Multiscale Analysis of Cement Composites

Abstract

This paper is devoted to multiscale modeling of cement composites. The need for such an approach is due to the heterogeneous complex internal structure of the composite. A multiscale model of the composite was built and the results of computer simulations for the adopted parameters of the microstructure of the composite were presented, enabling a more detailed analysis of its mechanical and structural properties.

Keywords

multiscale modeling, analysis of heterogeneity of cement composite structure, computer simulations,

References

1. A. Długosz, I. Pokorska, R. Jaskulski, M.A. Glinicki, Evolutionary identification method for determining thermophysical parameters of hardening concrete, Archives of Civil and Mechanical Engineering, 21(1): 35, 2021, doi: https://doi.org/10.1007/s43452-020-00154-7.
2. T. Burczyński, M. Pietrzyk, W. Kuś, Ł. Madej, A. Mrozek, Ł. Rauch, Multiscale Modelling and Optimisation of Materials and Structures, Wiley, 2022.
3. J. Zhang et al., On the added value of multi-scale modeling of concrete, Frontiers of Structural and Civil Engineering, 16(1): 1–23, 2022, doi: https://doi.org/10.1007/s11709-021-0790-0.
4. A. Rhardane, A microscopically-informed modelling approach of damage in cement-based materials, in: Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, IA-FraMCoS, 2019, doi: https://doi.org/10.21012/FC10.235648.
5. P. Chaudhuri, Multi-scale modeling of fracture in concrete composites, Composites Part B: Engineering, 47: 162–172, 2013, doi: https://doi.org/10.1016/j.compositesb.2012.10.021.
6. V. Palmieri, L. De Lorenzis, Multiscale modeling of concrete and of the FRP–concrete interface, Engineering Fracture Mechanics, 131: 150–175, 2014, doi: https://doi.org/10.1016/j.engfracmech.2014.07.027.
7. I. Pokorska-Służalec, Z. Nowak, H. Grzywacz, S. Wilczewski, M. Giersig, Characterizations of graphene reinforced cement matrix composites using nanoindentation, w: 43rd Solid Mechanics Conference, SolMech 2024, s. 22, Wrocław, 2024.
8. I. Pokorska, Z. Nowak, M. Poński, S. Wilczewski, H. Grzywacz, M. Giersig, Nano-indentation response of graphene reinforced cement mortar composites, [in:] 40th Danubia-Adria Symposium on Advances in Experimental Mechanics (DAS 2024), pp. 119–120, Gdańsk, 2024.
9. M. Poński, I. Pokorska, T. Burczyński, Multiscale modeling of concrete with nanoingredients, [in]: Proceedings of the XVII International Conference on Computational Plasticity, COMPLAS 2023, Barcelona, 2023.
10. A.J.N. MacLeod, Microstructure and durability of Portland cement-carbon nanotube composites, doctoral dissertation, Monash University, Monash, 2016.
11. R.J.-M. Pellenq et al., A realistic molecular model of cement hydrates, Proceedings of the National Academy of Sciences, 106(38): 16102–16107, 2009, doi: https://doi.org/10.1073/pnas.0902180106.
12. H. Aglan, M. Morsy, A. Allie, F. Fouad, Evaluation of fiber reinforced nanostructured perlite-cementitious surface compounds for building skin applications, Construction and Building Materials, 23(1): 138–145, 2009, doi: https://doi.org/10.1016/j.conbuildmat.2008.01.010.
13. S.S. Shebl, L. Allie, M.S. Morsy, H.A. Aglan, Mechanical behavior of activated nano silicate filled cement binders, Journal of Materials Science, 44(6): 1600–1606, 2009, doi: https://doi.org/10.1007/s10853-008-3214-9.
14. V. Papadopoulos, M. Impraimakis, Multiscale modeling of carbon nanotube reinforcedced concrete, Composite Structures, 182: 251–260, 2017, doi: https://doi.org/10.1016/j.compstruct.2017.09.061.
Published
Dec 13, 2024
How to Cite
POKORSKA, Iwona; POŃSKI, Mariusz; BURCZYŃSKI, Tadeusz. Multiscale Analysis of Cement Composites. Computer Assisted Methods in Engineering and Science, [S.l.], v. 31, n. 4, p. 507–518, dec. 2024. ISSN 2956-5839. Available at: <https://cames.ippt.pan.pl/index.php/cames/article/view/1770>. Date accessed: 18 dec. 2024. doi: http://dx.doi.org/10.24423/cames.2024.1770.
Section
Articles