Recent developments in numerical homogenization
Abstract
This paper deals with homogenization of non linear fibre-reinforced composites in the coupled thermomechanical field. For this kind of structures, i.e. inclusions randomly dispersed in a matrix, the self consistent methods are particularly suitable to describe the problem. Usually, in the framework of the self consistent scheme the homogenized material behaviour is obtained with a symbolic approach. For the non linear case, that method may become tedious. This paper presents a different, fully numerical procedure. The effective properties are determined by minimizing a functional expressing the difference (in some chosen norm) between the solution of the heterogeneous problem and the equivalent homogenous one. The heterogeneous problem is solved with the Finite Element method, while the second one has its analytical solution. The two solutions are written as a function of the (unknown) effective parameters, so that the final global solution is found by iterating between the two single solutions. Further, it is shown that the considered homogenization scheme can be seen as an inverse problem and Artificial Neural Networks are used to solve it.
Keywords
Generalized Self-Consistent-Like method, non-linear homogenization, Artificial Neural Networks, inverse problems, thermo-mechanical analysis, multiscale modelling, unsmearing,References
[1] E.W.B. Engquist, X. Li, W. Ren, E. Vanden-Eijnden. Heterogeneous multiscale methods: A review. Communications in Computational Physics, 2(3): 367–450, 2007.[2] A. Bensoussan, J.L. Lions, G. Papanicolau. Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam, 1976.
[3] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory. Springer-Verlag, Berlin, 1980.
[4] W. Voigt. Über die Beziehungzwischen den beiden Elastizitäts konstanten isotroper Körper. Wied. Ann., 38: 573–587, 1889.
[5] A. Reuss. Berechnung del Fliessgrenze von Mischkristallen auf Grundder Plastizität bedingung für Einkristalle. Z. Angew. Math. Mech., 9: 49–58, 1929.
[6] Z. Hashin, S. Shtrikman. A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids, 10: 343–352, 1962.
[7] Z. Hashin, S. Shtrikman. On some variational principlesin anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids, 10: 335–342, 1962.
[8] Z. Hashin, S. Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 11: 127–140, 1963.
[9] D.A.G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielek-trizitätskonstanten und Leitfähigkeitn der Mischkörper aus isotropen Substanzen. Ann. Phys., 24: 636–679, 1935.
[10] B. Budiansky. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids, 13, 223–227, 1965.
[11] A.V. Hershey. The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME J. Appl. Mech., 21, 236–240, 1954.
[12] R. Hill. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 13: 213–222, 1965.
[13] E. Kröner. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z. Phys., 151: 504–518, 1958.
[14] P. Suquet. Analyse limite et homogénéisation. C. R. Acad. Sci. Paris II, 295: 1355–1358, 1983.
[15] P. Suquet. Element of homogemization for inelastic solid mechanics. In: E. Sanchez-Palencia, A. Zaoui, eds., Homogenization techniques for composite media. Lecture Notes in Physics, 272, pp. 193–278, Springer Verlag, New York, 1985.
[16] G.A. Francfort. Homogenisation and Fast Oscillations in Linear Thermoelasticity. In: R.Lewis, E.Hinton, P.Betess, B.Schrefler, eds., Numerical Methods for Transient and Coupled Problems, pp. 382–392, Pineridge Press, Swansea, 1984.
[17] C. Boutin. Microstructural influence on heat conduction. Int. J. Heat Mass Transfer, 38(17), 3181–3195, 1995.
[18] D.P. Boso, M. Lefik, B.A. Schrefler. Homogenisation methods for the thermo-mechanical analysis of Nb3Sn strand. Cryogenics, 46(7–8): 569–580, 2006.
[19] D.P. Boso, M. Lefik, B.A. Schrefler. A multilevel homogenised model for superconducting strand thermo mechanics. Cryogenics, 45(4): 259–271, 2005.
[20] J.F.W. Bishop, R. Hill. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Phil. Mag., 42: 414–427, 1951.
[21] J.F.W. Bishop, R. Hill. A theoretical derivation of the plastic properties of a polycrystalline face-center metal.Phil. Mag., 42, 1298–1307, 1951.
[22] J.R. Willis. Variational estimates for the overall response of an inhomogeneous nonlinear dielectric. In: J.L. Ericksen, D. Kinderlehrer, R. Kohn, J.-L. Lions, eds., Homogeneization and Effective Moduli of Materials and Media, pp. 247–263, Springer-Verlag, New York, 1986.
[23] D.R.S. Talbot, J.R. Willis. Variational principles for inhomogeneous non-linear media. IMA J. Appl. Math., 35: 39–54, 1985.
[24] P. Ponte Castañeda. The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids, 39: 45–71, 1991.
