Classification and Segmentation of Periodontal Cyst for Digital Dental Diagnosis Using Deep Learning

  • Lakshmi T.K. Vellore Institute of Technology, Vellore, India
  • J. Dheeba Vellore Institute of Technology, Vellore, India

Abstract

The digital revolution is changing every aspect of life by simulating the ways humans think, learn and make decisions. Dentistry is one of the major fields where subsets of artificial intelligence are extensively used for disease predictions. Periodontitis, the most prevalent oral disease, is the main focus of this study. We propose methods for classifying and segmenting periodontal cysts on dental radiographs using CNN, VGG16, and U-Net. Accuracy of 77.78% is obtained using CNN, and enhanced accuracy of 98.48% is obtained through transfer learning with VGG16. The U-Net model also gives encouraging results. This study presents promising results, and in the future, the work can be extended with other pre-trained models and compared. Researchers working in this field can develop novel methods and approaches to support dental practitioners and periodontists in decisionmaking and diagnosis and use artificial intelligence to bridge the gap between humans and machines.

Keywords

CNN, Dental radiographs, Deep learning, Health care, Machine learning, periodontal cyst, Predictive analytics, Segmentation, UNET, VGG 16,

References

1. U.R. Acharya, H. Fujita, S.L. Oh, Y. Hagiwara, J.H. Tan, M. Adam, Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals, Information Sciences, 415: 190–198, 2017, doi: 10.1016/J.INS.2017.06.027.
2. R.M. Baiju, P. Elbe, N.O. Varghese, R. Sivaram, Oral health and quality of life: Current concepts, Journal of Clinical and Diagnostic Research: JCDR, 11(6): ZE21–ZE26, 2017, doi: 10.7860/JCDR/2017/25866.10110.
3. M. Bansal, M. Khatri, V. Taneja, Potential role of periodontal infection in respiratory diseases-a review, Journal of Medicine and Life, 6(3): 244–248, 2013, PMID: 24155782.
4. F.Q. Bui et al., Association between periodontal pathogens and systemic disease, Biomedical Journal, 42(1): 27–35, 2019, doi: 10.1016/j.bj.2018.12.001.
5. L.F.D.C. Carvalho, C.F. Lima, L.A.G. Cabral, A.A.H. Brandão, J.D. Almeida, Lateral periodontal cyst: a case report and literature review, Journal of Oral Maxillofacial Research, 1(4): 1–7, 2011, doi: 10.5037/jomr.2010.1405.
6. K.H. Cha, L. Hadjiiski, R.K. Samala, H.P. Chan, E.M. Caoili, R.H. Cohan, Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets, Medical Physics, 43(4): 1882–1896, 2016, doi: 10.1118/1.4944498.
7. H.J. Chang et al., Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis, Scientific Reports, 10(1): 1–8, 2020, doi: 10.1038/s41598-020-64509-z.
8. S. Dabeer, M.M. Khan, S. Islam, Cancer diagnosis in histopathological image: CNN based approach, Informatics in Medicine Unblocked, 16: 100231, 2019, doi: 10.1016/j.imu.2019.100231.
9. Q. Dou et al., 3D deeply supervised network for automated segmentation of volumetric medical images, Medical Image Analysis, 41: 40–54, 2017, doi: 10.1016/j.media.2017.05.001.
10. P.I. Eke, G. Thornton-Evans, B. Dye, R. Genco, Advances in surveillance of periodontitis: The Centers for Disease Control and Prevention periodontal disease surveillance project, Journal of Periodontology, 83(11): 1337–1342, 2012, doi: 10.1902/jop.2012.110676.
11. T. Ekert et al., Deep learning for the radiographic detection of apical lesions, Journal of Endodontics, 45(7): 917–922, 2019, doi: 10.1016/j.joen.2019.03.016.
12. R.J. Genco, W.S. Borgnakke, Risk factors for periodontal disease, Periodontology 2000, 62(1): 59–94, 2013, doi: 10.1111/j.1600-0757.2012.00457.x.
13. R. Godasu, D. Zeng, K. Sutrave, Transfer learning in medical image classification: Challenges and opportunities, MWAIS 2020 Proceedings, 18: 6 pages, 2020, https://aisel.aisnet.org/mwais2020/18/.
