Finite element simulation of dislocation field movement
Abstract
The problem of dislocation motion in monocrystals is faced in the framework of the continuum theory of dislocations. The presented approach is based on the defects balance law. A constitutive model is formulated which relates the driving forces with the dislocation velocity. The model makes use of the relations between the plastic deformation tensor and the tensor of dislocation density. Given a crystal under certain boundary and initial conditions, the evolution of both dislocation field and elastic-plastic deformations is obtained by solving the coupled system of equations resulting from the equilibrium equation and the dislocation balance for each time step. The set of equations is discretized by the finite element method. As an example the movement of an edge dislocation field inducing shear band deformation in a monocrystal is considered.
Keywords
References
[1] H. Antúnez, S. Idelsohn . Using pseudo-concentrations in the analysis of transient forming processes. Eng. Computations, 9: 547-559, 1992.[2] B.A. Bilby. Continuous distribution of dislocations. In: I.N. Sneddon, R. Hill (eds.), Progress in Solid Mechanics, 1: 331-398. North-Holland Pub!., Amsterdam, 1960.
[3] P. Dłużewski. Continuum theory of dislocations in angular coordinates. Solid State Phenomena. 35-36: 539-544, 1994
[4] P.H. Dłużewski.Geometry and continuum thermodynamics of structural defects movement. Mech. Mater., 1994 (submitted).
[5] K. Kondo. On geometrical and physical foundations of the theory of yielding. Proc. 2nd Japan Nat. Congr. Appl. Mech., 2: 41-47, 1952.
This work is licensed under a Creative Commons Attribution 4.0 International License.