[25] P. Ponte Castañeda. New variational principles in plasticity and their application to composite materials. J. Mech. Phys. Solids, 40: 1757–1788, 1992.
[26] D.R.S. Talbot, J.R. Willis. Some explicit bounds for the overall behaviour of nonlinear composites. Int. J. Solids Struct., 29: 1981–1987, 1992.
[27] Suquet, P. Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids, 41: 981–1002, 1993.
[28] T. Olson. Improvements on a Taylor’s upper bound for rigid-plastic composites. Mater. Sci. Eng. A, 175: 15–19, 1994.
[29] J. D Eshelby. The elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. A, 241: 376–396, 1957.
[30] T.I. Zohdi. Homogenization Methods and Multiscale Modeling. In: Encyclopedia of Computational Mechanics. Volume 2: Solids and Structures. John Wiley & Sons, Ltd, Chichester, 2004.
[31] J. Aboudi. Mechanics of Composite Materials - A Unified Micromechanical Approach. Elsevier, Amsterdam, 1992.
[32] R. Christensen. A critical evaluation for a class of micromechanics models. J. Mech. Phys. Solids, 38(3): 379–404, 1990.
[33] Z. Hashin. Analysis of composite materials: a survey. ASME J. Appl. Mech., 50: 481–505, 1983.
[34] R. Hill. Continuum micromechanics of elastoplasticpolycrystals. J. Mech. Phys. Solids, 13: 89–101, 1965.
[35] J.W. Hutchinson. Bounds and self-consistent estimates for creep and polycrystalline materials. Proc. R. Soc. Lond. A., 348: 101–127, 1976.
[36] M. Berveiller, A. Zaoui. An extension of the the self-consistent scheme to plastically flowing polycristals. J. Mech. Phys. Solids, 26: 325–344, 1979.
[37] M. Lefik, D.P. Boso, B.A. Schrefler. Generalized self-consistent homogenization using the Finite Element Method. Z. Angew. Math. Mech., 89(4): 306 – 319, 2009.
[38] M. Lefik, D.P. Boso, B.A. Schrefler. Generalised self-consistent like method for Mechanical Degradation offibrous composites, (submitted).
[39] D.P. Boso, M. Lefik, B.A. Schrefler. Generalized self consistent like homogenization as an inverse problem, (submitted).
[40] J.L. Chaboche. Continuum Damage Mechanics: Part I–General Concepts. Journal of Applied Mechanics, 55: 59–64, 1988.
[41] C. Pellegrino, U. Galvanetto, B.A. Schrefler. Numerical homogenisation of periodic composite materials with non-linear material components. Int. J. Num. Meth. Engng., 46: 1609–1637, 1999.
42] D. Boso, C. Pellegrino, U. Galvanetto, B.A. Schrefler. Macroscopic damage in periodic composite materials. Comm. Num. Meth. Engng, 16(9): 615–623, 2000.
[43] J.D. Achenbach. Quantitative nondestructive evaluation. Int. J. Solid and Structures, 37(1–2): 13–27, 2000.
[44] J.C. Simo, R.L. Taylor. A return mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering, 22(3): 649–670, 1986.
[45] J.C. Simo, T.J.R. Hughes. Computational inelasticity. Springer Verlag, 1998.
[46] E. Hervé, A. Zaoui. Elastic behaviour of multiply coated fibre-reinforced composites. Int. J. Engng Sci., 33(10): 1419–1433, 1995.
[47] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method for Solid and Structural Mechanics. Elsevier Butterworth-Hein, 2005.
[48] L.V. Gibiansky, O. Sigmund. Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids, 48: 461–498, 2000.
[49] D.P. Boso, M. Lefik, B.A. Schrefler. Thermal and Bending Strain on Nb3Sn Strands. IEEE Transactions on Applied Superconductivity, 16(2): 1823–1827, 2006.
[50] R. Zanino, D. P. Boso, M. Lefik, P.L. Ribani, L. Savoldi Richard, B.A. Schrefler. Analysis of Bending Effects on Performance Degradation of ITER-Relevant Nb3Sn Strand Using the THELMA Code. IEEE Transactions on Applied Superconductivity, 18(2): 1067–1071, 2008.
[51] D.P. Boso, M.J. Lefik, B.A. Schrefler. Thermo-Mechanics of the Hierarchical Structure of ITER Superconducting Cables. IEEE Transactions on Applied Superconductivity, 17(2): 1362–1365, 2007.
[52] P. Bauer, H. Rajainmaki, and E. Salpietro. EFDA Material Data Compilation for Superconductor Simulation, (unpublished). EFDA CSU, Garching, April 2007.