14. R.O. Greer, R.E. Marx, Pediatric Head and Neck Pathology, Odontogenic and Non-Odontogenic Cysts, Cambridge University Press, Cambridge, 2016.
15. M.F. Helmi, H. Huang, J.M. Goodson, H. Hasturk, M. Tavares, Z.S. Natto, Prevalence of periodontitis and alveolar bone loss in a patient population at Harvard School of Dental Medicine, BMC Oral Health, 19(1): 1–11, 2019, doi: 10.1186/s12903-019-0925-z.
16. M. Hung et al., Application of machine learning for diagnostic prediction of root caries, Gerodontology, 36(4): 395–404, 2019, doi: 10.1111/ger.12432.
17. J.J. Hwang, Y.H. Jung, B.H. Cho, M.S. Heo, An overview of deep learning in the field of dentistry, Imaging Science in Dentistry, 49(1): 1–7, 2019, doi: 10.5624/isd.2019.49.1.1.
18. A.K. Ismael, A.M. Khidhir, Evaluation of transfer learning with CNN to classify the jaw tumors, IOP Conference Series: Materials Science and Engineering, 928(3): 032072, 2020, doi: 10.1088/1757-899X/928/3/032072.
19. D.Y. Kang, H.P. Duong, J.C. Park, Application of deep learning in dentistry and implantology, The Korean Academy of Oral and Maxillofacial Implantology, 24(3): 148–181, 2020, doi: 10.32542/implantology.202015.
20. G. Litjens et al., A survey on deep learning in medical image analysis, Medical Image Analysis, 42: 60–88, 2017, doi: 10.1016/j.media.2017.07.005.
21. A. Kishor, C. Chakraborty, W. Jeberson, Reinforcement learning for medical information processing over heterogeneous networks, Multimedia Tools and Applications, 80(16): 23983–24004.D, 2021, doi: 10.1007/s11042-021-10840-0.
22. A. Kishor, C. Chakraborty, W. Jeberson, A novel fog computing approach for minimization of latency in healthcare using machine learning, International Journal of Interactive Multimedia and Artificial Intelligence, 6(7): 7–17, 2020, doi: 10.9781/ijimai.2020.12.004.
23. A. Kishor, C. Chakraborty, W. Jeberson, Intelligent healthcare data segregation using fog computing with internet of things and machine learning, International Journal of Engineering Systems Modelling and Simulation, 2(2/3): 188–194, 2021, doi: 10.1504/IJESMS.2021.115533.
24. J. Kim, H.S. Lee, I.S. Song, K.H. Jung, DeNTNet: Deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs, Scientific Reports, 9(1): 1–9, 2019, doi: 10.1038/s41598-019-53758-2.
25. J. Krois et al., Deep learning for the radiographic detection of periodontal bone loss, Scientific Reports, 9(1): 1–6, 2019, doi: 10.1038/s41598-019-44839-3.
26. T.K. Lakshmi, J. Dheeba, Digitalization in dental problem diagnosis, prediction and analysis: A machine learning perspective of periodontitis, International Journal of Recent Technology in Engineering, 8(5): 67–74, 2020, doi: 10.35940/ijrte.E5672.018520.
27. J.H. Lee, D.H. Kim, S.N. Jeong, S.H. Choi, Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm, Journal of Periodontal Implant Science, 48(2): 114–123, 2018, doi: 10.5051/jpis.2018.48.2.114.
28. T. Madiba, A. Bhayat, Periodontal disease-risk factors and treatment options, South African Dental Journal, 73(9): 571–575, 2018, doi: 10.17159/2519-0105/2018/v73no9a5.
29. Y. Miki et al., Classification of teeth in cone-beam CT using deep convolutional neural networks, Computers in Biology and Medicine, 80: 24–29, 2017, doi: 10.1016/j.compbiomed.2016.11.003.
30. Y. Moriyama et al., A MapReduce-like deep learning model for the depth estimation of periodontal pockets, [in:] Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies – HEALTHINF, pp. 388–395, 2019, doi: 10.5220/0007405703880395.
31. T.T. Nguyen, N. Larrivée, A. Lee, O. Bilaniuk, R. Durand, Use of artificial intelligence in dentistry: current clinical trends and research advances, Journal of the Canadian Dental Association, 87(l7): PMID: 34343070, 2021.
32. K. Orhan, I.S. Bayrakdar, M. Ezhov, A. Kravtsov, T.A.H.A. Özyürek, Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans, International Endodontic Journal, 53(5): 680–689, 2020, doi: 10.1111/iej.13265.
