Finite element formulations for 3D convex polyhedra in nonlinear continuum mechanics

  • Markus Kraus Chair of Applied Mechanics, University Erlangen-Nuremberg, Erlangen
  • Paul Steinmann Chair of Applied Mechanics, University Erlangen-Nuremberg, Erlangen

Abstract

In this paper, we present finite element formulations for general three-dimensional convex polyhedra for use in a common finite element framework that are well suited, e.g., for modeling complex granular materials and for mesh refinements. Based on an universally applicable interpolant for any convex polyhedron, different interpolation schemes are investigated in the context of nonlinear elastostatics.


The modeling benefits and the numerical performance regarding the mechanical response and the computational cost are analyzed by several examples.

Keywords

nonlinear finite elements, polyhedral elements, 3D interpolation, finite elasticity,

References

[1] V.V. Belikov, V.D. Ivanov, V.K. Kontorovich, S.A. Korytnik, A.Y. Semenov. The non-Sibsons interpolation: A new method of interpolation of the values of a function on an arbitrary set of points. Comput. Math. Math. Phys., 37(1): 9–15, 1997.
[2] A. Constantiniu, P. Steinmann, T. Bobach, G. Farin, G. Umlauf. The adaptive Delaunay tessellation: a neighborhood covering meshing technique. Comput. Mech., 42(5):655–669, 2008.
[3] G. Dasgupta. Interpolants within convex polygons: Wachspress shape functions. J. Aero. Eng., 16: 1–8, 2003.
[4] M. Floater. Mean value coordinates. Comput. Aided Geomet. Des., 20: 19–27, 2003.
[5] M. Groeber, S. Ghosh, M.D. Uchic, D.M. Dimiduk. Developing a robust 3-D characterization-representation framework for modeling polycrystalline materials. J. Miner. Met. Mater. Soc., 59(9): 32–36, 2007.
[6] M.A. Groeber, B. Haley, M.D. Uchic, D.M. Dimiduk, S. Ghosh. 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater. Char., 57(4–5): 259–273, 2006.
[7] H. Hiyoshi, K. Sugihara. Another interpolant using Voronoi diagrams. IPSJ SIG Notes, 98-AL-62: 33–40, 1998. In Japanese.
[8] K. Hormann, M.S. Floater. Mean value coordinates for arbitrary polygons. ACM Trans. Graph., 25(4): 1424–1441, 2006.
[9] Y. Lipman, D. Levin, D. Cohen-Or. Green coordinates. ACM Trans. Graph., 27:78: 1–10, 2008.
[10] E.A. Malsch, J.J. Lin, G. Dasgupta. Smooth two dimensional interpolations: A recipe for all polygons. J. Graph. Tool, 10(2): 27–39, 2005.
[11] M. Meyer, H. Lee, A. Barr, M. Desbrun. Generalized barycentric coordinates on irregular polygons. J. Graph. Tool, 7: 13–22, 2002.
[12] S. Reese. A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int. J. Numer. Meth. Eng., 69: 1671–1716, 2007.
[13] S. Reese, M. Küssner, B. Reddy. A new stabilization technique for finite elements in non-linear elasticity. Int. J. Numer. Meth. Eng., 44: 1617–1652, 1999.
[14] M. Sambridge, J. Braun, H. McQueen. Geophysical parameterization and interpolation of irregular data using natural neighbours. Geophys. J. Int., 122: 837–857, 1995.
[15] H. Si. TetGen – A quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 1.4 edition, 01 2006.
[16] R. Sibson. A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Phil. Soc., 87(1): 151–155, 1980.
[17] R. Sibson. A brief description of natural neighbor interpolation. In V. Barnett, editor, Interpreting Multivariate Data, chapter 2, pages 21–36. Wiley, Chichester, 1981.
[18] N. Sukumar, E.A. Malsch. Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Meth. Eng., 13(1): 129–163, 2006.
[19] N. Sukumar, B. Moran, T. Belytschko. The natural element method in solid mechanics. Int. J. Numer. Meth. Eng., 43: 839–887, 1998.
[20] N. Sukumar, B. Moran, A.Y. Semenov, V.V. Belikov. Natural neighbor Galerkin methods. Int. J. Numer. Meth. Eng., 50: 1–27, 2001.
[21] N. Sukumar, A. Tabarraei. Conforming polygonal finite elements. Int. J. Numer. Meth. Eng., 61(12): 2045–2066, 2004.
[22] L. Traversoni. Modified natural neighbor interpolant. Proceedings of SPIE, 1830: 196–203, Nov. 1992.
[23] N. Uhlmann, J. Pavlovic, M. Hilbinger, M. Salamon, F. Nachtrab, R. Bähr, F. Mnich, R. Hanke. Fast 3D-analysis of texture features – Possibilities of high resolvent X-ray computer tomography in the analysis of texture features of metallic material. VDI Reports, 2061: 81–89, 2009 (In German).
[24] E.L. Wachspress. A rational finite element basis. Number 114 in Mathematics in Science and Engineering. Academic Press, New York, 1975.
[25] J. Warren. Barycentric coordinates for convex polytopes. Adv. Comput. Math., 6: 97–108, 1996.
[26] J. Warren. On the uniqueness of barycentric coordinates. Contemp. Math., 334: 93–99, 2003.
[27] J. Warren, S. Schaefer, A.N. Hirani, M. Desbrun. Barycentric coordinates for convex sets. Adv. Comput. Math., 27: 319–338, 2007.
[28] D. Watson. Compound signed decomposition, the core of natural neighbor interpolation in n-dimensional space, 2001.
[29] S. Weißer. Residual error estimate for BEM-based FEM on polygonal meshes. Numer Math., 118: 765–788,
Published
Jan 25, 2017
How to Cite
KRAUS, Markus; STEINMANN, Paul. Finite element formulations for 3D convex polyhedra in nonlinear continuum mechanics. Computer Assisted Methods in Engineering and Science, [S.l.], v. 19, n. 2, p. 121-134, jan. 2017. ISSN 2956-5839. Available at: <https://cames.ippt.pan.pl/index.php/cames/article/view/96>. Date accessed: 27 apr. 2025. doi: http://dx.doi.org/10.24423/cames.96.
Section
Articles