTO), Washington, DC, 2009.
24. M. Zawidzki, Ł. Jankowski, Multiobjective optimization of modular structures: weight versus geometric versatility in a Truss-Z system, Computer-Aided Civil and Infrastructure Engineering, 34(11): 1026–1040, 2019, doi: 10.1111/mice.12478.
25. D. Pisarski, R. Konowrocki, Ł. Jankowski, Scalable distributed optimal control of vibrating modular structures, Structural Control and Health Monitoring, 27(4), e2502-1-21, 2020, doi: 10.1002/stc.2502.
26. B. Popławski, G. Mikułowski, A. Mróz, Ł. Jankowski, Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments, Mechanical Systems and Signal Processing, 100: 926–939, 2018, doi: 10.1016/j.ymssp.2017.08.012.
27. J. Hou, Ł. Jankowski, J. Ou, Frequency-domain substructure isolation for local damage identification, Advances in Structural Engineering, 18(1): 137–153, 2015, doi: 10.1260/1369-4332.18.1.137.
Published
Sep 28, 2020
How to Cite
ZAWIDZKI, Machi.
The Overview of Optimization Methods Applied to Truss-Z Modular System.
Computer Assisted Methods in Engineering and Science, [S.l.], v. 27, n. 2–3, p. 155–176, sep. 2020.
ISSN 2956-5839.
Available at: <https://cames.ippt.pan.pl/index.php/cames/article/view/291>. Date accessed: 24 jan. 2025.
doi: http://dx.doi.org/10.24423/cames.291.
Issue
Section
[CLOSED] Engineering Optimization