33. Y. Pan et al., Brain tumor grading based on neural networks and convolutional neural networks, [in:] 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 699–702, 2015, doi: 10.1109/EMBC.2015.7318458.
34. H. Pratt, F. Coenen, D.M. Broadbent, S.P. Harding, Y. Zheng, Convolutional neural networks for diabetic retinopathy, Procedia Computer Science, 90: 200–205, 2016, doi: 10.1016/j.procs.2016.07.014.
35. M. Prados-Privado, J. García Villalón, C.H. Martínez-Martínez, C. Ivorra, J.C. Prados-Frutos, Dental caries diagnosis and detection using neural networks: A systematic review, Journal of Clinical Medicine, 9(11): 3579, 2020, doi: 10.3390/jcm9113579.
36. P.M. Preshaw, Detection and diagnosis of periodontal conditions amenable to prevention, BMC Oral Health, 15(1): 1–11, 2015, doi: 10.1186/1472-6831-15-S1-S5.
37. A. Rana, G. Yauney, L.C. Wong, O. Gupta, A. Muftu, P. Shah, Automated segmentation of gingival diseases from oral images, IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), pp. 144–147, 2017, doi: 10.1109/HIC.2017.8227605.
38. D.R. Rasila Sainu, T.A. Majeed, R.S. Ravi, N. Sayee Ganesh, D. Jayachandran, Imaging techniques in periodontics: A review article, Journal of Bioscience And Technology, 7(2): 739–747, 2016.
39. F. Schwendicke, K. El Hennawy, S. Paris, P. Friebertshäuser, J. Krois, Deep learning for caries lesion detection in near-infrared light trans illumination images: A pilot study, Journal of Dentistry, 92: 103260, 2020, doi: 10.1016/j.jdent.2019.103260.
40. A. Saood, I. Hatem, COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet, BMC Medical Imaging, 21(1): Article no. 19, pp. 1–10, 2021, doi: 10.1186/s12880-020-00529-5.
41. F. Schwendicke, T. Golla, M. Dreher, J. Krois, Convolutional neural networks for dental image diagnostics: A scoping review, Journal of Dentistry, 91: 103226, 2019, doi: 10.1016/j.jdent.2019.103226.
42. S. Sivasundaram, C. Pandian, Performance analysis of classification and segmentation of cysts in panoramic dental images using convolutional neural network architecture, International Journal of Imaging Systems and Technology, 31: 2214–2225, 2021, doi: 10.1002/ima.22625.
43. S. Sivagami, P. Chitra, G.S.R. Kailash, S.R. Muralidharan, UNet architecture based dental panoramic image segmentation, [in:] 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp. 187–191, 2020, doi: 10.1109/WiSPNET48689.2020.9198370.
44. X. Xu, C. Liu, Y. Zheng, 3D tooth segmentation and labeling using deep convolutional neural networks, IEEE Transactions on Visualization and Computer Graphics, 25(7): 2336–2348, 2019, doi: 10.1109/TVCG.2018.2839685.
45. R. Yamashita, M. Nishio, R.K.G. Do, K. Togashi, Convolutional neural networks: An overview and application in radiology, Insights into Imaging, 9(4): 611–629, 2018, doi: 10.1007/s13244-018-0639-9.
46. H. Yang et al., Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs, Journal of Clinical Medicine, 9(6): 1839, 2020, doi: 10.3390/jcm9061839.
47. L. Zhang, V. Gopalakrishnan, L. Lu, R.M. Summers, J. Moss, J. Yao, Self-learning to detect and segment cysts in lung CT images without manual annotation, [in:] 2018 IEEE 15th International Symposium on Biomedical Imaging, pp. 1100–1103, 2018, doi: 10.1109/ISBI.2018.8363763.
Published
Oct 3, 2022
How to Cite
T.K., Lakshmi; DHEEBA, J.. Classification and Segmentation of Periodontal Cyst for Digital Dental Diagnosis Using Deep Learning. Computer Assisted Methods in Engineering and Science, [S.l.], oct. 2022. ISSN 2299-3649. Available at: <https://cames.ippt.pan.pl/index.php/cames/article/view/505>. Date accessed: 08 dec. 2022. doi: http://dx.doi.org/10.24423/cames.505.
Section
[CLOSED]Scientific Computing and Learning Analytics for Smart Healthcare Systems